

Some convergence theorems for order-Mcshane equi-integral in Riesz space

Mimoza Shkembi¹ ,Ismet Temaj²
1 Elbasan University, Natural Science Faculty, Albania mimoza_sefa@yahoo.com
2 Prizren University, Education Faculty, Kosovo itemaj63@yahoo.com

ABSTRACT

In this paper we prove some convergence theorems of order-Macshane equi -integrals on Banach lattice and arrive same result in L-space as on Mcshane norm-integrals.

Keywords

Riesz space; Order-Mcshane integration; Order-Henstock-integration; order- Mcshane equi-integration.

SUBJECT CLASSIFICATION

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .10, No.2

www.cirjam.com, editorjam@gmail.com

INTRODUCTION

Preliminaries.

Recently, there are many papers paying attention to the integration in Riesz space. There are introduced and studied the notions of order-type integrals, for functions taking their values in ordered vector spaces, and in Banach lattices. In particular we can see [5], [7], [3], [10], [9], [6], [4], [8], [11]. We are affected from the works of Candeloro and Sambucini [5] as well as Boccuto et al.[1-2] about order –type integrals.

From now on, T will denote a compact metric space, and $\mu \colon \mathfrak{B} \to \mathbb{R}_0^+$ any regular, nonatomic $\sigma \square$ -additive measure on the $\square \sigma$ -algebra \mathfrak{B} of Borel subsets of T.

A sequence $(r_n)_n$ is said to be order-convergent (or (o)-convergent) to r, if there exists a sequence $(p_n)_n \in R$, such that $p_n \downarrow 0$ and $|r_n - r| \le p_n$, $\forall n \in \mathbb{N}$.

(see also [9], [11]), and we will write (o) $\lim_{n} r_n = r$.

A gage is any map $\gamma: T \to \mathbb{R}^+$. A partition $\Pi \cap \mathbb{R}^+$ of T is a finite family $\Pi = \{(E_i, t_i): i = 1,, k\}$ of pairs such that the sets E_i are pairwise disjoint sets whose union is T and the points t_i are called tags. If all tags satisfy the condition $t_i \in E_i$ then the partition is said to be of Henstock type, or a Henstock partition. Otherwise, if t_i is not necessary to be in E_i , we say that it is a free or McShane partition.

Given a gage γ , we say that $\Pi \square \square \text{ is} \gamma \square \text{-fine}$ if $d(w, t_i) < \gamma(t_i)$ for every $w \in E_i$ and $i = 1, \ldots, k$. Clearly, a gage γ

 \Box can also be defined as a mapping associating with each point $t \in T$ an open ball centered at t and cover E_i .

Let us assume now that X is any Banach lattice with an order-continuous norm. For the sake of completeness we recall the main notions of integral we are interested in.

Definition 1.1.

A function $f\colon T\to X$ is called (oM)-integrable ((oH)-integrable) and $J\in X$ is its (oM)-McShane integral ((oH)-integral) if for every for every (o)- sequence $(b_n)_n$ in X, there is a corresponding sequence $(\gamma_n)_n$ of gauges $(\gamma_n(t)\colon T\to]0,+^\infty[$ such that for every n and (γ_n) -fine M-partition (H-partition) $\{(I_i,t_i),i=1,\ldots,p\}$ of T holds the inequality

$$|\sigma(f,\Pi)-J|\leq b_n$$

Where $\sigma(f,\Pi) = \sum_{i=1}^{p} f(t_i) \mu(E_i)$. We denote

$$J = (oM) \int_{\tau} f$$

respectively

$$J = (oH) \int_{\tau} f$$

Theorem 1.2 [5].

Let $f: T \to X$ be any mapping. Then f is (oH)-integrable ((oM)-integrable) if and only if there exist an (o) -sequence $(b_n)_n$ and a corresponding sequence $(\gamma_n)_n$ of gages, such that for every n, as soon as Π , Π are two γ_n -fine Henstock (Mcshane) partitions, the following holds true:

$$|\sigma(f,\Pi'') - \sigma(f,\Pi')| \le b_n$$

Proposition1.3 [5].

Let $f: T \to X$ be any (oH)-integrable function. Then, there exist an (o)-sequence $(b_n)_n$ and a corresponding sequence $(\gamma_n)_n$ of gages, such that, for every n and every γ_n -fine Henstock partition \square \square it holds

$$\sum_{E\in\Pi} Ob_n(f,E) \leq b_n$$
 Where $Ob_n(E) = \sup_{\Pi} \Bigl\{ \Bigl| \sum_{F^{''}\in\Pi^{''}} f\bigl(\tau_{F^{''}}\bigr) \mu\bigl(F^{''}\bigr) - \sum_{F^{'}\in\Pi^{''}} f\bigl(\tau_{F^{'}}\bigr) \mu\bigl(F^{'}\bigr) \Bigr| \Bigr\}$

Lemma1.5 (Saks-Henstock).

