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ABSTRACT 

The paper studies the long time behavior of solutions to the initial boundary value problem(IBVP) for a class of Kirchhoff 

models flow )(=)||(1)( 122
xfuuuuuuu p

tttt

  .We establish the well-posedness, the 

existence of the global attractor in natural energy space 
1

0

1

0

2 )( HHH  .  
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1  Introduction 

In this paper,we are concerned with the existence of global attractor for the following nonlinear plate equation referred to 
as Kirchhoff models:  

 ,)(=)||(1)( 122   Ru inxfuuuuuu p

tttt   (1.1) 

 ,),(=,0)();(=,0)( 10 xxuxuxuxu t  (1.2) 

 .)(0,=|),(  xtxu  (1.3) 

 Where   is a bounded domain in 
NR , 1p , and  ,  are positive constants,and the assumptions on )(

2
u  

will be specified later. 

Global attractor is a basic concept in the study of the asymptotic behavior of solutions for nonlinear evolution equations 
with various dissipation. From the physical point of view, the global attractor of the dissipative equation(1.1)represents the 
permanent regime that can be observed when the excitation starts from any point in natural energy space, and its 
dimension represents the number of degree of freedom of the related turbulent phenomenon and thus the level of 
complexity concerning the flow. All the information concerning the attractor and its dimension frim the qualitative nature to 
the quantitative nature then yield valuable information concerning the flows that this physical system can generate. On the 
physical and numerical simulations[1]. 

Many authors have focused on the Kirchhoff equations, Igor Chueshov[2]studied the long-time dynamics of Kirchhoff wave 
models with strong nonlinear damping:  

 ).(=)()()(
22

xhufuuuuu ttt    (1.4) 

Tokio Matsuyama and Ryo Ikehata[3] proved on global solutions and energy decay for the wave equations of Kirchhoff 
type with nonlinear damping terms:  

 ,||=||))(( 112

2
uuuuutuMu q

t

p

ttt

   (1.5) 

with clamped boundary condition  

 0,0,=|),(  ttxu  (1.6) 

and )(sM  is a positive 1C class function for 0s  satisfying 0>)( 0msM   with a constant 0m , and 0> , 

R  are given constants. 

Recently,Cheng Jian ling and Yang Zhijian[4]studies the long time behavior of the Kirchhoff type equation with strong 
damping:  

 ),(=)(),())((
2

2
xfuhuxguutuMu tttt   (1.7) 

where 21=)(
m

ssM  , 1m . 
N

R  is a bounded domain with smooth boundary  . 
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 Yang Zhijian[5] also studied the longtime behavior of the Kirchhoff type equation with strong damping on 
N

R :  

 ),(=),()(
2

xfuxguuuuuMu tttt   (1.8) 

where 21=)(
m

ssM  , 1m . 
N

R  is a bounded domain with smooth boundary  , )(xf  is an external force 

term. It shows that the related continuous semigroup )(tS  possesses a global attractor which is connected and has finite 

fractal and Hausdorff dimension. 

Zhijian Yang and Pengyan Ding[6] studies the longtime dynamics of the Kirchhoff equation with strong damping and 

critical nonlinearity on 
N

R :  

 ),(=),()(
2

xfuxguuuMuu tttt   (1.9) 

where )(1  RCM , 0)(  sM , 0>=(0) 0MM


. They established the well-posedness, the existence of the global 

and exponential attractors in natural energy space )()(= 21 NN LH RR H  in critical nonlinearity case. 

Claudianor O.Alves and Giovany M.Figueiredo[7]proved the existence of positive solutions for the following class of 
nonlocal problem:  

 ,)(=])()[||)(||( 22  uufuxVudxuxVdxuM
NN

  RR
 (1.10) 

where 5=  for 3=N  and )(1,  for 1,2=N .   is a positive parameter and {0,1} . For more related 

results, we refer the reader to [8]-[11]. The paper is arranged as follows. In Sec.2, some notations and the main results are 

stated. In Sec.3, the global existence of solutions to problem (1.3)(1.1)  is established in space 

));(0,);(0,();(0, 1

0

2221

0 HTLLLLHL p  
 and ));(0,);(0,();(0, 2

21

02 VTLHLVL  
. 

In Sec.4, the existence of global attractor for the dynamical system associated with problem (1.3)(1.1)  is discussed 

in phase space 1X .  

2  Statement of main results 

    For brevity, we use the follow abbreviation:  

 ,=,=,=),(=),(= 2
2,2..

L

kkpkpkpp LHWHWWLL   

 ,=,=,=,= 1

02122

1

0

2

2 HVXVVHHVp
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with 1p . We denote the dual of 
pW 1.

0  by 
pW
1.
, with 

1
=




p

p
p . And where 

kH  are the 2L based Sobolev 

spaces and 
kH0  are the completion of )(0 C  in 

kH  for 0>k .The notation ),(   for the H inner product will also 

be used for the notation of duality pairing between dual spaces. 

