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ABSTRACT

The paper studies the long time behavior of solutions to the initial boundary value problem(IBVP) for a class of Kirchhoff
2 _

models flow U, +au, — SAU, —¢(||Vu|| YAU+(1+|u?)P u = f(X) We establish the well-posedness, the

existence of the global attractor in natural energy space (H N Hé) X Hé )
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1 Introduction

In this paper,we are concerned with the existence of global attractor for the following nonlinear plate equation referred to
as Kirchhoff models:

Uy +att, — BAU — (V| )Au+(L+[u ) Pu= F(x) in QxR (1.1)
u(x,0) =u,(x);u,(x,0) =u,(x), xeQ, (1.2)
u(x,t)|,=0, (x)eQ. (1.3)

2
Where Q is a bounded domain in R, p=>1,and &, are positive constants,and the assumptions on ¢(||Vu|| )
will be specified later.

Global attractor is a basic concept in the study of the asymptotic behavior of solutions for nonlinear evolution equations
with various dissipation. From the physical point of view, the global attractor of the dissipative equation(1.1)represents the
permanent regime that can be observed when the excitation starts from any point in natural energy space, and its
dimension represents the number of degree of freedom of the related turbulent phenomenon and thus the level of
complexity concerning the flow. All the information concerning the attractor and its dimension frim the qualitative nature to
the quantitative nature then yield valuable information concerning the flows that this physical system can generate. On the
physical and numerical simulations[1].

Many authors have focused on the Kirchhoff equations, Igor Chueshov[2]studied the long-time dynamics of Kirchhoff wave
models with strong nonlinear damping:

83U~ ([Vu[*)Ad,u—g(|Vul)Au + f (u) = h(x). (1.4)

Tokio Matsuyama and Ryo lkehata[3] proved on global solutions and energy decay for the wave equations of Kirchhoff
type with nonlinear damping terms:

2 _ -

Uy —M (||Vu(t)||2)AU +8|u U = plu, (1.5)
with clamped boundary condition

u(xt)|.,,=0, t=0, (1.6)
and M (S) is a positive C* — class function for $>0 satisfying M (S) >m, >0 with a constant M, , and & >0,

1 € R are given constants.

Recently,Cheng Jian ling and Yang Zhijian[4]studies the long time behavior of the Kirchhoff type equation with strong
damping:

U, — M ([Vu()[2)Au - Au, +g(x,u)+h(u,) = f(x), (€.7)
7

where M(s) =1+s2, m>1. Qe R" is a bounded domain with smooth boundary 02 .
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Yang Zhijian[5] also studied the longtime behavior of the Kirchhoff type equation with strong damping on R N.
2
U —M (VU )Au—Au, +u+u, +g(x,u) = f(x), (1.8)

m

where M(s)=1+52, m>1. Qe R" is a bounded domain with smooth boundary 62, f (X) is an external force

term. It shows that the related continuous semigroup S(t) possesses a global attractor which is connected and has finite
fractal and Hausdorff dimension.

Zhijian Yang and Pengyan Ding[6] studies the longtime dynamics of the Kirchhoff equation with strong damping and
critical nonlinearity on R N

u, —Au, —M (||Vu||2)Au +u, +g(x,u) = f(x), (1.9)

A
where M € C*(R"), M’(s) >0, M (0)=M, > 0. They established the well-posedness, the existence of the global
and exponential attractors in natural energy space H=H 1(R N ) x L2 (RN ) in critical nonlinearity case.

Claudianor O.Alves and Giovany M.Figueiredo[7]proved the existence of positive solutions for the following class of
nonlocal problem:

M ( jRN | Vul? dx+ jRNv (X) [u[? dxX)[-Au +V (X)u] = Af (u) + °, (1.10)

where 7 =5 for N =3 and 7 € (1,4%) for N =1,2. 1 is a positive parameter and  €{0,1}. For more related
results, we refer the reader to [8]-[11]. The paper is arranged as follows. In Sec.2, some notations and the main results are
stated. In Sec.3, the global existence of solutions to problem (1.1)—(1.3) is established in space

L™ (0,400; Hy M L?P) x (L (0,400; L’) N L*(0,T; Hy)) and L*(0,+0,V,) x (L (0,+00; H)) N L*(0,T;V,)).
In Sec.4, the existence of global attractor for the dynamical system associated with problem (1.1) —(1.3) is discussed
in phase space X, .

