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1. INTRODUCTION

The purpose of this paper is to establish a coupled coincidence point theorem results in fuzzy metric spaces. Amongst
various definitions of the fuzzy metric spaces we consider here the metric introduced by George et al [6]. Fuzzy fixed point
theory has developed in the perspective of the metric space introduced in [6] in a very large way. This is supposed to have
taken place due to the fact that the topology in this space is Hausdorff topology. A large number of papers have been
written out of which [2, 4, 8, 9, 14, 15, 16] are some important examples. Fuzzy coupled fixed point result was successfully
established first in the work[21]. After that, there have been a good number of papers on this subject, some examples
being [11, 18, 19, 20].

Recently C'iri ¢’ [4] had introduced a fixed point theorem in which a new type of inequality was introduced. Later there
appeared a number of works where this type of inequality has been considered.

In this paper we work out a coupled coincidence point theorem using the following concepts:
(@) C'iric’ type inequality.

(b) Two control functions are used in the inequality.

(c) Compatibility condition.

(d) HadziC' type t-norm for fuzzy metric space.

We have several corollaries and an illustrative example. The example shows that the main theorem properly contains all
its corollaries.

2. MATHEMATICALPRELIMINARIES
Throughout this paper (X.°) stands for a parially ordered set with partial order . By

'Xx Y holds’,we mean that 'X°Y holds’ and by "X < Yy holds’, we mean that 'X°Y holds and X # ' .
Definition 2.1[17] A binary operation *:[0,1]* — 0,1] is called a t -norm if the following properties are satisfied:
¢ |s associative and commuative,

-a*l=a foral ac[0,1],
- a*b<c*d whenever a<cC and b<d, forall a,b,c,d €[0,1].

: ab
Typical examples of t—norms are a* b=min{a,b}, a*,b=———— for 0< A <1, a*;b=ab and
max{a, b, 1}

ax, b=max{a+b-1,0}.

Definition 2.2[6] The 3-tuple (X, M ,*) is called a fuzzy metric space in the sense of George and Veeramani if X

is a non-empty set, * is a continuous t-norm and M is a fuzzy set on X = xO,oo) satisfying the following conditions
foreach X,Y,Z€ X and t,5>0:

- M(xy,t)>0,

« M(Xx,y,t)=1ifand onlyif X=,

« M(X,y,t) =M(y, x,t),

« M(Xy,t)*M(y,z,5) <M(X,Z,t+5) and
« M(X,Y,.):(0,0) — 0,1] is continuous.

The following details of this space are described in the introductory paper [6].
Let (X, M ,*) be a fuzzy metric space. For t >0, 0 < <1, the open ball B(X,r,t) with center X € X is defined
by

B(x,r,t) ={ye X :M(x,y,t) >1-r}.
Asubset Ac X isopenifforeach X € A, there exist t >0 and 0 <r <1 suchthat B(X,r,t) C A. Let 7 denote
the family of all open subsets of X . Then 7 is a topology on X induced by the fuzzy metric M . This topology is
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Hausdorff and first countable.
Example 2.3[6] Let X =R.Let a*b=ab forall a,b €0,1]. Foreach t € (0,0) X,y e X, let

t

M (X, y,t) :m.

Then (R, M *) is a fuzzy metric space.

Example 2.4 Let (X,d) be a metric space and i be an increasing and continuous function of R, into
such that tim.=w(td=1.Let be any continuoust-norm Foreach f =(0.=), let

M (X, y,t) =y () ™

forall X,y € X . Then (X, M ,*) is a fuzzy metric space. Examples of the function i/ are

Pl
2t+1

Lemma 2.5[7] Let (X, M,*) be a fuzzy metric space. Then M (X, Y,.) is nondecreasing for all X,y € X .

) and p(t)=1-e™.

w(t) = ttTl -y (x) = sin

Definition 2.6[6] Let (X, M ,*) be a fuzzy metric space.

« Asequence {X,} in X is said to be convergent to a point X € X if limp_,. M (X, X,t) =1 for all
t>0.

