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ABSTRACT 

 In this paper we introduce some types of fuzzy soft separated sets and study some of thier preperties. Next, the notion of 
connectedness in fuzzy topological spaces due to Ming and Ming, Zheng etc., extended to fuzzy soft topological spaces. 
The relationship between these types of connectedness in fuzzy soft topological spaces is investigated with the help of 
number of counter examples.  

Keywords: Fuzzy soft sets; fuzzy soft topological space; fuzzy soft separated sets; fuzzy soft Q-separated sets; fuzzy 
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1  INTRODUCTION 

After Zadeh [26] introduced the notion of a fuzzy set in 1965, Chang [4] used that concept to define fuzzy topology. In 
1999, Molodtsov [15] introduced the concept of soft set theory which is a completely new approach for modeling 
uncertainty. In [15], Molodtsov established the fundamental results of this new theory and successfully applied the soft set 
theory into several directions, such as smoothness of functions, operations research, Riemann integration, game theory, 
theory of probability and so on. Maji et al. [13] defined and studied several basic notions of soft set theory in 2003. Shabir 
and Naz [21] introduced the concept of soft topological space. 

Maji et al. [12] initiated the study involving both fuzzy sets and soft sets. In this paper, the notion of fuzzy soft sets was 
introduced as a fuzzy generalizations of soft sets and some basic properties of fuzzy soft sets are discussed in detail. Maji 
et al. combined fuzzy sets and soft sets and introduced the concept of fuzzy soft sets. To continue the investigation on 
fuzzy soft sets, Ahmad and Kharal [1] presented some more properties of fuzzy soft sets and introduced the notion of a 
mapping on fuzzy soft sets. In 2011, Tanay et al. [22] gave the topological structure of fuzzy soft sets. 

The notion of connectedness in fuzzy topological spaces has been studied by Ming and Ming [14], Lowen [10], Zheng 
Chong You [28], Fatteh and Bassan [7], Zhao [27], Saha [20], Ajmal and Kohli [2], and Chaudhuri and Das [6]. In soft 
setting, the notion of soft connectedness introduced by many authers such as Peyghan et al. [18], Yüksel et al. [25]. In 
2013, Bayramov et al. [4] studied the soft path connectedness on soft topological spaces. In 2014, Munir et al. [16] studied 
some properties of soft connected spaces and soft locally connected spaces. In 2015, Hussain [8] wrote a paper entitled a 

note on soft connectedness. In fuzzy soft setting, connectedness has been introduced by Mahanta [11] and Karata  et al. 

[9]. 

In this paper, we extend the notion of connectedness of fuzzy topological space to fuzzy soft topological space. In Section 
3, we introduce the different notions of fuzzy soft separated sets and study the relationship between them. Section 4 is 
devoted to introduce the different notions of connectedness in fuzzy soft topological space and study the implications that 
exist between them. Also, we study the characterization of connectedness in fuzzy soft setting. 

2  PRELIMINARIES 

 Throughout this paper  denotes initial universe,   denotes the set of all possible parameters which are 

attributes,characteristic or properties of the objects in , and the set of all subsets of  will be denoted by . In this 

section, we present the basic definitions and results of soft set theory which will be needed in the sequel. 

Definition 2.1. [5] A fuzzy set  of a non-empty set  is characterized by a membership function 

IXA  ]1,0[: whose value  represents the "degree of membership" of   in   for  . Let  

denotes the family of all fuzzy sets on . 

Defintion 2.2. [15]  Let  be a non-empty subset of . A pair  denoted by  is called a soft set over , 

where   is a mapping given by . In other words, a soft set over  is a parametrized family of subsets of 
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the universe . For a particular  ,  may be considered the set of  -approximate elements of the soft set 

 and if  , then . i.e., . 

Aktaş and Ça man [3] showed that every fuzzy set may be considered as a soft set. That is, fuzzy sets are a special class 

of soft sets. 

Definition 2.3. [12] Let . A pair , denoted by , is called fuzzy soft set over , where f is a mapping 

given by   defined by  where  if , and  if  where 

 . The family of all these fuzzy soft sets over   denoted by  . 

Definition 2.4. [12, 17, 19, 22, 23, 24] The complement of a fuzzy soft set , denoted by , and defined 

by  , is a mapping given by  . Clearly,   

Definition 2.5. [12, 17, 19, 22, 24] A fuzzy soft set over  is said to be a null- fuzzy soft set, denoted by , if for 

all , . 

Definition 2.6.  [12, 17, 19, 22, 24] A fuzzy soft set over  is said to be an absolute fuzzy soft set, denoted by , 

if 1)( efA
. Clearly, we have   and   

Definition 2.7. [12, 17, 19, 22, 23, 24] Let  and   . Then  is fuzzy soft subset of , denoted by 

, if  and EeXxxx ee

BgAf
 ,)()(  . Also,  is called fuzzy soft superset of  

denoted by . If  is not fuzzy soft subset of , we written as   . 

Definition.2.8. [12, 17, 19, 22, 23, 24] Two fuzzy soft sets  and  on  are called equal if  and  

. 

Definition 2.9. [12, 17, 19, 22, 24] The union of two fuzzy soft sets  and  over the common universe , denoted 

by 
BA gf ~ , is also a fuzzy soft set , where   and for all ,Ce  

e

g

e

f

e

hC BAC
eh  )( . 

