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AbStraCt. Some properties of the used better than aged in convex ordering(UBAC) class of life distributions are

given. These properties include moment inequalities and moment generating functions behavior. Nonparametric

estimation of UBAC survival function are discussed. In addition testing of the survival function of this class based on
moment inequalities are introduced.
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1 INTRODUCTION

Let X be a nonnegative continuous random variable with distribution function F(X), survival function F =1—F | at

= F§+x)

age t, we define the random residual life by Xt with survival function F. =

" F@)

has a finite mean g = E(X) = J; F(u)du. Some properties concerning the asymptotic behavior of X, as t — o0

,X,t >0 and assume that X

will be used. Bhattacharjee(1982) gave the following definition.

Definition(1.1). If X is nonnegative random variable, its distribution function F is said to be finitely and positively
smooth if a number ¥ € (0,00) exists such that:

F(t+x X
Iim—( ) e

= @)
t—>0 F (t)

where y is called to b a asymptotic decay coefficient of X. Denoting Xe be a random variable exponentially distributed

d
by mean —, the following definitions imply that Xt converges to Xe in distribution written as X — Xe . This property
v

is useful for description of random life times of devices of unknown age.

Definition(1.2). The distribution F is said to be used better than age UBA if for all X,t >0

F(x+t) = F(x)e™, @)
where ¥ called is the asymptotic decay of X.

Definition(1.3). The distribution F is said to be used better than aged in convex ordering (UBAC) if for all X,t >0

.[[OOE(X-FU)dU > E(x)fe’wdu, ®3)

or

H(x+t) > ZF(x)e ", @)
¥

where V(X +1) = rotf(u)du .

We observe that the equality of (1.3) is achieved when F (X) has an exponential distribution with mean £/ equal to the
coefficient of the asymptotic decay } , where the exponential distribution is the only distribution which has the lack of
memory property.

Willmot and Cai (2000) showed that the UBA class includes the decreasing mean residual life (DMRL) class. While Al-
Nachawati and Alwasel(1997) showed that UBAC class includes the UBA class of life distributions. Thus we have

IHR =« DMRL < UBA c UBAC.

For definitions and discussions of the classes IHR and DMRL see Barlow and Prochan (1981), Ahmad (1992, 1994) and
among others. Ahmad (2004) discussed some properties of UBA class of life distribution. Abu-Youssef presented
nonparametric test for UBAC class based on U-test statistic. Based on the goodness of fit approach, Ali and Abu-Youssef
(2012) found a new test for testing exponentiality against UBAC Class of life distributions.

The present work discuses probability and inferential properties of UBAC class of life distributions. In section 2 we give
moment inequalities of the class. In section 3 we obtain upper bounds of the moment generating function that guarantee

its existence and finiteness. In section 4, we estimate the survival function F(t) whenever assumed to be UBAC class of

life distributions. Testing in this class based on a moment inequality is introduced in section 5. Finally we apply the
proposed test to real practical data in medical science.

3341 | Page March 25, 2015



8 ISSN 2347-1921

2 Moment Inequalities

Several authoress derived moments inequalities of different families of life distributions such as IHR, IHRA (increasing
hazared rate in average), NBU (new better than used), UBA and UBAE (used better than aged in expectation), cf.
Ahmad(2001, 2004) and Ahmad and Mugadi (2004), among others. The following theorem gives moments inequality for
UBAC class of life distributions.

Theorem 2.1. let F be UBAC class of life distributions such that for some integers r,$>0,
— r+s+3
;u(r+s+3) - E(X )SOO , then

S+2
Vo Hrises) > Hiri

> , (1)
(r+s+3)! (r+1)!
Proof. since F is UBAC, then
yv(x+t) 2 F(x)e ™, 2
Multiplying both sides by X't*, r,s >0, and integrating over (0,0), w.rt. X,t , then
y I:j:xrtsv(x +t)dtdx > Loo jo “X't° F (x)e v dxdt )
By taking W =1, X = U—W, the left hand side of (2.3) is
= r S =< r+s+1 iy W r W 5]
yjo jo (U—w)" wv(u)dwdu = ;/L u sy (u) L (1=2)" () dwdu
= B(r +1,s+1)j0wu’+s+lv(u)du, 4
where B(r+1,5 +1) = _Ll(l—u)r(u)sdu .
But
j:our*s*lv(u)du = J:Ou”s*lE(U —u)1(U >u)du
U ,Ll r+s+3
=E(| u"**(U —u)du = ) . 5
(-[0 ( ) (r+s+2)(r+s+3) ©
Than ( 2.4 ) becomes as the following:
AR < Iu(r+s+3)
X"t*v(x+t)dtdx = B(r +1,s+1 ' 6
7,[0_[0 By 7B )(r+s+2)(r+s+3) ©
The right hand side of (2.3) is equal to
o S— I'(s+1
.[ tse’tydtj x"F(x)dx = w @
0 0 7 (r+1)!