Assume that $f: T \to X$ is (oM)-integrable. Given (o)- sequence $(b_n)_n$ assume that a corresponding sequence $(\gamma_n)_n$ of gauges $(\gamma_n(t): T \to]0, +\infty[$ on T such that for every n

$$\left| \sum_{i=1}^{k} f(t_i) \, \mu(J_i) - (oM) \int_T f \right| \le b_n$$

for every γ_n -fine M- partition $\Pi = \{(I_i, t_i) : i = 1, ..., k\}$, of T:

Then if $\big\{ \big(K_i, r_i\big) : j = 1, \ldots, m \big\}$ is an arbitrary γ_n -fine M-system we have

$$\left| \sum_{j=1}^m (f(r_j) \mu(K_j) - (oM) \int_{K_j} f) \right| \le b_n$$

Proof.

$$\left| \sum_{i=1}^{k_l} f(s_i^l) \mu(J_i^l) - (OM) \int_{M_l} f \right| \leq \frac{a_n}{\nu + 1}$$

Provided $\left\{\left(J_i^l,s_i^l\right): i=1,\ldots,k_l\right\}$ is γ_n — M-partition γ_n of the interval M_l . The sum

$$\sum_{i=1}^{m} f(r_i) \mu(K_i) + \sum_{l=1}^{p} \sum_{i=1}^{k_l} f(s_i^l) \mu(J_i^l)$$

represents an integral sum corresponds one M-partition γ_n — fine of the interval T and consequently by the assumption we have

$$\left| \sum_{j=1}^{m} f(r_i) \, \mu(K_i) + \sum_{l=1}^{p} \sum_{i=1}^{k_l} f(s_i^l) \mu(J_i^l) - (oM) \int_{I} f \right| < b_n.$$

Hence

$$\left| \sum_{j=1}^{m} f(r_i) \mu(K_i) - (oM) \int_{K_j} f \right| \le$$

$$\le \left| \sum_{j=1}^{m} f(r_j) \mu(K_i) + \sum_{l=1}^{p} \sum_{i=1}^{k_l} f(s_i^l) \mu(J_i^l) - (oM) \int_{I} f \right| +$$

$$+ \left. \sum_{l=1}^{p} \left| \sum_{i=1}^{k_{l}} f(s_{i}^{l}) \mu \left(J_{i}^{l} \right) - (oM) \int_{M_{l}} f \right| \leq b_{n} + p \frac{a_{n}}{p+1} < b_{n} + a_{n}$$

We obtain the proof of the theorem.

2. Convergence theorems of order-Mcshane equi-integrals

Definition 2.1.

A collection \mathcal{F} of functions $f\colon T\to X$ is called (oM)-equi-integrable ((oH)-equi-integrable) if every $f\in \mathcal{F}$ is (o)—McShane integrable ((o)—Henstock-Kurzweil integrable) and for any o-sequence $(b_n)_n$ there is a corresponding sequence $(\gamma_n)_n$ of gauges such that for every n and any $f\in \mathcal{F}$ the inequality

$$\left| \sum_{i=1}^{p} f(t_i) \, \mu(I_i) - (oM) \int_{T} f \, dt \, dt \right| \leq b_n$$

$$\left(\left|\sum_{i=1}^{p} f(t_i) \mu(I_i) - (oH) \int_{T} f \right| \le b_n\right)$$

holds provided $\{(I_i,t_i), i=1,\dots,p\}$ is γ_n –fine M-partition (K-partition) of T.

Theorem 2.2.

Assume that $\mathcal{F}=\{f_k: T o X; k \in \mathbb{N}\}$ is (oM)-equi-integrable sequence such that.

$$(o) - \lim_{k \to \infty} f_k(t) = f(t), \qquad t \in T$$

Then the function $f: T \to X$ is (o)-McShane integrable and holds the equation

$$(o) - \lim_{k \to \infty} (oM) \int_T f_k = (oM) \int_T f$$
.