Definition 2.10. [12, 17, 19, 22, 24] The intersection of two fuzzy soft sets  and  over the common universe , 

denoted by 
BA gf ~ , is also a fuzzy soft set  , where   and for all 

,Ce e

g

e

f

e

hC BAC
eh  )( . 

Definition 2.12. [22] Let  be a collection of fuzzy soft sets over a universe  with a fixed set of parameters 

. Then  is called fuzzy soft topology on  if: 

(1)  , , where  and  

(2) The union of any members of  belongs to . 

(3) The intersection of any two members of  belongs to . 

The triplet  is called fuzzy soft topological space over  . Also, each member of  is called fuzzy soft open set in 

. 

Examples 2.1. The following are fuzzy soft topology on  

(1)   is called fuzzy soft indiscrete topology on . 

(2)   is called fuzzy soft discrete topology on . 

Note that, the intersection of any family of fuzzy soft topologies on  is also a fuzzy soft topology on . 

Definition 2.13. [22] Let  be a fuzzy soft topological space. A fuzzy soft set  over  is said to be fuzzy 

soft closed set in , if its relative complement  is fuzzy soft open set. The collection of all fuzzy soft closed sets will be 

denoted by 
c . 
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Definition 2.14. [17, 19] Let  be a fuzzy soft topological space and    . The fuzzy soft closure 

of , denoted by , is the intersection of all fuzzy soft closed supersets of . i.e., 

},;{~)( CA

c

CCA hfhhfFcl   . Clearly,  is the smallest fuzzy soft closed set over   which 

contains , and  is fuzzy soft closed set. 

Definition 2.15. [19, 24] The fuzzy soft set    is called fuzzy soft point if there exist  and   

such that ;  and    and this fuzzy soft point is denoted by  

or . The class of all fuzzy soft points of , denoted by . 

Definition 2.16. [11] The fuzzy soft point  is said to be belonging to the fuzzy soft set , denoted by   , if 

for the element , . If  is not belong to , we write    and implies that . 

Definition 2.17. [19, 24] A fuzzy soft point  is said to be a quasi-coincident with a fuzzy soft set , denoted by  

 , if . Otherwise,  is non-quasi-coincident with  and denoted by    

Definition 2.18. [19, 24] A fuzzy soft set  is said to be quasi-coincident with , denoted by   , if there exists 

  such that , for some . If this is true we can say that  and  are quasi-

coincident at . 

Proposition 2.1. [19, 24] Let  and  be two fuzzy soft sets,  if and only if   . In particular,  

  if and only if   . 

Definition 2.19. [11] Let  be a fuzzy soft topological space and  be a fuzzy soft subset of . Then  

};~{  AAB ffg  is called fuzzy soft relative topology and  is called fuzzy soft subspace. If 

, then  is called fuzzy soft open subspace. If , then  is called fuzzy soft 

closed subspace. 

Lemma 2.1. [11] Let  be a fuzzy soft topological space on  and     . Then, 

.~)()( ABBf fgFclgFcl
A

   

Definition 2.19. [17] Let  and  be families of fuzzy soft sets over  and , respectively. Let 

 and  be mappings. Then the map  is called fuzzy soft mapping from  to , 

denoted by   , such that: 

(1) If , then  the image of  under the fuzzy soft mapping  is a fuzzy soft set over  defined by 

 where , ,  



 







otherwise

yuxifxeg
ykgf

B
kepyxu

Bpu
0

)()))]((([
))()((

1

)()(  

 (2) If , then  the pre-image of  under the fuzzy soft mapping ,  is a fuzzy soft set over 

 defined by , ,  

 



 



otherwise

Cepforxueph
xehf

C

Cpu
0

)())())(((
))()((1  

Definition 2.20. [17] The fuzzy soft mapping  is called surjective (respectively, injective) if  and  are surjective 

(respectively, injective), also  is said to be constant if  and  are constant. 

Definition 2.21. [17] Let  and  be two fuzzy soft topological spaces and   

 be a fuzzy soft mapping. Then  is called: 
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(1) Fuzzy soft continuous if   . 

(2) Fuzzy soft open if   . 

Definition 2.22. [9] Two non-null fuzzy soft sets  and  are said to be fuzzy soft -separated in a fuzzy soft 

topological space  if .0
~

)(~~)( EEEEE gFclfgfFcl    

Theorem 2.1. [9] Let  be a fuzzy soft topological space,  and  be two fuzzy soft closed sets in . If 

EE gf ~ , then  and  are fuzzy soft -separated sets. 

Theorem 2.2. [9] Let  be a fuzzy soft topological space and .  is called  -

connected if and only if it cannot be written as a union of fuzzy soft -separated sets. 

Theorem 2.3. [9] A fuzzy soft topological space  is  -connected if and only if  cannot be written as 

a union of fuzzy soft -separated sets. 

Theorem 2.4. [9] Let  be a fuzzy soft topological space and  be an open -connected 

set in . If , then  is a  -connected set. 

Remark 2.1. [9] Let  be a fuzzy soft topological space and  be an open -connected 

set in . Then  is a  -connected set. 

Definition 2.23. [9] Let  be a fuzzy soft topological space and . Then,  is called: 

(1) -connected: if does not exist two non-null fuzzy soft open sets  and  such that 

EEE

c

EEEEEE hffshshf 0
~~,~,~   and .0

~~
EEE sf   

(2) -connected: if does not exist two non-null fuzzy soft open sets  and  such that 

EEEEEEEEEE hfshhshf 0
~~,0

~~~,~  and .0
~~

EEE sf   

(3) -connected: if does not exist two non-null fuzzy soft open sets  and  such that 

c

EE

c

EEEEEE fhfshshf  ,~,~  and 
c

EE fs  . 

(4) -connected: if does not exist two non-null fuzzy soft open sets  and  such that 

c

EEEEEEEEE fhshhshf  ,0
~~~,~   and 

c

EE fs  . 

