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On Properties of UBAC Class of Life Distributions 
S. E. Abu-Youssef  

Al Azhar University  
Department of Mathematics, College of Science P. O. Box 2455, Cairo 11451,Nasr City, Egypt  

Abstract. Some properties of the used better than aged in convex ordering(UBAC) class of life distributions are 

given. These properties include moment inequalities and moment generating functions behavior. Nonparametric 
estimation of UBAC survival function are discussed. In addition testing of the survival function of this class based on 
moment inequalities are introduced.     

Key Words: UBAC class of life distribution; Moment inequalities; Moment generating function; exponentiality; 

Pitman’s efficiency; Asymptotic normality.  
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1  INTRODUCTION 

Let X  be a nonnegative continuous random variable with distribution function )(xF , survival function FF 1= , at 

age t , we define the random residual life by tX  with survival function 0,,
)(

)(
= 


tx

tF

xtF
Ft

 and assume that X  

has a finite mean duuFXE )(=)(=
0


 . Some properties concerning the asymptotic behavior of tX  as t  

will be used. Bhattacharjee(1982) gave the following definition. 

Definition(1.1). If X  is nonnegative random variable, its distribution function F  is said to be finitely and positively 

smooth if a number )(0,  exists such that:  

 ,=
)(

)(
lim

x

t

e
tF

xtF 




 (1) 

 where   is called to b a asymptotic decay coefficient of X. Denoting eX  be a random variable exponentially distributed 

by mean 


1
, the following definitions imply that tX  converges to eX  in distribution written as e

d

XX  . This property 

is useful for description of random life times of devices of unknown age. 

Definition(1.2). The distribution F  is said to be used better than age UBA if for all 0, tx   

 ,)()( texFtxF   (2) 

 where   called is the asymptotic decay of X .  

Definition(1.3). The distribution F  is said to be used better than aged in convex ordering (UBAC) if for all 0, tx   

 ,)()( duexFduuxF u

tt




   (3) 

 or  

 ,)(
1

)( texFtx 


   (4) 

 where duuFtx
tx

)(=)( 



  .  

We observe that the equality of (1.3) is achieved when )(xF  has an exponential distribution with mean   equal to the 

coefficient of the asymptotic decay  , where the exponential distribution is the only distribution which has the lack of 

memory property. 

Willmot and Cai (2000) showed that the UBA class includes the decreasing mean residual life (DMRL) class. While Al-
Nachawati and Alwasel(1997) showed that UBAC class includes the UBA class of life distributions. Thus we have  

 .UBACUBADMRLIHR   

For definitions and discussions of the classes IHR and DMRL see Barlow and Prochan (1981), Ahmad (1992, 1994) and 
among others. Ahmad (2004) discussed some properties of UBA class of life distribution. Abu-Youssef presented 
nonparametric test for UBAC class based on U-test statistic. Based on the goodness of fit approach, Ali and Abu-Youssef 
(2012) found a new test for testing exponentiality against UBAC Class of life distributions. 

The present work discuses probability and inferential properties of UBAC class of life distributions. In section 2 we give 
moment inequalities of the class. In section 3 we obtain upper bounds of the moment generating function that guarantee 

its existence and finiteness. In section 4, we estimate the survival function )(tF  whenever assumed to be UBAC class of 

life distributions. Testing in this class based on a moment inequality is introduced in section 5. Finally we apply the 
proposed test to real practical data in medical science.  
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2  Moment Inequalities 

Several authoress derived moments inequalities of different families of life distributions such as IHR, IHRA (increasing 
hazared rate in average), NBU (new better than used), UBA and UBAE (used better than aged in expectation), cf. 
Ahmad(2001, 2004) and Ahmad and Mugadi (2004), among others. The following theorem gives moments inequality for 
UBAC class of life distributions. 

Theorem 2.1. let F  be UBAC class of life distributions such that for some integers 0, sr , 



 )(= 3

3)(

sr

sr XE  , then  

 0.,
1)!(3)!(

1)(3)(

2











r
rsr

rsr

s 
 (1) 

  Proof. Since F  is UBAC, then  

 ,)()( texFtx    (2) 

 Multiplying both sides by 
srtx , 0, sr , and integrating over )(0, , w.r.t. tx,  , then  

 dxdtexFtxdtdxtxtx tsrsr  


  )()(
0000

 (3) 

 By taking wuxtw =,= , the left hand side of (2.3) is  
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u
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w
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 where duuuSrB sr )()(1=1)1,(
1

0
  .  

But  
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 Than ( 2.4 ) becomes as the following:  
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 The right hand side of (2.3) is equal to  
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 By using (2.6) and (2.7) in (2.3), (2.1) is obtained.  

