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ABSTRACT

Let R be a prime ring of characteristic different from 2, L a non-central Lie ideal of R, and M, N fixed positive integers.

m
If R admits a generalized derivation F associated with a deviation O such that (F (U)Z) —(F(U))zn € Z(R) for all

ue L, then R satisfies S4, the standard identity in four variables. Moreover, we also examine the case when R is

semiprime ring. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized
derivations on Banach algebras.
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Introduction, Notation, and Statements of the Results

Throughout this paper, unless specifically stated, R will be an associative ring, Z(R) the center of R, Q its Martindale

quotient ring and U its Utumi quotient ring. The center of U , denoted by C ,is called the extended centroid of R (we refer
the reader to [1], for the definitions and related properties of these objects). Recall that a ring R is prime if for any &, beR ,

aRb = (0) implies @ = 0 or b=0, and is semiprime if for any a€ R, aRa= (0) implies a = 0. An additive
subgroup L of R is said to be a Lie ideal if [|,I’] el forall leLlL and reR. A Lie ideal L is said to be
non-commutative if [L, L] #0. Let L be a non-commutative Lie ideal of R . It is well known that [R[L, L]R, R] clL
(see the proof of [12, Lemma 1.3]). Since [L, L] #0 , we have 0+ [| , R] (- L for | = R[L, L]R a nonzero ideal of L .
An additive mapping 0 iR — R s called a derivation if d(xy) = d(x)y+ xd(y) holds for all X, Y € R . In particular,
d s an inner derivation induced by an element & € R, if |a(X) = [a, X] forall X € R. Many results in literature indicate

that the global structure of a ring R s often tightly connected to the behaviour of additive mappings defined on R . Derivation
with certain properties investigated in various paper (see for reference [2],[8] and [26]). Starting from these results, many author

studied generalized derivation in the context of prime and semiprime rings. By a generalized inner derivation on R, one usually
means an additive mapping F:R>R i F(X) =ax+Xxb for fixed a, beR .Forasucha mapping F , itis easy to see

that F(xy) = F(x)y+x[y, b] - F(x)y+x|b(y). This observation leads to the definition given in [4] : an additive
mapping F 1R — R s called generalized derivation associated with a derivation d if F(Xy) 3 F(X)y+ xd (y) for all
X, Y€ R . Familiar examples of generalized derivation are derivations and generalized inner derivations, and the later includes left
multipliers (i.e., an additive mapping f (Xy) =f (X)y for all X,y € R). Since the sum of two generalized derivations is a
generalized derivation, every map of the form F(X) =CX +d(X) is a generalized derivation, where C is a fixed element of
R and d isaderivationof R.

In [14], Hvala studied generalized derivations in the context of algebras on certain norm spaces. In [20], Lee extended the definition
of a generalized derivation as follows: by a generalized derivation we mean an additive mapping F:l >U such that
F(xy) = F(x)y+ xd (y) holds for all X, Y € |, where | is a dense right ideal of R and d is a derivation from |

into U . Moreover, Lee also proved that every generalized derivation can be uniquely extended to a generalized derivation on U ,
and thus all generalized derivations of R will be implicitly assumed to be defined on the derivation F on dense right ideal of
R can be uniquely extended to U and assumes the form F(X) =ax+d (X) forsome @ €U and a derivation d on

U (see Theorem 3, in [20]). More related results about generalized derivations can be found [10] and [27].
In [8], Daif and Bell showed that if in a semiprime ring R there exists a nonzero ideal | of R and a derivation d such that
d([X, y]) 3 [X, y] for all X,y el, then | Z(R). At this point the natural question is what happens in case the

derivation is replaced by a generalized derivation. In [27], Quadri et all. proved that if R isa prime ring, | a nonzero ideal of
R and F a generalized derivation associated with a nonzero derivation O such that F([X, y]) = [X, )/] for all

X,y e | , then R is commutative. Also in [13] Huang and Davvaz prove the result if R bea prime ring and M, N fixed
positive integers. If R admits a generalized derivation F associated with a nonzero derivation d such that
(F([X, y]))m = [X, y]n forall X,Y € R, then R is commutative. The present paper is motivated by the previous results

and we here continue this line of investigation by examining what happens a ring R ( or an algebra A ) satisfies the identity
2\ _ 2n

(FW?)" =(Fu)"

Explicitly we shall prove the following theorem.

Theorem 1.1 let R bea prime ring of characteristic different from 2, L anon-central Lie ideal of R and m, N fixed

positive integers. If R admits a generalized derivation F associated with a nonzero derivation d such that

(F(U)z)m :(F(U))Zn forall U€ L, then R iscommutative.