We define the operator 22: VVA ,  

 .,),,(=),( 2VvuforvuvAu   

Then, the operators )( RsAs   are strictly positive and the spaces )(= 4

s

s ADV  are Hilbert spaces with the scalar 

products and the norms  

 ,=),,(=),( 444 uAuforvAuAvu
s

s
V

ss

s  

respectively. Obviously,  
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Now, we state the main results of the paper. 

Theorem 2.1. Assume that )( 1H  )(1  RC , 0)(  s , 1=(0) 0 


  , 

)( 2H  
1Hf , HHuu  1

010 ),( , 1p . Then the solution ),( vu  of the problem(1.1)-(1.3) satisfies  
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  (2.1) 

 .(0) 1
0

1

2

0
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Where uuv t = , }
2

1
,

2
,

4
{min<0 1




  ,and 

dxu
p

udssvtH p
u

)||(1
1

)(=)( 22
2

0

2

1   



 , then problem (1.3)(1.1)  admits a solution 

);(0, 21

0

pLHLu  
, );(0,);(0, 1

0

22 HTLLLv  
.  

Remark 2.1 In addition to the assumptions of Theorem 2.1, we know that )(s  and )(s  are bounded.  

Theorem 2.2. In addition to the assumptions of Theorem 2.1, assume that )( 3H   
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2

1
1
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N
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N
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)( 4H  Hf  , 
1

0210 ),( HVuu  . Then the solution ),( vu  of the problem(1.1)-(1.3) satisfies  

 ),e(1e(0))( 5
33

tt C
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   (2.3) 

 .(0) 5
0

3

2

0
dsCHdsu

T

t

T

   (2.4) 

Then problem (1.3)(1.1)  admits a unique solution );(0, 2VLu  
, );(0,);(0, 2

21

0 VTLHLut  
.  

Remark 2.2 We denote the solution in Theorem 2.2 by ))(),((=),)(( 10 tutuuutS t . Then )(tS  composes a 

continuous demigroup in 1X .  

Theorem 2.3 In addition to the assumptions of Theorem 2.2, then the continuous semigroup )(tS  defined in Remark 

2.1 possesses in 1X  a global attractor which is connected.  

3  Global existence of solutions 
    We first prepare the following well known lemmas which will be needed later.         

Lemma 3.1(Sobolev-Poincare)
[2][11]

. If either 1,2)=(<1 Np   or 3)(
2

1
1 




 N

N

N
p , then there is a 

constant 2),4(  pC  such that  

 ).(,2),4( 1

024



HuforupCu

p
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In other words,  

 0}),(|{sup=2),4( 1

0

24






uHu

u

u
pC

p
 

is positive and finite.  

Lemma 3.2(Gronwall’s inequality)
[11]

. Let )(tH  be a non-negative absolutely continuous function on )[0,  which 

satisfies the differential inequality  

 0,,  tCkH
dt

dH
 

 where 0>k  and 0C  are constants. Then  

 ),(,)( 02 HTtRtH   

 where )( 0HT  is a constant depending on (0)=0 HH . 

Proof of Theorem 2.1  

Proof. Let uuv t = , }
2

1
,

2
,

4
{min<0 1




  , then v  satisfies  

 ).(=)||(1)()()( 1222 xfuuuuuvuvv p

t

   (3.1) 

Taking H inner product by v  in (3.1), we have  
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2

1 22222
vuuvuvvuvv

dt

d
   

 ).,(=),)||((1 12 vfvuu p  (3.2) 

By using Holder’s inequality, Young’s inequality and Poincare’s inequality, we deal with the terms in (3.2) one by one as 
follow  
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By (3.3)-(3.7), it follows from that  
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Because of 



2

1
<0   and )( 1H , we can get  
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Substituting(3.9) into (3.8) get  
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Taking 
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2

{min=1k , then  
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p
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 , by using Gronwall’s inequality, we obtain  
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According to 
222

0

2
2

0 2

1
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 , and dxudxu pp 22 ||)||(1  
 , 

then we have );(0, 21

0

pLHLu  
, );(0,);(0, 1

0

22 HTLLLv  
. Theorem 2.1 is proven.  

Proof of Theorem 2.2  

Proof. Taking H inner product by u , tu  in(1.1), we get  

 
2222

)(]),2([
2

1
uuuuuu

dt

d
t    

 ),,(),)||((1= 12 ufuuu p  
 (3.14) 
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Substituting (3.19), (3.20) into (3.14), we receive  
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d
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Substituting (3.21)-(3.23) into (3.15), we receive  
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Taking H inner product by tu  in (1.1), we have  
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where   is a small positive constants. Now we have  