Proof. If $(\gamma_n)_n$ is the sequence of gauges from the definition of equi-integrability of the sequence (f_k) corresponding to (o)- sequence $(b_n)_n$ then for any $k \in \mathbb{N}$ we have

$$\left| \sum_{i=1}^{p} f_k(t_i) \mu(I_i) - (oM) \int_T f_k \right| \le b_n \tag{1}$$

for every n and for every (γ_n) -fine M-partition $\{(I_i,t_i), i=1,\ldots,p\}$ of T.

If the partition $\{(I_i, t_i), i = 1, ..., p\}$ is fixed then the pointwise convergence $f_k \to f$ yields

$$(o) - \lim_{k \to \infty} \sum_{i=1}^{p} f_k(t_i) \mu(I_i) = \sum_{i=1}^{p} f(t_i) \mu(I_i).$$

Choose $k_0 \in \mathbb{N}$ such that for $k > k_0$ the inequality

$$\left|\sum_{i=1}^{p} f_k(t_i) \mu(I_i) - \sum_{i=1}^{p} f(t_i) \mu(I_i)\right| \le b_n$$

holds. Then we have

$$\begin{split} \left| \sum_{i=1}^{p} f(t_i) \, \mu(I_i) - (oM) \int_{T} f_k \right| \\ & \leq \left| \sum_{i=1}^{p} [f(t_i) \, \mu(I_i) - f_k(t_i) \mu(I_i)] \right| \\ & + \left| \sum_{i=1}^{p} [f_k(t_i) \, \mu(I_i) - (oM) \int_{T} f_k] \right| < 2b_n \end{split}$$

for $k > k_0$. This gives for $k, l > k_0$ the inequality

$$\left| (oM) \int_T f_k - (oM) \int_T f_l \right| \le 4b_n$$

which shows that the sequence $(oM)\int_{\mathcal{T}} f_k$, $k \in \mathbb{N}$ of elements of X is Cauchy and therefore

$$(o) - \lim_{k \to \infty} (oM) \int_{T} f_{k} = A \in X (2)$$

exists.

Let(o)- sequence $(b_n)_n$. By hypothesis there is a corresponding sequence $(\gamma_n)_n$ of gauges such that (1) holds for all $k \in \mathbb{N}$ whenever $\{(I_i, t_i), i = 1, \dots, p\}$ is a γ_n -fine M-partition of T.By (2) choose $N \in \mathbb{N}$ such that

$$\left| (oM) \int_T |f_k - A| < b_n \right|$$

for all $k \geq N$. Suppose that $\{(I_i, t_i), i=1, \dots, p\}$ is a γ_n -fine M-partition of T for every n. Since f_k converges pointwise to f there is a $k_1 \geq N$ such that

$$\left| \sum_{i=1}^{p} f_{k_{i}}(t_{i}) \mu(I_{i}) - \sum_{i=1}^{p} f(t_{i}) \mu(I_{i}) \right| \leq b_{n}$$

Therefore

$$\left|\sum_{i=1}^{p} f(t_i) \mu(I_i) - A\right| \le \left|\sum_{i=1}^{p} f(t_i) \mu(I_i) - \sum_{i=1}^{p} f_{k_i}(t_i) \mu(I_i)\right| + C$$

$$+ \left| \sum_{i=1}^{p} f_{k_{1}}(t_{i}) \mu(I_{i}) - (oM) \int_{T} f_{k_{1}} \right| + \left| (oM) \int_{T} f_{k_{1}} - A \right| \le 3b_{n}$$

and it follows that f is (o)- Mcshane integrable on T and

$$(o) - \lim_{k \to \infty} (oM) \int_T f_k = A = (oM) \int_T f$$

The (o) —Henstock variant of the theorem can be proved analogously.

Proposition 2.3.

A function $f: T \to X$ is (o)-Mcshane integrable if and only if the set $\{x^*(f); x^* \in B(X^*)\}$ is (oM)-equi-integrable.

Proof. If f is (o)- Mcshane integrable then for every for any (o) — sequence $(b_n)_n$ there is a corresponding sequence $(\gamma_n)_n$ of gauges $(\gamma_n(t): T \to]0, +\infty$ [for every nsuch that

$$\left| \sum_{i=1}^{T} f(t_i) \mu(I_i) - (oM) \int_{T} f \right| \leq b_n$$

for every γ_n -fine M-partition $\{(I_i,t_i), i=1,\dots,p\}$ on T. For an arbitrary $x^*\in X^*$ we have

$$\begin{split} &|\sum_i x^* \big(f(t_i) \big) \mu(I_i) - x^* ((oM) \int_T f) \mid \\ &\leq |x^*| \cdot \left| \sum_i f(t_i) \mu(I_i) - (oM) \int_T f \right| \leq |b_n \cdot \sup |x^*| \end{split}$$