Otherwise,  is called -disconnected set for . 

In the above definition, if we take  instead of , then the fuzzy soft topological space  is called -

connected space . 

Remark 2.2. [9] The relationship between -connectedness  can be described by the following 

diagram: 

 

Remark 2.3. [9] The reverse implications is not true in general (see Examples 3.14, 3.15, 3.16, 3.17 in [9]). But 

example 3.17 in [9] is incorrect, we must take   if   

Theorem 2.5. [9] Let  be a fuzzy soft surjective continuous mapping and 

. If  is a -connected set in , then  is a -connected set in  for  

 

3  FUZZY SOFT SEPARATED SETS IN FUZZY SOFT TOPOLOGICAL SPACES 

In this section, we will introduce different notions of fuzzy soft separated sets and study the relation between these 
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notions. Also, we will investegate the characterizations of the fuzzy soft separated sets. 

Definition 3.1. Two non-null fuzzy soft sets ,  are said to be fuzzy soft weakly separated in a fuzzy soft 

topological space  if    and   . 

Theorem 3.1. Let  be a fuzzy soft topological space and  . Then,  and  are fuzzy 

soft weakly separated sets iff there exist fuzzy soft open sets  and  such that , ,   , and 

  . 

Proof. Let ,  be fuzzy soft weakly separated sets in . Then    and   . 

Therefore, 
c

EE fFclg )]([  and 
c

EE gFclf )]([ . Taking  and   . Then 

, ,   , and   . The converse is obvious.  

Remark 3.1. If  and  are fuzzy soft -separated, then  and  are fuzzy soft weakly separated. 

Proof. The result follows from Definitions 3.1, 2.22.  

Remark 3.2. If  and  are fuzzy soft weakly separated, then they may not be fuzzy soft -separated as shown by 

the following example. 

Example 3.1. Let , ,  and , , , , , , , 

 be a fuzzy sof topology on . If  and , then  and  are 

fuzzy soft weakly separated sets. But  and  are not fuzzy soft -separated. 

Definition 3.2. Two non-null fuzzy soft sets  and  are said to be fuzzy soft separated in a fuzzy soft topological 

space  if there exist non-null fuzzy soft open sets  and  such that ,  and 

.0
~~~

EEEEE hgsf   

Remark 3.3. If  and  are fuzzy soft separated sets, then  and  are fuzzy soft weakly separated sets. 

Proof. Let  and  be fuzzy soft separated sets. Then, there exist two non-null fuzzy soft open sets  and  such 

that ,  and .0
~~~

EEEEE hgsf   Therefore,    and   . By Theorem 3.1,  

and  are fuzzy soft weakly separated sets.   

Remark 3.4. If  and  are fuzzy soft weakly separated, then they may not be fuzzy soft separated. In fact,  and 

 defined in Example 3.1 are fuzzy soft weakly separated, but they are not fuzzy soft separated. 

Remark 3.5. The notions of fuzzy soft separated sets and fuzzy soft -separeted sets are independent of each other 

as shown by the following examples. 

Example3.2. Let ,  and 

}~})},{,{(})},{,{(,0
~

,1
~

{ 5.05.0 EEEEEE shbesaeh   be a fuzzy soft topology on . If 

 and  , then there exist two non-null fuzzy soft open sets  and  such that 

,  and .0
~~~

EEEEE hgsf   So,  and  are fuzzy soft separated sets. But  and 

 are not fuzzy soft -separated sets since,  
EEE shfFcl  ~)(  and 

EEE gfFcl 0
~~)(  . 

Example 3.3. Let ,  and  

}~})},,{,{(})},,{,{(,0
~

,1
~

{ 11.01.01 EEEEEE shbaesbaeh  be a fuzzy soft topology on . If 

 and , then  and  are fuzzy soft -separated sets. But 

EEE sf 0
~~   and .0

~~
EEE hg   So,  and  are not fuzzy soft separated sets. 

Definition 3.3. Let   . The support of , denoted by , is the set, 

 . 

Definition 3.4. Two fuzzy soft sets  and  are said to be quasi-coincident with respect to  if 

 for every  
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Definition 3.5. Two non-null fuzzy soft sets  and  are said to be fuzzy soft strongly separated in a fuzzy soft 

topological space  if there exist  and  such that , , 

EEEEE hgsf 0
~~~  ,  and  are fuzzy soft quasi-coincident with respect to , and  and  are 

fuzzy soft quasi-coincident with respect to . 

Remark 3.6. If  and  are fuzzy soft strongly separated, then  and  are fuzzy soft separated and fuzzy soft 

weakly separated. 

Proof. The result follows from Definitions 3.5, 3.2 and Remark 3.3. 

Remark 3.7.  If  and  are fuzzy soft separated, then they may not be fuzzy soft strongly separated as shown by 

the following example. 

Example 3.4. Let , , ,  and , , , , 

, , , , , , , , ,  be a fuzzy soft topology on . Let 

,  and , . Then,  and  are fuzzy soft separated sets, but  and  are not 

fuzzy soft strongly separated. 