2 Statement of main results

For brevity, we use the follow abbreviation:

LP =L"(Q), W P=W*P(Q), H*=W"? H=L [|=]]-
||||p :”'”LP’ V,=H*nHy, V, =V, X, =V,xH,

with P >1. We denote the dual of W, by WP with p'= L And where H* are the L? —based Sobolev

spaces and Hg are the completion of C;°(€2) in H ¥ for k > 0.The notation (-,-) for the H —inner product will also
be used for the notation of duality pairing between dual spaces.

We define the operator A:V, =V,

(Au,v) = (Au,Av), for u,veVv,.

S
Then, the operators A (S € R) are strictly positive and the spaces VS = D(A“) are Hilbert spaces with the scalar
products and the norms

(u,v), = (Au, A%), forful, =|A*ul,

respectively. Obviously,
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1 1
A2y Adull =Vl

jul, = |A2ul=]aul, [u], =

Now, we state the main results of the paper.
A
Theorem 2.1. Assume that (H,) ¢ C*(R"), ¢#'(s)>0, #(0)=¢, >1,

(H,) feH™, (uy,u)eHsxH, p=>1.Then thesolution (U,V) of the problem(1.1)-(1.3) satisfies

H® < H, 0 + 2 (1-e ), 1
1
T T
ﬁjo ||Vv||2ds <H,(0)+ _[O C,ds. 2.2)
Where V=U,+eu, 0<££min{g,i,i},and
4 2a 20

H, @ =V + jov“2¢(s)ds — pevulf +% [L(L+|uP)?dx, then problem (L1)~(L3) admits a soluion
U e L”(0,400; Hy NLP), v e L*(0,+00; L) N L2 (0, T; Hy).

Remark 2.1 in addition to the assumptions of Theorem 2.1, we know that ¢(S) and ¢'(S) are bounded.
Theorem 2.2. in addition to the assumptions of Theorem 2.1, assume that (H)

1<p<+4w0 N=12,
N >3,

N
1<p<
P N
(H,) feH, (Uy,u,) eV, xH;. Then the solution (U,V) of the problem(1.1)-(1.3) satisfies

H,(t) < H,(0)e™ +%(1—e“*), (2.3)

ﬁ_[OT”Aut”zds <H,(0)+ _[OTCSds. (2.4)

Then problem (1.1) —(1.3) admits a unique solution U € L”(0,+oc;V, ), U, € L*(0,+0; H) " L*(0,T;V,).

Remark 2.2 we denote the solution in Theorem 2.2 by S(t)(U,,u,) = (U(t),u,(t)). Then S(t) composes a
continuous demigroup in X, .

Theorem 2.3 In addition to the assumptions of Theorem 2.2, then the continuous semigroup S(t) defined in Remark

2.1 possesses in Xl a global attractor which is connected.

3 Global existence of solutions

We first prepare the following well known lemmas which will be needed later.
N-1
N-2

Lemma 3.1(Sobolev-Poincare) “M i either 1< p < +oo(N =1,2) or 1< p < (N >3), then there is a
constant C(€2,4p —2) such that

jul,, , <C(@4p-2Ivul, for ueHi©)
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In other words,

u
C(Q4p-2)= sup{|| ”4"’2 |ueHI(Q),u=0}

[Vul

is positive and finite.

Lemma 3.2(Gronwall’s inequality) ™. Let H (t) be a non-negative absolutely continuous function on [0,0) which
satisfies the differential inequality

d—H+kH <C, t=0,
dt

where K >0 and C >0 are constants. Then
Ht)<R,, t=T(H,),
where T (H,) is a constant depending on H, = H(0) .