and therefore $\{x^*(f); x^* \in B(X^*)\}$ is (o)- Mcshane-equi-integrable. If on the other hand $\{x^*(f); x^* \in B(X^*)\}$ is (o)- Mcshane-equi-integrable then for every (o) — sequence $(b_n)_n$ there is a corresponding sequence $(\gamma_n)_n$ of gauges $(\gamma_n(t): T \to]0, +\infty[$ for every n on T such that

$$|\sum_i x^* (f(t_i)) \mu(I_i) - (oM) \int_T x^*(f) | \leq b_n$$

for every γ_n -fine M-partition $\{(I_i,t_i), i=1,\ldots,p\}$ on T and $x^*\in B(X^*)$.

Hence if $\{(I_i,t_i)\},\{(J_i,s_i)\}$ are γ_n -fine M-partition of T we get

$$\begin{aligned} & \left| x^* (\sum_i f(t_i) \mu(I_i) - \sum_i f(s_j) \mu(J_j)) \right| \\ = & \left| \sum_i x^* (f(t_i)) \mu(I_i) - \sum_j x^* (f(s_j)) \mu(J_j) \right| \le 2b_n \end{aligned}$$

for every $x^* \in B(X^*)$. Hence

$$\left|\sum_{i} f(t_{i})\mu(I_{i}) - \sum_{j} f(s_{j})\mu(J_{j})\right| \leq 2b_{n}$$

and by Theorem (2) the function f is (o)- McShane integrable.

Concerning the concept of an equi-integrable collection given by Proposition (1.3) let us note that we have the following result which represents a certain Bolzano-Cauchy condition for equi-integrability of an equi-integrable collection \mathcal{F} of functions $f: T \to X$.

Theorem 2.4.

A collection \mathcal{F} of functions $f: T \to X$ is (oM)- equi-integrable if and only if for every (o)- sequence $(b_n)_n$ there is a corresponding sequence $(\gamma_n)_n$ of gauges $(\gamma_n(t): T \to]0$, $+\infty[$ onT such that

$$\left|\sum_{i=1}^{p} f(t_i)\mu(I_i) - \sum_{j=1}^{r} f(s_j)\mu(J_j)\right| < b_n$$

 $\text{for every n and } \gamma_n \text{ --fine M-partition} \left\{ (I_i, t_i), i = 1, \ldots, p \right\} \text{ and } \left\{ (J_i, s_i), i = 1, \ldots, r \right\} \text{ of T and every } f \in \mathcal{F}.$

Proof. If \mathcal{F} is equi-integrable then the condition evidently holds for a sequence of gauges $(\gamma_n)_n$ which corresponds to $\frac{1}{2}b_n$ in Definition (2.1) of equi-integrability.

If the condition of the theorem is satisfied then every individual function $f \in \mathcal{F}$ is (oM)-integrable with the same corresponding sequence $(\gamma_n)_n$ of gauges for a given (o)- sequence $(b_n)_n$ independently of the choice of $f \in \mathcal{F}$ and this proves the theorem.

Let us close by an analogue of the Saks-Henstock Lemma (1.5) which holds for equi-integrable collections of.

Lemma 2.5.

Assume that an (oM) –equi-integrable collection $\mathcal F$ of $f\colon T\to X$, sequence (o)- sequence $(b_n)_n$ is given assume that the corresponding sequence $(\gamma_n)_n$ of gauge on T is such that

$$\left| \sum_{i=1}^{k} f(t_i) \, \mu(J_i) - (oM) \int_T f \right| \le b_n$$

For every γ_n -fine M- partition $\Pi = \{(I_i, t_i): i = 1, ..., k\}$, of T:

Then if $\left\{\left(K_{j},r_{j}\right):j=1,\ldots,m\right\}$ is an arbitrary γ_{n} -fine M-system we have

$$\left| \sum_{j=1}^m (f(r_j) \mu(K_j) - (oM) \int_{K_i} f) \right| \le b_n$$
 for any $f \in \mathcal{F}$

For the proof of this statement the proof of the Saks-Henstock Lemma can be repeated word for word.

Notation. To simplify writing from now we will use the notation $\{(U_l,u_l)\}$ for M-systems instead of $\{(U_l,u_l); 1=1,\ldots,r\}$ which specifies the number r of elements of the M-system. For a function $f\colon T\to X$ and an M-system $\{(U_l,u_l)\}$ we write $\sum_l f(u_l) \mu(U_l)$ instead of

$$\sum_{l=1}^{r} f(u_l) \mu(U_l)$$

Proposition 2.6.