By using (2.6) and (2.7) in (2.3), (2.1) is obtained.
Remark 2.1. Theorem 2.1 above may be extended as follows: The definitions of UBAC is equivalent to the following: let
Xy X5 4000 X,y b€ NONNegative random variables and integers I >0, then F is UBAC if and only if

k+1

k+1 Y

yv(in)zE(xl)e =2 ®)
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Using the same methodology, we thus have : If F is UBAC then

k+1 Hn k+1
;ri +k+1 (;ri +k+2) ,U( 4 —y;xi
4 T > (r+1) e . (9)
Or+k+2) 1
i=1

Corollary 2.1. let r =s=0, then »*u, > 6.
Corollary 2.2. let r =0, then »*? .5 > (s+3)! .

Corollary 2.3. let s=0, then y°s,,5 = (r+3)(r +2) u.

3 Existence of moment generating functions

In this section we show that the moment generating function of X exists and is finite for the UBAC class of life
distributions if £/ exists. Actually, upper bounds of the moment generating functions are given. We have the following

theorem

Theorem 3.1. If F isUBAC and u < o0, then

20(u+ A2
M (6) < (1—~ (”2 alt) Nvro (10)
(v -6
where M () = E(e%).
proof. Note that:
M(6) =1+ ej:eg‘ Fdx. (11)
Since F is UBAC, then
yj:j:eg‘v(x +1)dtdx > .[:e6t E(t)j:e‘” dxdt. 12)
The left hand side of (3.12)
7[ [’ v(u)dvdu = g[ ["e*v(u)du—["v(u)du]. (13)
Since d(t) = F(t) then,
1 M(0-1 . U
j ey (u)du = v (9 ) — 4] and jo e¥y(u)du =22,
Thus8 (3-13) becomes as the following:
M (9 l) M He
e’y (u dvdu——(———— @ 14
y[ [e” viu) [ =01 (14)
The right hand side of (3.12)
L we”‘E(t)dt.[:e‘” dx = M©O-1) (15)

y0

Now the result now follows from ( 3.13) and (3.14).
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4 Estimating UBAC survival function

Let X, X,,..., X, represent a random sample from a population with survival distribution function F . With no

= = 1
restriction on F , the emperical distribution Fn(X) = —Zin_ll (X;=x), where 1(X,>2x)=1if X, >X andis 0
p L=
otherwise, is a widly used nonparametric estimate of F. When F is UBAC, we will modify En(X) to
F(x) =inf_,F(x+t)e” (See Ahmad (2004)).
lemma 4.1. let F(X) be a distribution function. Then F~ =1—F" is UBAC.

proof. we have

fE*(x +y)dy = Lwinfz>of(x +y+2)e”dy
= finfpof(x +y+2)e" VeV dy
= foinflpyf(x +u)eeYdy

> J.twinf F(x+u)ee¥dy

u>0
- [P L vy 4y, — S -yr
= jt F"(x)e dy-;F (x)e . (1)

We then propose to estimate F (X) by
F (X) =inf, Fn(x+t)e". @

To show the consistency of F (X) and its rate, see Ahmad (2004).

5 Testing against UBAC alternatives

Testing exponentially against the classes of life distribution has seen a good deal of attention. For testing against IHR, we
refer to Barlow and Proschan(1981) and Ahmad (1994), among others. While testing against DMRL see Ahmad(1992).
Finally testing against UBA see Ahmad (2004).

Let Xl, Xz, J8op Xn represent a random sample from a population with distribution F . We wish to test the null

hypothesis H0 . F is exponential with mean M against H1 :E is UBAC and not exponential. Using theorem (2.1), we

may use the following §M as a measure of departure from H o against of Hl:

7r+2/‘(2r+3) G
@r+3)!  (r+1)!

O (r) = 1)

Note that under H, :J,, =0, while under H,:3,, > 0. Thus to estimate O, by J,, ,let X, X,,..., X, bea
n

. — - 1
random sample from F, y = is the estimate of ¥ and g is estimated by X , where X = —ZXi is the usual
n

sample mean . Then 5,\,, is given by using (5.1) as
n
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e Xi2l‘+3 xir+l
. @)

A 1
Oy == D37 -
M nZ‘ 2r+3)! (r+1)!
to make the test statistic scale invariant, we use
A, =t
M, ~  2r+3"
which is estimated by
A Su
—_— n
Ay = =3 )
r+2 X 2r+3 X r+l
1 1 A . . . .
then AM in (5.3) is a U-statistic, cf. Lee (1990). The following theorem
n

. _7
Setting ¢(X,) = - )
P%) @r+3)!  (r+1)!
summarizes the large sample properties of AM
n

Theorem 5.1. As N — oo, \/E(AM - AM) is asymptotically normal with mean 0 and variance
n

. X2r+3 Xr+1
Pl ___“12] @)

o VAl v 3 (el

Under H, i A,, =0 and variance & is given by
4r +6)! 2r +2)! 2(3r +4)!
virye Gri6! | @redt  2@reay o
(2r+3)H (r+1)H° @r+3)I(r+1)!

A

A O )
Proof: since A,, and — have the same limiting distribution, we use «/ﬁ(ﬁM —Jy_ ). Now this is
n n n

Y7,

asymptotically normal with mean 0 and variance

o’ =var[¢(X,)]

, Where
r+2x2r+3 Xr+l

p(x)=L "D

2r+3)! (r+1)!