Proof of Theorem 2.1

i i} then V satisfies
2a0 2

Proof. Let V=U, +&U, 0< &< mln{—
V, +(a — )V + (&2 — ag)u— AV + BeAu —¢(||Vu||2)Au +(+uP)Pu=f(x). @
Taking H —inner product by V in (3.1), we have

%%Mz +(@—e)M + (&% —as)(u,v)+ BV + Be(au,v) — (#(Vu)Au,v)

+((+|u )P tu,v) = (f,v). 3.2)

By using Holder’s inequality, Young’s inequality and Poincare’s inequality, we deal with the terms in (3.2) one by one as
follow

3
(- =2 @

(&% —ag)(u,v) = =—ZE |vulv|

&12 &
2=

& 2 o 2
2= vl =M @4
and
fe(Au,v) __ﬂ__||w|| ~pet|wulf, @5
— @ AuY) = 4w e, v =2 () " g5)ds) + ap (Vul Y|l
> 2 8 ([ g+ o[ pts109) @9)
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((+u )Py, v)-——(j (L [uf)Pdx)+2 [ (2+uf)P* [uf dx
>__(j (L+|uP)Pdx)+—= j(1+|u|2)de—£. (3.7
2p dt pe

By (3.3)-(3.7), it follows from that

ivul?
" [|| [+ g(s)ds— pevul += j L+ u ) dx]+= ||v|| +e@f “§(s)ds
—2(pe +Z)||Vu||2) +?‘9 [ @ lupy?dx+ gvuf < g”v_l f+2 +E' (38)
Because of 0 < SS% and (H,), we can get
2™ pods - (2e + DIvul 2 1™ g(s)ds - pef vl 39)

Substituting(3.9) into (3.8) get

% I+ [ s(s)as— pefvulf +% JL 1Py a1+ 2 +

g(LV“2¢(S)ds —,Bg||Vu||2) +%IQ(1+ |u )P dx +,8||Vv||2 < %HV‘1 f H2 + Zp—g; (3.10)
Taking K, = min{g,g}: £, then

el H L@®) +kH, () + BV —Hv fH Z2=c, (3.11)
where H, (t) = ||v||2 n ﬂw” H(s)ds — ﬂg”VU”z +%L(1+ |u[?)Pdx , by using Gronwall’s inequality, we obtain

H, (t) < H,(0)e™ +%(1—e‘klt ), (3.12)

1

ﬂjOT”Vv”st <H,(0)+ L TClds. (3.13)

ul? 1
according 1o [ ¢(s)ds — pe|Vul’ = gVl — pe|vulf > 2IVU, ana [ (@+|uf)ax [ lul? o,
then we have U € L™ (0,400, H M L*?), v e L*(0,+00; L?) N L?(0,T; H,) . Theorem 2.1 iis proven.

Proof of Theorem 2.2

Proof. Taking H —inner product by —Au, — AU, in(1.1), we get
1d
Ea[oc”Vu”2 +2(u,,~Au) + ﬁ||Au||2] + 415(||Vu||2)||Au||2

= ((1+| u |2)p71u’AU)+(f ,—AU), (3.14)
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1d
S g VUl +alvul + Alau " = g(vul’)(au, au)

+ (U )P u,Au) +(F,—AU,). (3.15)

We have
§ 2" u, Au) | lul<1,
l 2y p-1 ,A < I( .

e {I (@ uP*2 u,a0)] 1, 10
where

@ tu, < 2 fau + 227l @.17)

(27 [u PP u, Auy < 272 Jul" ) |Au] < C, (©.4p—2)-2° VU] A

< %IIAUII2 +2°PC, v, (3.18)
then

|(+[uP)*u, Au) [ %”Au”z + 22034y 4 2203, -, (3.19)

|(f —Au) |< %”Au”z . (3.20)
Also, we have

(@ u Py, au) 1 2 fauf + Zo fulf + 2 2 o, 621)