Assume that X is L-space and $f_k: T \to X$, $k \in N$ are (o)- McShane integrable functions such that

- 1. $f_k(t) \rightarrow f(t)$ for $t \in T$,
- 2. the set $\{f_k : k \in \mathbb{N}\}$ forms an (oM)-integrable sequence.

Then for every (o) — sequence $(b_n)_n$ there exists an $\eta > 0$ such that if F is closed, G open, $F \subseteq G \subseteq T$ and $\mu(G \setminus F) < \eta$ then there is a sequence $(\gamma_n)_n$ corresponding gauge $\gamma_n : T \to]0$, ∞ [such that

$$\begin{split} B \Big(t, \gamma_n (t) \Big) \subset G & \text{for } t \in G, \\ B \Big(t, \gamma_n (t) \Big) \cap T \subset T \setminus F & \text{for } t \in T \setminus F. \end{split}$$

Proof. Denote $\Phi_k(J) = (oM) \int_J f_k$ for an interval $J \subseteq T$ (the indefinite integral or primitive of f_k) and put $\overline{b_n} = \frac{b_n}{10}$. Since f_k are (oM)-equi-integrable, the Saks-Henstock lemma implies that there is a sequence Δ_n gauge on T such that

$$\left|\sum_{i}\left[f_{k}\left(r_{i}\right)\mu\left(K_{i}\right)-\Phi_{k}\left(K_{i}\right)\right]\right|\leq\overline{b_{n}}$$

for every Δ_n -fine M-system $\{(K_j, r_j)\}$ and $k \in \mathbb{N}$. Assume that $\{(W_p, w_p)\}$ is a fixed Δ_n -fine M-partition of T. Let $k_0 \in \mathbb{N}$ for all p and thanks to the fact X is L-space be such that

$$|f_k(w_p) - f(w_p)| < a$$

for $k > k_0$ and $a \in X$.

Put

$$s = \sup_{p,k \le k_0} \{a + \left| f(w_p |, \left| f_k(w_p) \right|) \right| \}$$

Then

$$|f_k(w_p)| < s$$

for all $k_0 \in \mathbb{N}$ and p. Assume that $\eta > 0$ satisfies

$$\eta.s \leq b_n$$

And take
$$0 < \gamma_n(t) \le \Delta_n(t)$$
, $t \in T$

Since the sets G and T \ Fare open, the gauge γ_n can be chosen such that $B(t,\gamma_n(t)) \subset G$

For $t \in G$, and $B(t, \gamma_n(t)) \cap T \subset T \setminus F$ for $t \in T \setminus F$.

REFERENCE

[1] A. Boccuto - A.M. Minotti - A.R. Sambucini, Set-valued Kurzweil-Henstock integral in Riesz space setting, PanAmerican Mathematical

Journal 23 (1) (2013), 57-74.

[2] A. Boccuto, D. Candeloro, A.R. Sambucini Vitali-type theorems forfilter convergence related to vector lattice-valued modulars and applications to stochastic processes, in print in J. Math. Anal. Appl.; DOI:10.1016/j.jmaa-2014.05.014

[3] A. V. Bukhvalov, A. I. Veksler, G. Ya Lozanovskii, Banach Lattices -Some Banach Aspects of Their Theory, Russian Mathematical Surveys

(1979), 34 (2),159-212. doi:10.1070/RM1979v034n02ABEH002909

[4] D. Candeloro, Riemann-Stieltjes integration in Riesz Spaces, Rend. Mat.Roma (Ser. VII), 16 (2) (1996), 563-585.

[5] D. Candeloro, A.R. Sambucini Order-type Henstock and McShane integrals in Banach lattice setting, arXiv:1405.6502v1 [math.FA] 2014.

[6] D. Candeloro, A.R. Sambucini Filter convergence and decompositionsfor vector lattice-valued measures, in press in Mediterranean J. Math.

DOI: 10.1007/s00009-003-0000.

[7] D. H. Fremlin, Measure theory. Vol. 3. Measure Algebras, TorresFremlin, Colchester, 2002

[9] W.A.J.LUXEMBURG - A.C.ZAANEN, Riesz Spaces, Vol. I, (1971), North- Holland Publishing Co.

[10] P. Meyer-Nieberg, Banach lattices, (1991), Springer-Verlag, Berlin-Heidelberg.

[11] B.Z.VULIKH, Introduction to the theory of partially ordered spaces, (1967), Wolters - Noordhoff Sci. Publ., Groningen.