« Asequence {X,} in X is called a Cauchy sequence if foreach 0 < & <1 and t >0, there exists
N, €N suchthat M (X, X,,,t) >1—¢& foreach n,m>n,.

* A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Lemma 2.7[16] M is a continuous function on X * x (0,0) .

Let (X,°) be a partially ordered set and F : X — X be a mapping from X to itself. The mapping F is said to be
non-decreasing if, for all X;,X, € X, X,°X, implies F(X,)°F(X,) and non-increasing if, for all X,,X, € X , X,°X,
implies F(X,) = F(X,)[1].

Definition 2.8[1] Let (X,°) be a partially ordered set and F : X x X — X be a mapping. The mapping F is said

to have the mixed monotone property if F is non-decreasing in its first argument and is non-increasing in its second
argument, that is, if, for all X, X, € X, X,°X, implies F(X;, Y)°F(X,,Y) forfixed y € X and if, for all Y;,Y, € X ,

Y,°Y, implies F(X, y,)£F(X,Y,),forfixed xe X .

Definition 2.9[13] Let (X,°) be a partially ordered setand F : X x X — X and g : X — X be two mappings.
The mapping F is said to have the mixed ¢ -monotone property if F is monotone ( -non-decreasing in its first
argument and is monotone ( -non-increasing in its second argument, that is, if, for all X, X, € X, gxl°gx2 implies
F(x,Y)°F(x,,y) for al ye X and if, for all y,,Y, € X, gy,°0y, implies F(X,y,)£F(X,Yy,), for any
xe X.

Definition 2.10[1] Let X be a nonempty set. An element (X,Y) € X x X is called a coupled fixed point of the
mapping F: X x X —> X if

F(y)=xF(y,x) =Y.
Further Lakshmikantham and C'iriC" have introduced the concept of coupled coincidence point.

Definition 2.11[13] Let X be a nonempty set. An element (X, y) € X x X is called a coupled coincidence point of
amapping F: XxX > X and g: X = X if
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F(xy)=0gx F(y,x)=gy.
If further X = gX = F(X,y) and Y =gy = F(Y,X) then (X, Y) is a common coupled fixed pointof g and F .

Definition 2.12[13] Let X be a nonempty set and the mappings F: X xX — X and g: X —> X are
commuting if for all X,y € X

gF(x,y) = F(gx, gy).

Compatibility between two mappings F: X xX — X and g: X — X, where (X,d) is a metric space was

defined in [3]. It is an extension of the commuting condition. Compatibility was used to obtained a coupled coincidence
point result in the same work.

Definition 2.13[3] Let (X,d) be a metric space. The mappings F and g where F:XxX — X and
g: X — X, are said to be compatible if

limd(g(F(x,, y,)), F(9(x,), 9(y.)) =0
and

limd(g(F (¥, %)), F(9(¥a), 9(x,))) = 0.

whenever {X.} and {Y,} are sequences in X such that limF(x,,y,) = limg(x,) =X and limF(y,,X,) =
n—w n—ow n—w

limg(y,) =Y forsome X,ye X .

Intuitively we can think that the functions F and g commute in the limit in the situations where the functional values tend
to the same point.

This notion of compatibility was introduced in fuzzy metric spaces by Hu in [11].

Definition 2.14[11] Let (X, M,*) be a fuzzy metric space. The mappings F and g where F: X xX — X
and g: X — X, are said to be compatible if for all t >0

lim M (g(F (x,, ¥,)), F(9(x;), 9(y,).) =1
and

lim M (@(F (3%, F(g(y,), 9060 = 1,
whenever {X.} and {Yy,} are sequences in X such that limF(x,,y,) = img(x,) =X and limF(y,,X,) =
limg(y,) =Y forsome X,y e X .

We next give the following definition.