4 B p
z Biaul? 22?0V, e
¢(|Vu|) | (Au, Au,) < §||Aut|| +ZT”AUH , (3.22)
2

|(f —Auy) < §||Aut||2 Sk @.23)
Substituting (3.19), (3.20) into (3.14), we receive

d

E[oz”Vu”2 +2(u,,—Au) +,B||Au||2] + ||Au||2

<22°|uff +22%-c2|vu[" + 2| f | = C,. (3.24)
Substituting (3.21)-(3.23) into (3.15), we receive

d 44 ([l

a”Vut”2 + 20:||Vut||2 + ,B||Aut||2 < wnmnz +C,, (3.25)

2 2
where C, = 2 |ulf +C2 2 [wu|" + ¢
B B p
2 2
Let K, = 40 (”ﬂVu” ) , K, =K, +1, (3.24)x K, +(3.25) , we have
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d
K]Vl + 200,80+ lau) + [Vu 1+ A + 2V

+ Ay <K,C,+C,. (3.26)

Taking H —inner product by U, in (1.1), we have
d [’
s alu | +2p8vu < % (3.27)

oz vl 1 2
where H, = ||Ut|| +IO ¢(S)dS+BIQ(1+|U| )Pdx.

Let K, = 2;2 +1, (3:27)x K, +(3.26), we get

2
S Ho A + 2afVu [+ AJau]f < K.C,+C, +K, ”Zf_” 829)
a

where

2
AN <,

= Kz(oc||Vu||2 +2(u,,~Au) +ﬁ||Au||2) +||Vut||2 +K,H,

1
< S Ay’ +a|[Vu,[*) + K H,, (3.29)
where O is a small positive constants. Now we have
d 2 I
p H,+dH, + BlAy | <K,C,+C, + K, ngéKSH2 =C,. (3.30)
Hence, according to Gronwall’s inequality and integrating (3.30) over (0,T), we get
(0 < Hy(0) * + = (1-e ™), @31
T T
ﬁjo |Au,|ds < H,(0) + IO C,ds. (3.32)

We know that U is the solution of problem (1.1)-(1.3), with U € L*(0,+00;V,), U, € L”(0,+o0; Hy) " L*(0,T;V,).
The uniqueness is standard; let U(t) and V(t) be two solutions, then W(t) = u(t) —Vv(t) satisfies

W, +aw, — SAW, — (¢(|Vu*)Au — (V") Av) +
@+ uP)u— (1 |V )P v =0, (3.33)

with W =0 on [0,+00)x0Q and W(0) =W, (0) =0 in Q. Taking the H —inner product of (3.33) with W, , one can
find that

1d
> eI+ 2VuDIVW T+ aw [+ v
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= ¢/ (VU ) (Vu, V)V + (@(Vul) - g(vv] D(av, w)
— (@ u )P u—= @+ V)P v, w). (3.34)
Here, we note that the first and second terms in the right-hand side of (3.34) are bounded by

¢’(||Vu||2)(Vu, th)||VW||2 < CGHVWHZ (3.35)

@AVl =7V DAV, w) < C;[Fv]fw| (3:36)
respectively. Making use of

H(l+ |u|2) Py — Q@A+ |v|2) Py

< Jau Pt w (@) = @+
<[ [u ) w (p-1)(@+ £ )" 240w
<[@uP)wr2(p -1+ o )" w]

<|@+1u Py wP+2(p-1)P(1+ | p[1)* W

< @p-12° |+ 2" Ju, =,

+@p-22"p -,

<(2p—1)2" !+ 2°*Co| VUl v

+(2p—2)2"C, Vo[ * [V (3.37)

where { =AU+ (1-0)v, 0<O<1, p=max{<{,Vv}. One can also find that the last term in the right-hand side of
(3.34) is bounded by

(A uP) P u— (2 V) v, w) < Cpo | Vnw | (3.38)

Hence, integrating (3.34) over (0,t), we get

o+ gvu v < C [V s, (3:39)
which, by Gronwall’s inequality, implies W= 0. This completes the proof of Theorem 2.2.