Remark 3.8. The notions of fuzzy soft -separated and fuzzy soft strongly separated are independent to each others 

as shown by the following examples: 

Example 3.5. Let , , ,  and , , , , 

, , , , , , , , ,  be a fuzzy soft topology on . Let 

,  and , . Then,  and  are fuzzy soft strongly separated sets, but  and 

 are not fuzzy soft -separated. 

Example 3.6. Let , , ,  and , , , , , 

,  , , , , , , , , ,  be a fuzzy soft 

topology on . Let ,  and , . Then,  and  are fuzzy soft -separated sets, 

but  and  are not fuzzy soft strongly separated.   

Remark 3.9. In fuzzy soft topological space  the relationship between different notions of fuzzy soft 

separated sets can be discribed by the following diagram. 

separatedweaklysoftfuzzyseparatedQsoftfuzzy

separatedsoftfuzzy

separatedstronglysoftfuzzy





  

Theorem 3.2. Let  and  be fuzzy soft -separated (respectively, separated, strongly separated, weakly 

separated) sets in  and , . Then,  and  are fuzzy soft -separated (respectively, separated, 

strongly separated, weakly separated) sets in . 

Proof. As a sample, we will prove the case fuzzy soft -sepaeated. Let  and  be fuzzy soft -separated sets in . 

Then, 
EEEEE gFclfgfFcl 0

~
)(~~)(  . Since  and , then 

EEEEE sFclhshFcl 0
~

)(~~)(  . Therefore,  and  are fuzzy soft -separated sets in .                                                                                                                            

 

Theorem 3.3. Let  be a fuzzy soft topological space and , . Then,  and  are fuzzy 

soft -separated in  if there are fuzzy soft closed sets  and  such that , , and 

EEEEE hgsf 0
~~~  . 

Proof. Let  and  be fuzzy soft -separated in . Then 
EEEEE gFclfgfFcl 0

~
)(~~)(  . Taking 

 and . Therefore,  and  are fuzzy soft closed sets in  such that , 

, and 
EEEEE hgsf 0

~~~  .                                                                                                     



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 8  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6479 | P a g e                              c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
A u g u s t  2 0 1 6                                             w w w . c i r w o r l d . c o m  
 

Theorem 3.4. Let  be a fuzzy soft topological space and  . Two fuzzy soft sets  

and  are fuzzy soft separated (respectively, - sepaeated, strongly separated) in , ,  if and only if ,  be 

fuzzy soft separated ( - sepaeated, strongly separated, respectively) in , ,  

Proof. As a sample, we will prove the case fuzzy soft - sepaeated. Let  and  be fuzzy soft - sepaeated in , 

, . Then 
EEgEEEg sFclhshFcl

EE
0
~

)(~~)(  . Since , then 

EEfEg ghFclhFcl
EE

 ~)()(  and 
EEfEg gsFclsFcl

EE
 ~)()( . Therefore, 

EEfEEEf sFclhshFcl
EE

0
~

)(~~)(  . Hence,  and   are fuzzy soft - sepaeated in , ,  

Conversely, Let  and  be fuzzy soft - sepaeated in , , . Then 

EEfEEEf sFclhshFcl
EE

0
~

)(~~)(  . Therefore, 
EEEf sghFcl

E
 ~)~)((  

EEEfE gsFclh
E

0
~

)~)((~  . And so, 
EEgEEEg sFclhshFcl

EE
0
~

)(~~)(  . Hence,  and  

are fuzzy soft - sepaeated in , , .                                                     

Theorem 3.5. Let  be a fuzzy soft topological space and  . If  and  are fuzzy 

soft weakly separated sets in , , , then  and  are fuzzy soft weakly separated in , , .  

Proof. Let  and  be fuzzy soft weakly separated sets in , , . Then     and   

. Since , then 
EEE ghFclhFcl

EfEg
 ~)()( 

 )( EhFcl
Ef

  and 

EEE gsFclsFcl
EfEg

 ~)()( 
 . Therefore,    and   . 

Thus,  and  be fuzzy soft weakly separated sets in , , .                                                                                                                                 

 

Remark 3.10. The converse of Theorem 3.5 is not true in general as shown by the following example: 

Example 3.7. Let , , , ,  and ,  be the fuzzy soft indiscrete 

topology on . If , ,  and , , , , , , 

, . Then  and  are fuzzy soft weakly separated sets in , ,  but  and  are not fuzzy soft 

weakly separated sets in . 

4  FUZZY SOFT CONNECTED SETS IN FUZZY SOFT TOPOLOGICAL SPACES 
In this section, we introduce different notions of connectedness of fuzzy soft sets and study the relation between these 
notions. Also, we will investegate the characterizations of the fuzzy soft connected sets.. 

Definition 4.1. A fuzzy soft set  in a fuzzy soft topological space  is called  -disconnected set if 

there exist two non-null fuzzy soft  -sepaeated sets  and  in  such that 
EEE shf  ~

. Otherwise,  is 

called  -connected set.  

Definition 4.2. A fuzzy soft set  in a fuzzy soft topological space  is called  -disconnected set if 

there exist two non-null fuzzy soft weakly-sepaeated sets  and   in  such that 
EEE shf  ~

. Otherwise,  is 

called  -connected set.  

Definition 4.3. A fuzzy soft set  in a fuzzy soft topological space  is called  -disconnected 

(respectively,  -disconnected) set if there exist two non-null fuzzy soft sepaeated (respectively, strongly separated) 

sets  and  in   such that 
EEE shf  ~

. Otherwise,  is called  -connected (respectively,  -

connected) set. 