Definition 2.15[5] Two maps F: X xX — X and g: X — X, where X is a nonempty set, are weakly
compatible pair if they commute at their coincidence point, that is, for any X,y € X, g(X)=F(X,y) and

g(y)=F(y,x)  impies that  g(F(x,y))=F(9(x),9(y)) and  g(F(y,X))=F(g(y) 9(x))
Definition 2.16[10] A t-norm  is said to be Hadfic' type t-normif the family ‘{3‘;};=u of itz

iterates defined for each S € (0,1) by

* () =1, *P"(s) =*(*P(s),s) for all p>0 is equi continuous at S =1, that is, given A >0 thereexists
n(1) €(0,1) suchthat

1>s>7(A) =>*"(s)>1-1 forall peN.

We will use the following class of real mappings.
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Definition 2.17 (¥ -function)[19] A function i :[0,1]x[0,1] —[0,1] is said to be a ‘¥ -function if
* I continuous and monotone increasing in both the variables,

cy(t,t)>t forall 0<t<1.

An example of / -function is

pVx +ayy

pP+q

, p and g being positive numbers.

w(xy)=

Definition 2.18 (@ -function)[12] A function ® ={¢:R" — R"}, where R™ =[0,%0) and each ¢ € ®

satisfies the following conditions:

(i) @ is non-decreasing,

(i) ¢ is upper semi-continuous from the right,

(i) D #"(t) <+oo forall t >0, where ¢(4"(t)),ne N.
Itis easy to prove that if ¢ € @ then @(t) <t forall t>0.

Lemma 2.19[5] Let (X, M ,*) be a fuzzy metric space, where * is a continuous t-norm of H -type. If there exists
@ € @ suchthat,

M (X, Y,d(t)) > M(X,Y,t), then X =Y.
3. Main Results.
Theorem 3.1 Let (X, M ,*) be a complete fuzzy metric space with a Hadi C" type t-norm where M (X, Y, t) is
sictyincreasing in the variatle { and M(x, p,f) =lasf = forall x,ye X . Let apartial order  be

defined on X . Let F: X xX — X and g: X — X be two mappings such that F has the mixed @ -monotone
property. Let there exist € D , ¥ € ¥ and >0 such that,

M (F(x,y), F(u,v), (1)) +q(1—max{M (g (x), F (u,v), #(t)), M(g(u), F(x, ¥),4t))}) =w(M(g(x),F(x,y),t),M
(3.1)

for al t>0 and X,Y,U,ve X, with gx°gu and Qy+QgVv. Let § be continuous, monotonic increasing
F(XxX) < g(X) and (g, F) is a compatible pair. Also suppose that X has the following properties:

(a) if a non-decreasing sequence {X,}— X, then X °X forall n>0, (3.2)
(b) if a non-increasing sequence {Yy,}— Y then Y, £V forall n>0. (3.3)

If there exist X,, Y, € X such that g(X,)°F(X,,Y,) and g(Y,) £ F(Y,,X,). then there exist X,y € X such that
g(X) =F(x,y) and g(y) = F(Y,X), thatis, g and F have a coupled coincidence point in X.

Proof. Let X,,Y, be two points in X such that g(X,)°F(X,,¥,) and g(Y,)*F(Y,,X,). We define the
sequences {X,} and {Y,} in X as follows:

g(x1) = F(X01 yo) and g(yl) = F(yo’xo)
g(xz) = F(Xv yl) and g(yz) = F(yl’xl)

and, in general, forall N >0,

g(Xn+l) = F(Xn’ yn) and g(yn+1) = F(yn’ Xn) " (34)
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This construction is possible by the condition F(X x X) < g(X).

Next, for all N >0, we prove that

9(%,)°9(X,.1) (3.5)

and

9(y,)x9(Y,.1)- (3.6)

since g(X,)°F (%o, o) and g(Yo) £F (Yo, X;) . in view of g(X,) = F(Xy, Y,) and g(y;) = F(Y,, %), we have
9(%,)°9(x,) and g(Y,)=g(y,) . Therefore (3.5) and (3.6) hold for N =0.