 .:=
2

523

2

3432

2

33 CHK
f

KCCKuHH
dt

d
t 


   (3.30) 

Hence, according to Gronwall’s inequality and integrating (3.30) over (0,T), we get  

 ),e(1e(0))( 5
33

tt C
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   (3.31) 

 .(0) 5
0

3

2

0
dsCHdsu

T

t
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   (3.32) 

We know that u  is the solution of problem (1.1)-(1.3), with );(0, 2VLu  
, );(0,);(0, 2

21

0 VTLHLut  
. 

The uniqueness is standard; let )(tu  and )(tv  be two solutions, then )()(=)( tvtutw   satisfies  

  ))()((
22

vvuuwww tttt   

 0,=)||(1)||(1 1212 vvuu pp    (3.33) 

with 0=w  on )[0,  and 0=(0)=(0) tww  in  . Taking the H inner product of (3.33) with tw , one can 

find that  
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Here, we note that the first and second terms in the right-hand side of (3.34) are bounded by  
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where vu )(1=   , 10  , },{max= v . One can also find that the last term in the right-hand side of 

(3.34) is bounded by  

 .),)||(1)||((1 10

1212

tt

pp wwCwvvuu  
 (3.38) 

Hence, integrating (3.34) over (0,t), we get  

 ,)()(
22

0
11

222
dswwCwuw t

t

t    (3.39) 

which, by Gronwall’s inequality, implies 0w . This completes the proof of Theorem 2.2.  

4  Bounded absorbing sets and Global attractor in 1X   

Lemma 4.1 [8][11]
 The continuous semigroup )(tS  defined on a Banach space X  has a global attractor which is 

connected when the following conditions are satisfied 

1) There exists a bounded absorbing set XB  such that for any bounded set XB 0 , 0),)(( 0 BBtSdist  as 

t . 

2) )(tS  can be decomposed as )()(=)( tUtPtS  , where )(tP  is a continuous map from X  to itself with the 

property that, for any bounded set XB 0 ,  

 ,0,)(sup
0




ttP
X

B




 (4.1) 

and )(tU  is precompact for 0> Tt  for some 0T .  

Proof of Theorem 2.3  
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Proof. According to Theorem 2.2, we get  
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1
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22
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 (4.2) implies that the ball )( 2CRB  centered at zero with a radius 2CR  in 1X  is an absorbing set of )(tS . Moreover, 

integrating (3.30) over (t,t+1), respectively, and exploiting (4.2), we have  
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1
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 (4.3) 

Decomposition of S(t): Let 0>R  be given with Ruu
X


1
10 ),( , we know from (3.31) and (4.2) that  

 0,,))(),(( 12
1

 tCtutu
Xt  (4.4) 

where and in the sequel  
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Let us write now wvu = , where  
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 0.=(0)0,=(0) tvv  (4.7) 

 Lemma 4.2 If Buu ),( 10 , ),( tww  is the solution of (4.6), then  
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 ttRwq  (4.8) 

and  
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Proof. Let wwq t = , }
2

1
,

2
,

4
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  , then q  satisfies  
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Taking H inner product by q  in (4.10), we have  
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222
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It is clear that  
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1
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d
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So  
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Because of 



2

1
<0  , we get   00

2

1
22 , 

then by )( 1H  and gronwall’s inequality,  
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Lemma 4.2 is proven.  

Lemma 4.3 If Buu ),( 10 , ),( tvv  is the solution of (4.7), then it exists compact set 1)( XTN   and  
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 Proof. Applying )
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A  to both sides of (4.7), we have  
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Taking H inner product by   in (4.18), we obtain  
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By the same argument of Theorem 2.2 we can obtain  
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It follows from (4.19)-(4.22) that  
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Then  
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where 
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4 )(=  H . Since 0=(0)4H , (4.24) means  
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which implies  
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for vA 1=


 . 

Since 1
1

4
1

42 XVV    is compact embedded, which means that the bounded set in 
1

4
1

42  VV   is the compact 

set in 1X . 

Lemma 4.3 is proved.  

Define  

 )).(),((=),)(()),(),((=),)(( 1010 tvtvuutUtwtwuutP tt  (4.28) 

Obviously, )()(=)( tUtPtS  . Lemma 3.1 shows that for any 1010 ),( XBuu  , the map 11:)( XXtP   is 

continuous and satisfies(4.1). Moreover, Lemma 3.2 shows that the map )(tU  is precompact for 0t  for 

1
1

4
1

42 XVV   . So )(tS  has in 1X  a global attractor A  which is connected. 

This completes the proof of Theorem 2.3.  
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