Definition 4.4. A fuzzy soft set  in a fuzzy soft topological space  is called  -connected set in   if 

there does not exist any non-null proper fuzzy soft clopen set in , , . Note that, this kind of fuzzy soft 

connectedness was studied by Mahanta [11]. 

In the above definitions, if we take  instead of , then the fuzzy soft topological space  is called -
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connected (respectively,  -connected,  -connected,  -connected,  -connected) space. 

Theorem 4.1. Let  be a fuzzy soft topological space, . If  is a  -connected set in , 

then  is a  -connected.  

Proof. Let  be a  -connected set in . Suppose   is a  -disconnected. Then, there exist two non-null 

fuzzy soft  -sepaeated sets  and  in  such that 
EEE shf  ~

. By Remark 3.1,  and  are non-null fuzzy 

soft weakly-sepaeated sets in   such that 
EEE shf  ~ . Therefore,  is a  -disconnected set in . This a 

contraduction. Hence,  is a  -connected.                                                                                                                 

 

Remark 4.1. If  is a  -connected, then it may not be a  -connected as shown by the following example. 

Example 4.1. Let , , , , , , , , , , 

 be a fuzzy soft topology on  and , , . Then, there exist ,  and 

 such that   ,   , 
AAA shf  ~ . So,  is not a  -connected.  

But  is a  -connected. 

Theorem 4.2. Let  be a fuzzy soft topological space, . If  is a  -connected set in , 

then  is a  -connected. 

Proof. Let  be a  -connected set in . Suppose   is a  -disconnected. Then, there exist two non-null 

fuzzy soft weakly -sepaeated sets  and  in  such that 
EEE shf  ~

. By Theorem 3.1, there exist two fuzzy 

soft open sets  and  such that , ,   , and   . Then, 
EEE ugf  ~

. 

Also, 
EEE gf 0

~~  . For, if 
EEE gf 0

~~  , then 
EEE hf 0

~~   so that  (since 
EEE shf  ~

 

implies ), which contradicts that  is a non-null. Similarly, 
EEE uf 0

~~  . 

Also, 
c

EEE fug )(~  . For, if 
c

EEE fug )(~  , then there exist ,  such that 

)(1)(~ xx e

f

e

ug EEE
 

. This means  and . Since 

, then  or  and  or 

. Hence, (    or   ) and (    or   )  This is a contradiction. So,  is 

a  -connected.                                                                                                                                            

Remark 4.2. If  is a  -connected, then it may not be a  -connected as shown by the following example. 

Example 4.2. Let , , , , , , , , , , 

 be a fuzzy soft topology on  and , , . Then, there exist two fuzzy soft open sets 

, ,  and , ,  such 

that
EAA

c

AAAAAA hffshshf 0
~~,)(~,~  and 

EAA sf 0
~~  . So,  is not a  

-connected. If we take  and  then    and   . 

Therefore,   and  are not fuzzy soft weakly separated sets. Hence,  is a  -connected. 

Theorem 4.3. Let  be a fuzzy soft topological space, . If  is a  -connected set in , 

then  is a  -connected. 

Proof. Let  be a  -connected set in . Suppose   is a  -disconnected. Then, there exist  and  

such that 
EEEEEEEEEE hfshfshf 0

~~,0
~~~,~   and 

EEE sf 0
~~  . Then, 

EEE ugf  ~
 where 

EEEE hhfg  ~
and 

EEEE ssfu  ~ . 

Since 
EEEE shf 0

~~~   and , then 
EEEE sgf 0

~~~  . Also, since , then 

EEE sg 0
~~  . Therefore,   . Similarly,   . Hence,  is not a  -connected. This complete the 
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proof.                                                                                        

Theorem 4.4. Let  be a fuzzy soft topological space, . If  is a  -connected set in , 

then  is a  -connected. 

Proof. Let  be a  -connected set in . Suppose  is a  -disconnected. Then, there exist two fuzzy soft 

open sets  and  such that 
c

EEEEEE fshshf )(~,~  , 
c

EE fh )(  and 
c

EE fs )( . Then 

EEE ugf  ~
 where 

EEEE hhfg  ~
 and 

EEEE ssfu  ~ .  Let  and  

defined by: 



 


otherwise

xxifx
x

e

s

e

h

e

ge EEE

E 0

),()()(
)(




 



 


otherwise

xxifx
x

e

h

e

s

e

e

j
EEE

E 0

),()()(
)(


   

   Then 
EEE jf  ~ . 

Now, . For,  Since 
c

EE fh )( , then there exist ,  such that 

. Then . For,  implies  and 

hence )(1)(~ xx e

f

e

sh EEE
 

 this is a contradiction with 
c

EEE fsh )(~  . So, . 

Similarly, . 

Also,  and . Now,   . For, if   , then there exist ,   such that 

 and hence . This means  and so , 

implying  and thus )(1)(~ xx e

f

e

sh EEE
 

 which is a contradiction with 

c

EEE fsh )(~  . Similarly,   . Thus,  and  are fuzzy soft weakly separated and 
EEE jf  ~ .  So, 

 is not a  -connected. This a contradiction. Then  is a  -connected.                                          

Remark 4.3. If  is a -connected (respectively, -connected) set, then it may not be a  -connected as 

shown by the following example. 

Example 4.3. Let , , , , , , , , , , 

, , , , , ,  be a fuzzy soft topology on  and . Then  is a 

 -connected ( respectively,  -connected) set. But  is not a  -connected as there exist 

 and  fuzzy soft weakly separated sets such that 
AAA shf  ~ . 

Theorem 4.5. Let  be a fuzzy soft topological space, . If  is a  -connected set in , 

then  is a  -connected. 

Proof. Let  be a  -connected set in . Suppose   is a  -disconnected. There exist non-null fuzzy soft 

-separated sets  and  in  such that 
EEE shf  ~ . Let  and . Then 

 and  are non-null fuzzy soft open sets. 

Now, c

E

c

E

c

E

c

EEE sFclhFclsFclhFclug )]([~)([)]([~)]([~ 
c

E

c

EE fshFcl )()]~([  . 

Also, 
c

EE fg )( . For, if , then  which whould imply  (since 

EEE shFcl 0
~~)(  ). This is a contradiction. Similarly, c

EE fu )( . 

Therefore,  is a  -disconnected. So,   is a  -connected.                                     
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Remark 4.4. If  is a  -connected, then it may not be a  -connected as shown by the following example. 

Example 4.4. Let , , , , , , , , , , 

, , , , , ,  be a fuzzy soft topology on  and . 

Then there exist non-null fuzzy soft open sets , ,  and , ,  such that 

c

AA

c

AAAAAA fhfshshf )(,)(~,~   and 
c

AA fs )( . So,  is not a  -

connected. However,  is a  -connected. 

Theorem 4.6. Let  be a fuzzy soft topological space. A fuzzy soft set  in  is a -connected if and 

only if  is a  -connected. 

Proof. Let  be a  -connected set in . Suppose   is not a  -connected. Then there exist non-null fuzzy 

soft separated sets  and  in  such that 
EEE shf  ~  . By Theorem 3.1 and Remark 3.3, there exist two non-

null fuzzy soft open sets  and  such that , , and 
EEEEE husg 0