4 Bounded absorbing sets and Global attractor in X,

Lemma 4.1 BN The continuous semigroup S(t) defined on a Banach space X has a global attractor which is
connected when the following conditions are satisfied

1) There exists a bounded absorbing set B < X such that for any bounded set B, = X, dist(S(t)B,,B) —> 0 as
t — +o0.

2) S(t) can be decomposed as S(t) = P(t)+U(t), where P(t) is a continuous map from X to itself with the
property that, for any bounded set B, < X,

sup|P(t)d], >0, t— o, (4.1)
QEBO

and U (t) is precompact for t > T, for some T .

Proof of Theorem 2.3
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Proof. According to Theorem 2.2, we get

[au|® +[Vu, <CR,, t2T(|(up,u,)| «) (4.2)

(4.2) implies that the ball B(CR,) centered at zero with a radius ,/CR, in X is an absorbing set of S(t) . Moreover,
integrating (3.30) over (t,t+1), respectively, and exploiting (4.2), we have

t+1 2
J| Tau @) ds <C(lu,w, .| ). t>o. 4.3)
Decomposition of S(t): Let R >0 be given with ||(u0,u1)||X <R, we know from (3.31) and (4.2) that
1

Jw®.u O, <C.r t=0, @)

where and in the sequel

_[C(Hy(0)) 0<t<T(R),
12_{ JCR,  t>T(R). @9

Let us write now U =V 4+ W, where
W, +aw, — SAW, —gAW=0, w(0)=u;, W (0)=u,, (4.6)
V, +aV, — BAV, — AV = f +¢(||Vu||2)Au —(+|uP)* u =g,
v(0)=0, v,(0)=0. (4.7)

Lemma 4.2 1f (uy,u,) € B, (W, W,) is the solution of (4.6), then

ol +[vw" <rR@®). t=0, (4.8)
and
R(t) >0, as t—+wx. (4.9)
Where (=W, +&W, 0<g<m|n{— i —
42028
Proof. Let =W, +&w, 0< g < mln{— i ﬁ} then ( satisfies
q, + (@ —&)q+(* —ag)w— BAq— (¢, — Be)Aw = 0. (4.10)

Taking H —inner product by g in (4.10), we have

D162 + (@ )af + (62— ae)w.q)+ BIVa| + (- fe)(VW,VG)=0. (411

2 dt
Itis clear that
3
(=)ol =7 [alf, (" ~ae)w.a) =~ |vel - o, (4.12)
1d 2 2
(Vw, V@) == —|Vw|" +&|vw]". (4.13)
2 dt
So
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d 1
a[||q||2 + (¢ — Be) |V 1+ % lalf + &g, —2p¢ —E)”VW”Z +2p|vq|* <0. @14
Because of 0 < géi,we get 24 —Zﬁg—lZgé - pe,
23 ° 2 7

then by (H,) and gronwall’s inequality,

%(IIQIIQ +HVw) <ol + (= eV < (o] + (3 — BV e (4.15)

Lemma 4.2 is proven.

Lemma 4.3 1f (uy,u,) € B, (V,V,) is the solution of (4.7), then it exists compact set N(T) < X, and
(v,v,) e N(T). (4.16)

1
Proof. Applying A™(0 < o, = E) to both sides of (4.7), we have

S+ ad —PAS —gAS = AT, £(0)=0, £(0)=0, (4.17)
where &= AV Let n =& +& | then
1+ (a—e)n+(&* —ag)é — PAn— (g, — Pe)AS = Ao, (4.18)
Taking H —inner product by 1] in (4.18), we obtain
1d 1 o
Ea[llnll2 +(do - Be)VE[] +%||77||2 +&(¢y — Pe —Z)llvéll2 + VAl <(A"p,n). (4.19)
By the same argument of Theorem 2.2 we can obtain
|(A™ £, 1) < Coo((| £ B) +§||v 7l (4.20)
| (A" (V) Au), ) [< Cy (VU] )Au, AU, B) +§||v l’, (4.21)
(A (@ 1uP) i) < GVl /) +5 1V @22)