Let (3.5) and (3.6) hold for some N=m. As F has the mixed @ -monotone property, g(X,)°9(X,.,) and
9(Yn) £9(Yia) , from (3.4), we get

g(xm+1) = F(Xm' ym)oF(Xerl’ ym) and F(ym+l’ Xm)oF(ym’ Xm) = g(ym+l)' (3'7)

Also, for the same reason, we have

g(Xm+2) = I:(Xerli ym+1) =+ F(Xm+11 ym) and F(ym+l’ Xm) * F(ym+l’ Xm+1) 3 g(ym+2) 1 (3'8)
Then, from (3.7) and (3.8), we have

g (Xm+l)og (Xm+2) and g (ym+1) - g (ym+2) .
Then, by induction, it follows that (3.5) and (3.6) hold for all N >0 .

Since * is a t-norm of HadziC' type, for any A >0, there exists an > 0 such that
A-w)*(L—r)*.....*(1— 1)(k times)>1— A forall ke N.

Since M (X, Y,.) is continuous and lim M (X, y,t) =1 forall X,y € X, there exists t, > 0 such that
n—oo

M(9(%), 9(%,),t5) > 1=, M(9(Yp), 9(V1)tp) 21— pe. (3.9)

On the other hand, since ¢ € @, by property (iii) of @ -function, we have Z::1¢n (to) <o00. Then forany t >0, there

exists Ny € N , such that

t> Z:=n0¢n (t,) (3.10)

Now, for all t >0, n>1, we have,

M(9(X,), 9(Xy.1), A(t)) = M (F (X1, Yot )s F X0 L), 6())
>y (M(9(X-1), F (X Yaa)i 1) MG (X)) F (X Ya )i 1))

—q(1-max{M (g (X, 1), F(X,, ¥,), 8(t:)), M (9 (X,), F (X, 1, Vo 1), 8(t:))})
(by(3.1), (3.5) and (3.6))

>y (M(9(X,1), 9(X,), %), M(9(X,), 9 (Xy.1), %))

—q(1-max{M (9 (X, 1), 9(X.1). #(t:)), M (9(X,), 3 (X,), #(t))})
>y (M(9(X,1), 9(X,): %), M(9(X,), 9(X,.1): %)) —q(1-1)

2y (M(9(X,1), 9(X,), %), M(9(X,), 9(X1). %)) . (311)
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If, for some S >0, and for some N, M(9(x,,),9(X,),S) =M (g(X,),9(X,.,),S), then, from the above inequality,

and using the properties of ¥, we obtain

M(9(%.0), 9(X,),#(8)) 2w (M (9(X,), 9 (%3.1), 8), M (9(X1.1), 9(%,), 9))
2 M (g(xn)! g(xn+l)’ S)'

But this contradicts our assumption that M is strictly increasing in the third variable. Hence we have

M(9(%,), 9(X;.1),#(8)) > M(g(x,.1), 9(X;),8) forall n>0.

Thus, forall N >0 and t > 0, we have
M (9(X,), 9(%0.1), 2(5)) 2w (M (9(X,1), 9(%,). 1), M(9(X,1), 9(%,). %)) .

thatis, forall N >0, t, > 0, we have

M (9(x,), 9(X,.1), 8(t;)) =M (g(X, 1), 9(X,).t,) . (using the properties of ¥ - function). (3.12)
Therefore for N =1, we have

M (9(x), 9(x,),8(t;)) = M(9(X%,), 9(%,),t,) - (by using (3.12))  (3.13)

Now,

M (9(x,), 9(%;), #° () = M(F (X, V1), F (X, ¥,), 6" (t))

2yAM(904), F (X, Y1), 6(t)), M(9(%,), F (X, ¥,), #(t))}

2 yAM(9(%), 9(X,). 4(t,)), M (9(x,), 9(%5), 4(t,))}

~{1-max(M(g(x,), F (X, ¥,), #" (t))), M (9 (X,), F (%, Y1), 4 (t)))}
=AM (9(%). 9(X,). 4(t;)). M (9(x,), 9(Xs), 4(t,))}