~~~  . Then, 

EEE ugf  ~ . 

Now, )~~(~)~~(~~)~(~~
EEEEEEEEEEEEE ugsughugshugf   =  and 

EEEEEEEEEEE hgsghgshgf 0
~

)~(~)~(~)~(~  . Similarly, 
EEE uf 0

~~  . 

So,  is not a  -connected which is a contradiction. 

Conversely, let   be a  -connected. Suppose   is not a  -connected. There exist two non-null fuzzy soft 

open sets ,  such that 
EEE ugf  ~

, 
EEEE ugf 0

~~~  , 
EEE uf 0

~~  , and 
EEE gf 0

~~  . 

Hence, 
EEE shf  ~

 where 
EEEE ggfh  ~ and 

EEEE uufs  ~ . Also, 

EEEEEE ufgsg 0
~

)~(~~  . Similarly, 
EEE ug 0

~~  . So,   is not a  -connected and this 

complete the proof.          

Theorem 4.7. Let  be a fuzzy soft topological space, . If  is a  -connected set in , 

then  is a  -connected. 

Proof. Let  be a  -connected set in . Suppose   is a  -disconnected. Then there exist non-null fuzzy 

soft strongly separated sets ,  in  such that . 

So, there exist two non-null fuzzy soft open sets  and  such that , , 

EEEEE husg 0
~~~  ,  and  quasi-coincident with respect to , and  and  quasi-coincident 

with respect to . Then, for every  we have  and for every  

we have . Then, 
EEE ugf  ~ . Also,  

EEEE ugf 0
~~~  . 

Again,  for every . Therefore,   . Similarly, 

   . Thus,   is not a  -connected. This is a contradiction. So,  is a  -connected.                                                                                                                           

 

Remark 4.5. If  is a  -connected, then it may not be a  -connected as shown by the following example. 

Example 4.5. Let , ,  and , , , , , , 

, , , ,  be a fuzzy soft topology on . Let  and 

, , , . Then, 
AAA ugf  ~ , 

EAAA ugf 0
~~~  , 

  and  . So,   is not a  -connected. However,  is a  -connected. 

Remark 4.6. If  is a  -connected, then it may not be a  -connected as shown by the following example. 

Example 4.6. Let , ,  and , , , , , , 

, , , ,  be a fuzzy soft topology on . Let . Then there 



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 8  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6483 | P a g e                              c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
A u g u s t  2 0 1 6                                             w w w . c i r w o r l d . c o m  
 

exist two non-null fuzzy soft strongly separated ,  and , ,  such that 

AAA shf  ~ . So,  is not a -connected. However,  is a  -connected as 
EAA hsFcl 0

~~)(   

and also 
EAA shFcl 0

~~)(  . 

Remark 4.7. If  is a  -connected, then it may not be a  -connected as shown by the following example. 

Example 4.7. Let ,  and , , , , , , , 

 be a fuzzy soft topology on . Let , . Then  can be expresed as a union of two 

non-null fuzzy soft  -separated sets ,  and , . So,  is not a -connected. 