It follows from (4.19)-(4.22) that
d
G+ @ = N 1+ Nl + et~ pelV el + AVl

<Cyo(( [ 4(vu Jau]. B (4.23)
Then

H,(t)<H,0)e ™+ Cie (1-e™), (4.24)
&

where H, = ||77||2 + (4, —ﬂé‘)”Vf”z. since H,(0) =0, (4.24) means

C
H,O <=2 (1-e), t20, “29)
£
which implies
2 2
le, +&&|"+|ve| <Cpn (4.26)
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”(V v )” C17’ t>0, (4.27)

V2rdo,
for &= A"lv.

Since V2+4“1 XV“'% > X, is compact embedded, which means that the bounded set in V, ><V is the compact

+40
setin X, .
Lemma 4.3 is proved.

Define
P®)(U, ;) = (W(t), w, (1)), U (t)(uy,u;) = (v(t), v, (t)). (4.28)

Obviously, S(t)=P(t)+U(t). Lemma 3.1 shows that for any (U,,U,) € By < X,, the map P(t): X, > X, is
continuous and satisfies(4.1). Moreover, Lemma 3.2 shows that the map U(t) is precompact for t >0 for

V2+4‘71 XV4al > X;.So S(t) hasin X, aglobal attractor A which is connected.

This completes the proof of Theorem 2.3.

5 Acknowledfements

The authors express their sincere thanks to the anonymous reviewer for his/her careful reading of the paper, giving
valuable comments and suggestions.These cntributions greatly improved the paper.

References
1. Zhijian Yang; Na Feng and To Fu Ma,"Global attractor for the generalized double dispersion,"Nonlinear Analysis
115(2015)103-116.

2. lgor Chueshov,"Long-time dynamics of Kirchhoff wave models with strong nonlinear damping,"Journal of
Differential Equations 252(2012)1229-1262.

3. Tokio Matsuyama and Ryo lkehata,"On global solutions and energy decay for the wave equations of Kirchhoff
type with nonlinear damping terms,"Journal of Mathematical Analysis and Applications 204,729-753115(1996).

4. Cheng Jian ling and Yang Zhijian,"Asymptotic behavior of the Kirchhoff type equation,"Acta Mathematica Scientia
2011,31A(4):1008-1021.

N
5. Yang Zhijian,"Longtime behavior of the Kirchhoff type equation with strong damping on R ,"Journal of
Differential Equations 242(2007)269-286.

6. Zhijian Yang and Pengyan Ding,"Longtime dynamics of the Kirchhoff equation with strong damping and critical
nonlinearity on R" ,"J.Math.Anal.Appl.435(2016)1826-1851.

7. Claudianor O.Alves and Giovany M.Figueiredo,"Nonlinear perturbations of a periodic Kirchhoff equation in
R" ,"Nonlinear Analysis 75(2012)2750"C2759.

8. Yang Zhijian and Jin Baoxia,"Global attractor for a class of Kirchhoff models,"Journal of Mathematical Physics
50,032701(2009).

9. Penghui Lv; Ruijin Lou and Guoguang Lin,"Global attractor for a class of nonlinear generalized Kirchhoff-
Boussinesqg model,"International Journal of Modern Nonlinear Theory and Application,2016,5,82-92.

10. Ruijin Lou; Penghui Lv and Guoguang Lin,"Global Attractors for a Class of Generalized Nonlinear Kirchhoff-Sine-
Gordon Equation,"International Journal of Modern Nonlinear Theory and Application,2016,5,73-81.

11. Lin Guoguang,Nonlinear evolution equation,Yunnan University Press,2011.

6462 |Page council for Innovative Research
August 2016 , www.cirworld.com