~{1-max(M(g(%), F (X, ¥,), #" (t:))); M (9(X,), 9(%,), 4° (1))}
=M (9(%), 9(%,), 4(t,)), M(9(x,), 9(Xs), 4(t,))}

—o{1-1}

2 yAM(9(Xo), 9(X)). 1), M (9(X;), 9(X). t)Hby using (3.12) and (3.13))
=M (9(%), 9(x,).t,)-

By repeated application of the above inequality, it is easy to prove that

M(9(X,), 9(X,1): 8" (1)) = M (9(Xy), 9(X). ). (3.14)

So, from (3.9) and (3.10) for M >N =N, we have,

M (9(%), (%)) = M (9 (%), (%), 3¢ (t,))

> M (g(x,), g(xm),mz¢k (t))

>M(9(%,), 9(X,), 6(t,))
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> M (g(%,), 9%, 1), 8" () *M (9 (X,1), 9 (%) " (1))

SV TCTCR R TE R R LT (9) LN VI (:TC S N-T S Rl (W)

> M (9(%). 906), 1) *M (G (%), GO, t) *ee XM (G (%), (), ) (BY (3.14))
2(1-p@)*Q-p)*....*(1- 1)

>1— A, which implies forall m,ne€ N with m>n>n, andt >0,

M(g(x,), 9(x,),t) 21-4

So, {g(x,)} is a Cauchy sequence.

Similarly we can show that {g (Y, )} is a Cauchy sequence.

Since X is complete, there exist X, Y € X such that
limg(x,)=x and limg(y,) =y,
thatis, iIMF(X,,y,) =1limg(x,) =x and iImF(y,,x,)=limg(y,) =Y. (3.15)
Now we show that §(X) = F(X,y) and g(y) = F(y,X).
Since (g, F) is a compatible pair, using continuity of § and Definition 2.14, we have
9(x) = lim g(9 (%) = lim g(F(x,,y,)) = M F(g(x.),9(%,))  (319)
and
9(y) = lImg(g(y,..)) = im g(F(y,, %)) = lImF(g(y,).90¢)). @11

By (3.5), (3.6) and (3.15), we have that {g(X,)} is a non-decreasing sequence with g(x,) = X and {g(y,)} is a
non-increasing sequence with g(yn) — Y as N —>00. Then, by (3.2) and (3.3), it follows that, foralln >0,

g(x,)°X and g(y,) Y.

Since § is monotonic increasing, we have from the above inequality,

g(9(x,))°g(x) and g(g(y,))£g(y). (3.18)

Now, forall t >0, n>0, we have

M (g(x), F(x,¥),4(t)) = M (9(x), 9(9(X,.1)). (#(1) — (k1))
*M(9(9(X,.1)), F(x, y), g(kD)).

Taking N — o0 on the both sides of the above inequality, for all t >0,

M(F(x, ¥), 9(x), #(1)) = lIm[M (g (x), 9 (9 (X;..)), (4(t) — #(k1))

*M(9(9(x,.0)): F (X, y), d(k))]
=M(g(x), lim g(g(x,..)), (4(t) - #(k1))

*M(lim g(F (x,,,)), F (%, Y), (kD)

(by lemma 2.7)
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=M(g(x), 9(x). (#() —¢(kt)))
*M(lim(F(g(x,), 9(y,))), F(x, y), g(kt))

(by (3.16))
= Im[1*M (F(9(x,), 9(¥,)), F (%, ¥), #(kD)] (by lemma 2.7)

= im M(F(9(x,), 9(¥,)), F (%, y), #(kD)
2 lim[y (M (9(9(x,)), F(9(x,), 9(y,)).kt), M (gx, F(x, y),kt))

—q(1-max{M (g(gx,), F(x, y),#(kt)), M (9x, F(9(X,), 9(¥,)), #(kD)) })].
(by (3.1) and (3.18))