However,  is a -connected as if we take })},{,{( 1

3

11 baegE 
 and , , then 

 
EE ug ~  but 

EEEE ugf 0
~~~  . 

Remark 4.8. If  is a  -connected, then it may not be a  -connected as shown by the following 

example. 

Example 4.8. Let , ,   and , , , , , 

, , , , , , , ,  be a fuzzy soft topology on 

. Let , . Then there exist two non-null fuzzy soft  -separated sets ,  and 

,  such that 
AAA shf  ~ . So,  is not a -connected. However,  is a  -

connected as  and  are not fuzzy soft strongly separated. 

Remark 4.9. If  is a -connected set, then it may not be a  -connected (respectively,  -connected, 

-connected for , ) set. In fact,  defined in Example 4.6 (or 4.7) is a  -connected, but it is a 

not a  -connected set and not a  -connected set. Therefore, it is not a  -connected set and not a -

connected set for . 

Remark 4.10. If  is a  -connected (respectively,  -connected,  -connected for ) 

set, it may not be a a -connected as shown by the following example. 

Example 4.9. Let , ,   and , , , , , 

 be a fuzzy soft topology on . Let . Then  is a -connected for 

. But since  is a non-null proper clopen fuzzy soft set in . So,  is not a -

connected. 

Remark 4.11. In a fuzzy soft topological space . The classes of  -connected,  -connected, and 

 -connected sets for ,   can be discribed by the following diagram. 

 

We observe that, if a fuzzy soft point  is -connected set ( ) hence -connected, but not necessarily 

-connected which is a departure from general topology where points are connected sets. 



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 8  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6484 | P a g e                              c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
A u g u s t  2 0 1 6                                             w w w . c i r w o r l d . c o m  
 

Example 4.10. Let , , , , , , , , , , , , 

, , , . Here, the fuzzy soft point ,  is not a -connected 

Moreover, we observe that the null-fuzzy soft set  is -connected and hence -connected ( ). 

Theorem 4.8. Let  and  be a fuzzy soft topological spaces and  be 

fuzzy soft bijective continuos mapping. If  is a -connected (respectively,  -connected, -connected) set 

in   for , then  is a -connected (respectively,  -connected, -connected) set in   

for . 

Proof. As a sample, we will prove the case . Let  be a -connected set in . Suppose,  is not a 

-connected set in . Then,  has a non-null proper clopen fuzzy soft subset .   

So, there exist  and  such that 
NBpuDBpuC ugfsgfh  ~)(~)( . Since  is a 

bijective function, then )(~)(~)( 111

NpuBDpuBCpu ufgsfghf   . 

Also, since  and  and  is a fuzzy soft continuos function, then  and . 

Hence,  is a non-null proper clopen fuzzy soft subset of  which is a contradiction. Therefore,  is a 

-connected set in .                                                 

Theorem 4.9. Let  and  be a fuzzy soft topological spaces and  be 

fuzzy soft open function such that ,  are bijetive mapping. If  is a  -connected (respectively, 

 -connected, -connected) set in   for , then  is a  -connected 

(respectively,  -connected, -connected) set in   for . 

Proof. As a sample, we will prove the case of  -connected. Let  be a  -connected set in . Suppose 

 is not a  -connected set in . Then there exist two non-null fuzzy soft separated sets  and  in  

such that 
DCBpu shgf  ~)(1

. Therefore, there exist two non-null fuzzy soft open sets  and  in  such that 

,  and 
ENDLC usjh 0

~~~  . Since  is a surjective fuzzy soft function, then 

BBpupu ggff  )]([ 1  and so )(~)(]~[ DpuCpuDCpuB sfhfshfg  . Since  is a fuzzy soft open 

function, then  and  are non-null fuzzy soft open sets in  such that , 

. Since  is a fuzzy soft injective function, then 

KLCpuLpuCpu jhfjfhf 0
~

)~()(~)(    and 
KDpuDpu sfsf 0

~
)(~)(  . It follows that  is a 

-disconnected set, which a contradiction.                                                                                                         

Definition 4.6. Two non-null fuzzy soft sets  and  are said to be intersecting if there exist ,   such 

that . If  and  are non-intersecting, then  and  are said to be disjoint. 

Theorem 4.10. If  and  are intersecting -connected (respectively, -connected, -connected, 

-connected, -connected,  -connected ) sets in , then 
BA gf ~  is a -connected 

(respectively, -connected, -connected, -connected, -connected, -connected ) set in . 

Proof. The cases of -connected and -connected sets previously proved (see Theorem 3.22, 3.23 and 3.24 

in [9 ] ). As a sample we will prove the case of -connected sets.  Let  and  be intersecting  -connected 

sets in . Suppose 
BA gf ~  is a  -disconnected set. Then, there exist two non-null fuzzy soft  -separated sets 

 and  in  such that 
DCBA shgf  ~~ . Therefore, 

CBDACA hgsfhf  ~,~,~ and 

DB sg ~  are non-null fuzzy soft  -separated sets in  as subsets of  and . Since 

)~(~)~( DACAA sfhff   and )~(~)~( DBCBB sghgg  , then  and  are  -

disconnected which is a contradiction.                                                                
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Theorem 4.11. Let   be a family of a -connected (respectively,  -connected,  -

connected,  -connected,  -connected,  -connected ) sets in  such that for ;   the fuzzy 

soft sets  and  are intersecting. Then, 
iA

Ji
A ff )(



  is a -connected (respectively,  -

connected,  -connected,  -connected,  -connected,  -connected ) set in . 

Proof. Let   be a family of a -connected sets in . Suppose that  is not a -connected set 

in . Then, there exist two fuzzy soft open sets  and  in  such that 
DCA shf  ~  and 

c

ADC fsh ~ . 

Now, let  be any fuzzy soft set of the given family. Then, 
DCiA shf  ~)(

0

 and c

ADC i
fsh

0

)(~  . But, 

 is a -connected set. Hence, 
ECiA hf 0

~~)(
0

  or 
EDiA sf 0

~~)(
0

 . Now if 

ECiA hf 0
~~)(

0
 , we can prove that 

ECiA hf 0
~~)(   for each  and so 

ECA hf 0
~~  . 