Remark 2.1. Theorem 2.1 above may be extended as follows: The definitions of UBAC is equivalent to the following: let 

121 ,...,, kxxx  be nonnegative random variables and integers 0r , then F  is UBAC if and only if  
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 Using the same methodology, we thus have : If F  is UBAC then  
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 Corollary 2.1. let 0== sr , then .6(3)

2    

Corollary 2.2. let 0=r , then .3)!(3)(
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 ss
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 Corollary 2.3. let 0=s , then .2)3)((3)(

2   rrr   

3  Existence of moment generating functions 

In this section we show that the moment generating function of X  exists and is finite for the UBAC class of life 
distributions if   exists. Actually, upper bounds of the moment generating functions are given. We have the following 

theorem  

Theorem 3.1. If F  is UBAC and < , then  

 ,),
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 where )(=)( xeEM  .  

proof. Note that:  
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 Since F  is UBAC, then  
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 The left hand side of (3.12)  
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Thus8 (3-13) becomes as the following:  
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 The right hand side of (3.12)  

 .
1)((

=)(
00 

 



M

dxedttFe xt
 (15) 

 Now the result now follows from ( 3.13) and (3.14). 



ISSN 2347-1921                                                           

3344 | P a g e                                                     M a r c h  2 5 ,  2 0 1 5  
 

4  Estimating UBAC survival function 

Let nXXX ,,, 21   represent a random sample from a population with survival distribution function F  . With no 

restriction on F , the emperical distribution )(
1

=)(
1=

xXI
n

xF i

n

i
n  , where 1=)( xXI i   if xX i   and is 0 

otherwise, is a widly used nonparametric estimate of F . When F  is UBAC, we will modify )(xF n  to 

t
t etxFinfxF )(=)( 0>

*   (See Ahmad (2004)).  

lemma 4.1. let )(xF  be a distribution function. Then 
** 1= FF   is UBAC. 

proof. we have  
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
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 .)(
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=)(=
*(* 
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

  (1) 

We then propose to estimate )(xF  by  

 .)(=)( 0>

* t
nt etxFinfxF   (2) 

To show the consistency of )(
*

xF  and its rate, see Ahmad (2004). 

5  Testing against UBAC alternatives 

Testing exponentially against the classes of life distribution has seen a good deal of attention. For testing against IHR, we 
refer to Barlow and Proschan(1981) and Ahmad (1994), among others. While testing against DMRL see Ahmad(1992). 
Finally testing against UBA see Ahmad (2004).  

 

Let nXXX ,,, 21   represent a random sample from a population with distribution F . We wish to test the null 

hypothesis FH :0  is exponential with mean   against FH :1  is UBAC and not exponential. Using theorem (2.1), we 

may use the following M  as a measure of departure from 0H  against of 1H :  

 .
1)!(3)!(2

=)(
1)(3)(2

2










rr
r

rr
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M


  (1) 

 Note that under 0=:0 MH  , while under 0>:1 MH  . Thus to estimate M  by 
n

M̂ , let nXXX ,,, 21   be a 

random sample from F , 

iX

n


=̂  is the estimate of   and   is estimated by X , where iX

n
X 

1
=  is the usual 

sample mean . Then 
n

M̂  is given by using (5.1) as  
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 to make the test statistic scale invariant, we use  
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which is estimated by  
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 , then 

n
M̂  in (5.3) is a U-statistic, cf. Lee (1990). The following theorem 

summarizes the large sample properties of 
n

M̂  .     

Theorem 5.1. As )ˆ(, M
n

Mnn   is asymptotically normal with mean 0 and variance  
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 Under 0=:0 MH   and variance 
2

0  is given by  
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  Proof: Since 
n

M̂  and 



n

M
ˆ

 have the same limiting distribution, we use )ˆ(
n

M
n

Mn   . Now this is 

asymptotically normal with mean 0 and variance  
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2 Xvar   
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Than (5.4) follows.  Under 0H : 0=))((= 1XEM   and  
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 Hence (3.5) follows. The Theorem is proved.  When 0=r ,  
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 in this case 14=2

0  and the test statistic  
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n
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
  (9) 

 which is quite simple statistics.  When 1=r ,  

 ,
25!

=(1)
(5)

3


 M  (10) 

 in this case 196=2

0  and the test statistic  

  25 30
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i
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M XX
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 and  

 ,

ˆ

=ˆ
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X

n
M

n
M


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 which is quite simple statistics.  

To use the above test, calculate 0
ˆ 

n
Mn  and reject 0H  if this exceeds the normal variate value 1Z . To illustrate 

the test, we calculate, via Monte Carlo Method, the empirical critical points of 
n

M̂  in (5.9) for sample sizes 5(5)50. 

Tables (5.1) gives the upper percentile points for 95%, 98%, 99%  . The calculations are based on 10000 simulated 
samples sizes =n  5(1)50.  