= [y(M (lim g(g(x,)), im F(9(x,), 6(y,), kO, M (8%, F(,y), kt)
~ (L max{M (lim g(gx,), F (X, ), 4 (k1) M (gx, im F(g(x,). 9(¥,)), #(kO) 1]

=y (M(g(x), 9(x),1),M(g(x), F(x, y),kt)
—q(1-max{M (g(x), F(x, y), (k)), M(g(x), g (x), #(kt))})
=y (LM (g(x), F(x, y).kD))-a(1-1)
>y (M(g(x), F(x, ¥).kt), M(g(x), F(x, y), kt))
(since i is monotone increasing)
> M (g(X), F(X,Y),kt). (by the property of ¥ -function)
Taking K —1 and by an application of lemma 2.19, we have
90 =F(xy).
Similarly, we can prove g(Yy) = F(y,X).

This completes the proof of the theorem.

Theorem 3.2 Let (X, M ,*) be a complete fuzzy metric space with a HadziC' type t-norm where M (X, Y,t) is
strictly increasing in the variable t and M (X, y,t) —1 as t — oo for

all x.v=X . Let a partial order  be definedon X . Let F: X=X —X and g: X — X be
two mappings such that F has the mixed g -monotone property. Let there exist ¢ € @ and ¥ € ¥ such that,
M(F(x,y), F(u,v),4(t)) 2w (M(g(x), F(x, ¥),t), M(g(u), F(u,v),1)).

forall t>0 and X,Y,U,ve X, with g(X)°g(u) and g(y)xg(Vv). Let g be continuous, monotonic increasing
F(XxX) < g(X) and (g, F) is a compatible pair. Also suppose that X has the following properties:

(a) if a non-decreasing sequence {X,} — X, then X,°X forall N >0
(b) if a non-increasing sequence {Y,}— ¥, then y, £y foral N>0.

If there exist X,, Y, € X such that g(X,)°F (X, ¥,) and g(Y,)£F(Y,,X,), then there exist X,y € X
such that g(X) = F(X,Yy) and g(y) = F(Y,X), thatis, g and F have a coupled coincidence point in X. Further, if

(9, F) is a weakly compatible pair and g(X)°g(g(X)). 9(y)£g(g(y)) whenever (X, Y) is a coincidence point of
g and F ,then g and F have a common coupled fixed point.
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Proof. putting g=0 in (3.1), by an application of the theorem 3.1, we have that § and F have a coupled
coincidence pointin X, that is, there exist X, Yy € X such that g(X) = F(X,y) and g(y) = F(Y,X).

Suppose z; = g(x) = F(X,y) and z, = g(y) = F(y,X).

Then g(2,) = 9(9(x)) = g(F(x, y)) and g(z,) = 9(9(y)) = 9(F(y.X)).
Since g and F commute at (X, Y), we have

9(z) = 9(9(x)) = F(9(x),9(y)) and 9(z,) = g(g(y)) = F(9(y), 9(x)).
thatis, 9(z,) = 9(9(x)) = F(z,,2,) and 9(z,) = 9(9(y)) = F(z,,2)).

Since (X,Yy) is a coupled coincidence point, by our assumption, g(X)°g(g(x)), that is, g(x)°g(z,) and
g(y)£g(g(y)).thatis, g(y)£g(z,), it follows that, for all t >0,

M (2, F (2, 2,),6(t)) = M(F (X, ¥), F (21, 2,). 6(1))  =y(M(9(X), F(X, ¥),1),M(9(2),, F(z,2,),1)) (since g(x)*
(by the property of  -function),

which implies that, for all t >0, M (z,, F(z,,2,),4(t)) =1,

thatis, z, = F(z,,2,).

Therefore , = §(z,) = F(z,,2,).

Similarly, z, = 9(z,) = F(z,,2,).

This proves § and F have a common coupled fixed point.

If we take ¢@(t) = Kt in the theorem 3.1, then we obtain the following corollary.