Than (5.4) follows. Under H: A,, = E(¢#(X,)) =0 and
2r+3 r+1
s 4y (6)

@r+3)! (r+1)r

oo (r) = E[

Hence (3.5) follows. The Theorem is proved. When r =0,

2
Yo u
=8y @)

Y

in this case 0'5 =14 and the test statistic

®)
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and
A S
Ay ==L, (©)
X
which is quite simple statistics. When r =1,
3
_V Hs H
oy (1)=——=-2, 10
w (1) ) (10)
in this case O'g =196 and the test statistic
A 1
oy (D)=—)iX>-30X2 11
Mn( ) 60n IZ{ i i } ( )
and
-/
ApEsc 12)
X

which is quite simple statistics.

To use the above test, calculate \/HAM 0, and reject H if this exceeds the normal variate value Z, . To illustrate
n

~

the test, we calculate, via Monte Carlo Method, the empirical critical points of AM in (5.9) for sample sizes 5(5)50.
n

Tables (5.1) gives the upper percentile points for 95%, 98%, 99% . The calculations are based on 10000 simulated
samples sizes N = 5(1)50.

Table (5.1) critical Values of AMn in(5.9)

n 95% 98% 90%

5 0.5089 0.8445 1.1248

10 0.7473 1.2414 1.7054

15 0 .7782 1.2563 1.7017
20 0.80250 1.3375 1.7829
25 0.7678 1.2503 1.6892
30 0.7434 1.2715 1.7535

35 0.7231 1.1741 1.5095
40 0.7048 1.1054 1.4436

45 0.6898 1.0726 1.3674
50 0.6943 1.1478 1.3963

To asses how good this procedure is relative to others in the literatures, we use the concept of Pitman’s asymptotic
efficiency (PAE). To do this we need to evalute PAE of the proposed test and compare it with other tests. We may

compare it with smaller classes such as (DMRL), and UBA . Here we choose the tests K*, 51 and Au were presented
n
by Hollander and Prochan (1975) and Ahmad (2004) respectively for decreasing mean residual life class (DMRL) and
used better than aged (UBA) classes. Also we may compare with Au was presented by Abu-Youssef (2009) for UBAC
n
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class based on U-test statistics. Note that PAE of A,
n

PAE (A, (6)) = {%A O, }/ao- w3

Two of the most commonly used alternatives (cf. Hollander and Proschan (1972)) are:

ox2
—x-=x

(i) Linear failure rate family : Fg=e™ 2

i) Makeham family Fy = e x0G+e™-1)

The null hypothesis is at @ =0 for linear failure rate and Makham families. The PAE’s of these alternatives of our
procedure are, respectively:

PAE(A,,LFR) :—%(3r2+11r +10), r=>0 (14)
keham) = 2 1
PAE (A,, Makeham) = —(r + )_FJFF (15)
Direct calculations of PAE of K, Az 'A”n and AMn are summarized in
Table(5.2)
Distribution K* 03 A, Ay,
Fy
Linear failure rate 0.81 0.92 1.92 1.76
F
Makeham 0.29 0.51 0.57 0.43

~

From Table (5.2), the test statistic AM is more efficient than Az and K~ for linear failure rate family and Makeham
n

family. But the test statistic AM is more efficient than Au for linear failure rate family. Hence our test which deals much
n n

larger classes UBAC is better and simpler.
Note that: Since AM defines a class (with parameter) I' of test statistic, we choose I' that the maximizes the PAE
n

of that alternatives. If we take I =0 then our test will have more efficiency than others. Finally, the power of the test

statistics AM is considered for 95% percentiles in Table 5.3 for two of the most commonly used alternatives [see
n
Hollander and Proschan (1975)], they are
ox2

—X—

(i) Linear failure rate family : Fg =e™ 2
i) Makeham family Fy = e x0(te™-1)

These distributions are reduced to exponential distribution for appropriate values of & .
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Table 5.3 Power Estimate of A,

Distribuations 0 Sample size
n=10 n=20 n=30
F, 1 0.933 1.000 1.000

Linear failure rate
2 1.000 1.000 1.000
3 1.000 1.000 1.000
F, 1 0.544 0.524 0.920
Makeham

2 0.966 1.000 0.929
3 1.000 1.000 1.000
1.000 1.000 1.000

6 Applying the test

Consider real data representing 40 patients suffering from blood cancer.We use the data as given in Abu-Youssef (2009).
The ordered life times (in day) are 115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 983, 1024, 1062,
1063, 1169, 1191, 1222, 1222, 1251, 1277, 1290, 1357, 1369, 1408, 1455, 1478, 1549, 1578, 1578, 1599, 1603, 1604,
1696, 1735, 1799, 1815, 1852. Using equation (5.9), the value of test statistics, based on the above data is

AM =0.0025. This value leads to the acceptance of H, at the significance level & =0.05 see Table (5.1).
n

Therefore the data has’'t UBAC Property. This is agreeing with the result of Abu-Youssef (2009) and the result of Ali and
Abu-Youssef(2012).
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