Table (5.1) Critical Values of 
n

M̂  in(5.9)   

  

n 95% 98% 99% 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0.5089  

0.7473    

0 .7782   

0.80250 

0.7678    

 0.7434  

 0.7231 

0.7048    

 0.6898 

0.6943    

         

0.8445 

1.2414    

1.2563 

 1.3375 

1.2503    

 1.2715 

1.1741    

 1.1054 

1.0726  

1.1478    

            

1.1248  

1.7054   

 1.7017  

 1.7829 

1.6892 

1.7535   

 1.5095 

1.4436 

 1.3674 

 1.3963 

     

 

To asses how good this procedure is relative to others in the literatures, we use the concept of Pitman’s asymptotic 
efficiency (PAE). To do this we need to evalute PAE of the proposed test and compare it with other tests. We may 

compare it with smaller classes such as (DMRL), and UBA . Here we choose the tests 
*K , 1̂  and 

n
u̂  were presented 

by Hollander and Prochan (1975) and Ahmad (2004) respectively for decreasing mean residual life class (DMRL) and 

used better than aged (UBA) classes. Also we may compare with 
n

u̂  was presented by Abu-Youssef (2009) for UBAC 
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class based on U-test statistics. Note that PAE of 
n

M̂   

 ./|)(=))(( 0
0




 








 Mu
d

d
PAE  (13) 

 Two of the most commonly used alternatives (cf. Hollander and Proschan (1972)) are:  

(i) Linear failure rate family :    F θ = e−x−
θx2

2  
 

ii) Makeham   family    𝐹 𝜃 = 𝑒−𝑥−𝜃(𝑥+𝑒−𝑥−1) 
 

The null hypothesis is at 0=  for linear failure rate and Makham families. The PAE’s of these alternatives of our 

procedure are, respectively:  

 010),11(3
2

1
=),( 2  rrrLFRPAE h  (14) 

  

 
13 2

1

2

1
2)(=),(




rru rMakehamPAE  (15) 

 Direct calculations of PAE of 
*K , 2̂  ,

n
u̂  and 

n
M̂  are summarized in  

Table(5.2)  
 

Distribution 𝐾∗ 𝛿 2 ∆ 𝑢𝑛
 ∆ 𝑀𝑛

 

𝐹1 
Linear failure rate 

 

𝐹2 
Makeham 

 

0.81 

 
 

0.29 

 

0.92 

 
 

0.51 

 

1.92 

 
 

0.57 

 

1.76 

 
 

0.43 

 

From Table (5.2), the test statistic 
n

M̂  is more efficient than 2̂  and 
*K  for linear failure rate family and Makeham 

family. But the test statistic 
n

M̂  is more efficient than 
n

u̂  for linear failure rate family. Hence our test which deals much 

larger classes UBAC is better and simpler.  

Note that: Since 
n

M̂  defines a class (with parameter) r  of test statistic, we choose r  that the maximizes the PAE 

of that alternatives. If we take 0=r  then our test will have more efficiency than others.  Finally, the power of the test 

statistics 
n

M̂  is considered for 95% percentiles in Table 5.3 for two of the most commonly used alternatives [see 

Hollander and Proschan (1975)], they are  

(i) Linear failure rate family :    F θ = e−x−
θx2

2  
 

ii) Makeham   family    𝐹 𝜃 = 𝑒−𝑥−𝜃(𝑥+𝑒−𝑥−1) 
 

These distributions are reduced to exponential distribution for appropriate values of   .    
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Table 5.3 Power Estimate of 
n

M̂    

Distribuations 𝜃 Sample size 

n=10 n=20 n=30 

𝐹1 
Linear failure rate 

 

1 

2 

3 

0.933 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

𝐹2 
Makeham   

1 

2 

3 

0.544 

0.966 

1.000 

1.000 

0.524 

1.000 

1.000 

1.000 

0.920 

0.929 

1.000 

1.000 

  

6  Applying the test 

Consider real data representing 40 patients suffering from blood cancer.We use the data as given in Abu-Youssef (2009). 
The ordered life times (in day) are 115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 983, 1024, 1062, 
1063, 1169, 1191, 1222, 1222, 1251, 1277, 1290, 1357, 1369, 1408, 1455, 1478, 1549, 1578, 1578, 1599, 1603, 1604, 
1696, 1735, 1799, 1815, 1852.  Using equation (5.9), the value of test statistics, based on the above data is 

0.0025=ˆ
n

M . This value leads to the acceptance of 0H  at the significance level 0.05=  see Table (5.1 ). 

Therefore the data has’t UBAC Property. This is agreeing with the result of Abu-Youssef (2009) and the result of Ali and 
Abu-Youssef(2012).   
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