Corollary 3.3 Let (X, M ,*) be a complete fuzzy metric space with a Hadi C' type t-norm where M (X, Y,t) is
strictly increasing in the variable t and M (X, y,t) -1 as t —> oo forall X,y € X . Let a partial

order bedefinedon X .Let F: X=X —X and g: X — X betwo mappings such that 7
F has the mixed ¢ -monotone property. Let there exists weV¥ and = 0 such that,
M (F(x, ), F(u,v),kt) + a(1—max{M (g(x), F (u,v). kt), M(g(u), F(x, ). k)}) =y (M(g(x), F(x,y).t),M(g(u), F(u,v),t))

forall t >0 and X, Yy,u,ve X ,with g(x)°g(u) and g(y)+g(v) and 0 <k <1.Let g be continuous, monotonic
increasing F(X x X) < g(X) and (g, F) is a compatible pair. Also suppose that X has the following properties:

(a) if a non-decreasing sequence {Xn} —> X, then Xn°X forall N >0,
(b) if a non-increasing sequence {Y,}— ¥, then Yy, £y foral N>0.

If there exist X,, Y, € X such that 9X,°F(X,,Y,) and gy, £ F(Y,,X,). then there exist X,y € X such that
g(xX) =F(x,y) and g(y) = F(Y,X), thatis, g and F have a coupled coincidence point in X.

If we take ¢(t) = Kt in theorem 3.2, then we obtain the following corollary.

Corollary 3.4 Let (X, M *) be a complete fuzzy metric space with a HadiC' type t-norm where M (X, Y,t) is
strictly increasing in the variable t and M (X, y,t) —1 as t — oo for all

x.yeX. Let apartial order be definedon X . Let F: X=X =X and g: X =X betwo

mappings such that F has the mixed g -monotone property. Let there exists v eV suchthat,

M (F(x, y), F(u,v),kt) 2w (M (gx, F(x, y),t), M(gu, F(u,v),1)),
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for al t>0 and X,Y,u,ve X, with gx°gu and gy+gv and O<k <1. Let g be continuous, monotonic
increasing F(X x X) < g(X) and (g, F) is a compatible pair. Also suppose that X has the following properties:

(a) if a non-decreasing sequence {X,} — X, then X,°X forall N >0
(b) if a non-increasing sequence {Y,}— Y, then y, £y foral N>0.

If there exist X,, Y, € X such that gX,°F(X,,Y,) and 9y, £ F(Y,,X,), then there exist X,y € X such
that g(X) = F(X,y) and g(y)=F(y,X), thatis, g and F have a coupled coincidence point in X. Further, if
(9, F) is a weakly compatible pair and gx°g(g(X)), gy £9(g(y)) whenever (X, Y) is a coincidence point of (J
and F ,then g and F have a common coupled fixed point.

Corollary 3.5 Let (X, M ,*) be a complete fuzzy metric space with a HadiC' type t-norm where M (X, Y,t) is
strictly increasing in the variable t and M (X, y,t) —>1 as t — oo for

all x,v=X . Let apartial order be defineon X . Let F: X=X —X be amapping such

that F has the mixed monotone property and satisfies the following condition:
* M(F(x, ), F(u,v),6(1)) 2w (M (X, F(x, y), 1), M(u, F(u,v),1)),

forall t >0,X,Yy,uU,ve X with X°U and Y£V, where ¢ € D and i is a ¥ -function. Also suppose that X has the
following properties:

(a) if a non-decreasing sequence {Xn} —> X, then Xn°X forall N >0,

(b) if a non-increasing sequence {Y, }— ¥, then y, £y foral N>0.
If there exist X,, Y, € X such that X,°F(X,,Y,) and Y, £F(Y,, X,), then there exist X,y € X such that
X=F(X,y) and y = F(Y,X), thatis, F has a coupled fixed point in X.
Proof. The proof follows by putting g =0 and ¢g(X) = | , the identity mapping, in the theorem 3.1.