This complete the proof.                                    

Corollary 4.1. If   is a family of a -connected (respectively,  -connected,  -connected, 

 -connected,  -connected,  -connected) in  and 
EiA

Ji
f 0

~
)( 



, then 
iA

Ji
f )(


  is a -

connected (respectively, -connected,  -connected,  -connected,  -connected,  -connected) 

set in . 

Proof. Straightforward in view of Theorem 4.10.The following example shows that Theorem 4.10 fails for  -

connected (respectively,  -connected) spaces. 

Example 4.11. Let , ,  and , , , , , , , 

, , , , , ,  be a fuzzy soft topology on . Let , ,  and  

, , . Here, 
EAA gf 0

~~   and  and  are -connected sets in , but 
AA gf ~  is not 

 -connected set in . 

Example 4.12. Let ,  and , , , , , , , , , , 

, , ,  be a fuzzy soft topology on . Let , , ,  and  , , 

, , . Here, 
EEE gf 0

~~   and  and  are -connected sets in , but 
E

gfE 
~  is not 

 -connected set in . 

Theorem 4.12. If  and  are quasi-coincident -connected (respectively, -connected) sets in , 

then
BA gf ~  is a -connected (respectively, -connected) set in . 

Proof. As a sample, we will prove the case -connected. Let  and  be quasi-coincident -connected sets 

in . Suppose there exist two non-null fuzzy soft open sets  and  in  such that  

DCBA shgf  ~~
and  

c

BADC gfsh )~(~                               (1) (1) 

Therefore, 
DCA shf  ~ , 

c

ADC fsh ~ , 
DCB shg  ~  and 

c

BDC gsh ~ . Since  and  are 

-connected, then  or  and  or . 

Moreover, since  and  are quasi-coincident, there exist ,  such that  

                                                                                             (2) (2) 

 

Now, consider the following cases: 
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Case I. Suppose . Then by (2) we have, 

                                                                                                      (3) (3) 

 

We claim that,    . For if not, then  

                                                                          (4) (4) 

 

Now by (3) and (4), we have )()( ~~ xx e

gf

e

sh BADC     which implies 
DCBA shgf  ~~ , this contradicts 

(1). Hence, . Therefore, 
c

BA

c

B

c

AC gfgfh )~(~  . 

Case II: Suppose, . Here, we can show as in Case I that 
c

BC gh  . Therefore, . Hence, 

c

BA

c

B

c

AD gfgfs )~(~  . This complete the proof.                    

Theorem 4.13. Let   be a family of a -connected (respectively, -connected) sets in  such 

that for ;   the fuzzy soft sets  and  are quasi-coincident. Then 
iA

Ji
A ff )(



  is a -

connected (respectively, -connected) set in . 

Proof. Let   be a family of a -connected sets in . Suppose there exist two fuzzy soft open sets  

and  in  such that 
DCA shf  ~   and 

c

ADC fsh ~ . Let  be any fuzzy soft set of the given 

family. Then, 
DCiA shf  ~)(

0

and c

iADC fsh
0

)(~  . Since  is a -connected set, we have 

c

iAC fh
0

)(  or 
c

iAD fs
0

)( . Now, the result follows in view of the facts that  then 

 for each , since  and  are are quasi-coincident -connected sets, and 

c

A

c

iA
Ji

C ffh  


])([
0

~ . Hence,  is a -connected. Similarly, if   is a family of a -

connected sets in  such that for ;   the fuzzy soft sets  and  are quasi-coincident, then 

iA
Ji

A ff )(


  is a -connected set in . This complete the proof.                                                                                                                      

 

Corollary 4.2. Let   be a family of a -connected (respectively, -connected) sets in  and 

 be a fuzzy soft point such that  and 
iA

Ii

e fx )(~~



. Then 
iA

Ji

f )(


 is a -connected (respectively, 

-connected) set in . 

Proof. Since 
iA

Ii

e fx )(~~



, then    for each  . Therefore,  and  are quasi-coincident 

fuzzy soft sets for each . By Theorem 4.13, 
iA

Ji

f )(


 is a -connected (respectively, -connected) set 

in . 

Theorem 4.15. If  is a -connected (respectively, -connected,  -connected) set in  and 

, then  is also a -connected (respectively, -connected,  -connected) set in . 

Proof. As a sample, we will prove the case of -connected set. Let  and  be fuzzy soft open sets in  such 

that 
c

BDCDCB gshshg  ~,~ . Then, 
DCA shf  ~

 and 
c

ADC fsh ~ . Since  is a 

-connected set, we have   or . But, if , then  and on the 

other hand, if , then . Therefore,  or 

. Hence,  is a -connected set in .                                                                                                     
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However, the above theorem fails in case of  -connectedness (respectively,  -connectedness,  -

connectedness,  -connectedness,  -connectedness) which is a departure from general topology. The following 

example will illustrate that the closure of a  -connected (respectively,  -connected,  -connected,  -

connected,  -connected) set need not be a  -connected (respectively,  -connected,  -connected, 

 -connected,  -connected). By the following examples we show that Theorem 4.9 and Remark 4.7 of [11] are 

incorrect. 

Example 4.13. Let , , and , , , , , , , ,  be 

a fuzzy soft topology on . Here, ,  is a  -connected (respectively,  -connected,  -

connected,  -connected,  -connected) set, but , ,  is not a  -connected 

(respectively,  -connected,  -connected,  -connected,  -connected). 
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