Example 3.6 Let (X,°) be the partially ordered set with X =[0,1] with the natural ordering

E—3

= of the real numbers asthe partially ordering . Let M(x, v :}(;}=eqT: forall x,ye X and g*p= min{a, b}, then

(X, M ,*) is a complete fuzzy metric space.

Let the mapping g : X — X be defined as

gx = X* forall X e X

and the mapping F : X x X — X be defined as

x2 _ yz
F(x,y)=1 g
0, otherwise.

ifx, ye[0,1],x >y,

Here F satisfies the mixed ( -monotone property. Also, F(X x X) < g(X). Let w{X, y}=min{x, y} and
1
t)=—t.
¢(t) 5
Let {X.} and {Y,} be two sequencesin X such that
lIimF(x,,y,)=a, limg(x,)=a,

limF(y,,Xx,)=b and limg(y,)=Db.
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Now, forall n>0,

g(x,) =% g(y,) =yr.

Xz_yz
F(x,,y,)=—"—7"
(Xas Yn) g
and
_y2_X2
F(y,, x,)=—"—"~=".
(Yo X,) 8

Then necessarily a=0 and b =0.

It then follows from lemma 2.7 that, for all t > 0,
lim M(g(F(x,, ¥,)), F(9(x,), 9(y,). 1) =1

and

lim M(g(F(y,,%,)), F(9¥,), 9(x,)),1) =1.
Therefore the mappings F and ¢ are compatible in X .

Let X, =0 and y, =C>0.

2

Then gX, =90=0=F(0,c) = F(X,,Y,) and gy, = gc=c’ >%= F(c,0) = F(Yy, %)

Thus X, and Y, satisfy their requirements in theorem 3.1. Let X, Y,U,V € X be such that gX< gu and gy = gV,

that is, such that X* <U? and y2 >Vv2,

We next show that the inequality (3.1) is satisfied for (] = 0, forall t>0 and X, Y, U,V chosen to satisfy the above
requirements.

The following three cases are possible.
Casel. x>y andu>v,

_FGGy)-Fuv)

M(F(x y),F(u,v),ét)=e O

pelot Ao
8
L

=e 2

2_,2,.,2

7|x2—y —u“+ve|

=e 4t

0P —u?)-(y2 2y
=e 4t

X2 —u?y® P
>e 4 (since | X=YI<|X|+| Y]

7|x2—v2|+|x2—v2|
>e at (since X* > y? and U? >V?)
22|

>e 2t
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2_,2

X5 xT-y X2 X2 _ y2 | X2 _V2 |
>e Ut 8 (since (— — - >0
) ( t 8t 2t ) )
D-Fy)  WP=F(uv)]
>minfe ' ,e ' }
DP-Fuy)  uP=F(uv)]
=y{fe ' ,e ' }
Casell. x<yandu2>v,
P-F(u,)
M(F(x,y),F(u,v), ) =e *©
22|
e e_ a4t
u?—v?)
=e 4t
2 02152
TR u? ut-v: ur-v?
>e t & (since (— — = >0)
) ( t 6t 4t )

DF(xy)  W2=F(uv)]
>minfe ' ,e ' }

KP-Fy)  u2—F(uv)
=yfe ' ,e ' }
Caselll. X<y andu<v.

In this case the inequality (3.1) for = 0 is trivially satisfied.

Taking into account all the three cases mentioned above, we conclude that the inequality (3.1) with any value of (>0 is
satisfied by X, Y,U,V chosen according to the conditions given in theorem 3.1 and for all t > 0. Thus all the conditions
of theorem 3.1 are satisfied. Then, by an application of the theorem 3.1, we conclude that g and F have a coupled

coincidence point. Here (0,0) is a coupled coincidence pointof g and F in X .

Remark 3.7 The result in theorems 3.1 and 3.2 remains valid if we omit the condition that M (X, Y,t) is strictly
monotonic increasing in t and at the same time modify the definition of /' by requiring that l//(t,t) >t forall 0<t<l.

Then, by lemma 2.5, M (X, y,t) is nondecreasing in t which is enough requirement for our purposes.
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