Theorem 1.2 Let R be a prime ring of characteristic different from 2 with center Z(R) , L anon-central Lieideal of R

and M, N are fixed positive integers. If R admits a generalized derivation F associated with a nonzero derivation O such

m
that (F(U)z) —(F(U))Zn EZ(R) forall U€ L .Then R satisfies S, the standard identity in four variables.
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Theorem 1.3 Let R be a semiprime ring of characteristic different from 2, and M, N fixed positive integers. If R admits

m 2
a generalized derivation F  associated with a nonzero derivation 0 such that (F (r)z) = (F(r)) " forall reR , then
there exists a central idempotent element € in U such that on the direct sum decomposition R =eU @(1—8)U , d

vanishes identically on €U and the ring (1—E)U is commutative.
Theorem 1.4 Let R be a semiprime ring of characteristic different from 2, and M, N fixed positive integers. If R admits

m 2
a generalized derivation F associated with a nonzero derivation O such that (F(I’)Z) —(F(I’)) " EZ(R) for all

e R, then there exists a central idempotent element € in U such that on the direct sum decomposition

R=eU @(l—E)U , d vanishes identically on €U and the ring (1—e)U satisfies S,, the standard identity in four
variables.

In the last section of this paper we will consider A as a Banach algebra with Jacobson radical rad (A) and let O be a

generalized derivation on A . The classical result of Singer and Wermer in [29], says that any continuous derivation on a
commutative Banach algebra has the range in the Jacobson radical of the algebra. Singer and Wermer also formulated the conjecture
that the continuity assumption can be removed. In 1988 Thomas verified this conjecture [30]. It is clear that the same result of Singer
and Wermer does not hold in non-commutative Banach algebras (because of inner derivations). Hence in this context a very
interesting question is how to obtain the non-commutative version of the Singer-Wermer theorem. A first answer to this problem
was obtained by Sinclair in [28]. He proved that every continuous derivation of a Banach algebra leaves primitive ideals of the
algebra invariant. Since then many authors obtained more information about derivations satisfying certain suitable conditions in
Banach algebras.

In [23], Mathieu and Murphy proved the result that if d is a continuous derivation on an arbitrary Banach algebra such that
[d (r), r] € Z(A) forall €A, then 0 maps into the radical. Later in [24], Mathieu and Runde removed the continuity
assumption using the classical result of Posner’s on centralizing derivations of prime rings in [26], and Thomas’s theorem in [30]: they
showed that if O is a derivation which satisfies [d (I’), r] S Z(A) forall ¥ €A, then O hasits range in the radical of the
algebra. More recently in [25], Park proves that if d is a derivation of a non-commutative Banach algebra A such that
[[d(x), X], d (X)] erad(A) forall X€ A, thenagain d mapsinto Fad(A). n [10], Filippis extended the Park’s result
to the generalized derivation. In the meanwhile many authors obtained more information about derivations satisfying certain
suitable conditions in Banach algebra. For example, in [31], Vukman proved that if d s a linear derivation of a non-commutative
semisimple Banach algebra A such that [d (X), X]d (X) =0 forall X€A, then d =0. Also in [13], Huang and Dawvaz
obtain a range inclusion result for continuous generalized derivation.

Here we will continue the investigation about the relationship between the structure of an algebra A and the behaviour of

generalized derivations defined on A . Then we apply our first result on prime rings to the study of analogous conditions for
continuous or spectrally bounded generalized derivations on Banach algebras.

More precisely, we will prove the following:

Theorem 1.5 Let A be a non-commutative Banach algebra of characteristic different from 2, and M, N are fixed positive

integers. Let 5(I’) = La +d a continuous generalized derivation of A for some element @ € A and some derivation d
m 2

on At (5(r)2)" =(8(r)/" erad(A) foral reA, then d(A)C rad(A).

Theorem 1.6 Let A be a non-commutative Banach algebra of characteristic different from 2 with Jacobson radical

rad(A), and M, N are fixed positive integers. Let o= La +d bea spectrally bounded generalized derivation of A,

where La denote the left multiplication by some element acA and d is a derivation of A . If

m 2
(5(r)2) —(5(n)" erad(A) foral re A, then d(A)crad(A).
2 The result in Prime Rings
Some well-known results are necessary in an arguments, so for convenience of reference we record as a facts:

Fact 2.1 () If | isa two-sided ideal of R,then R, | and U satisfies the same generalized polynomial identities with

coefficientin U .

Fact 2.2 ([Proposition 2.5.1]BM) Every derivation 0 of R can be uniquely extended to a derivation of U .
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Fact 2.3 () Let R be a prime ring, d a nonzero derivation of R and | a nonzero two-sided ideal of R . Let
f(x REED ,d ) IRRED be a differential identity in | , thatis
1 n 1 n

f(r,---r,d(r), - d(r))=0foralr,---,r 1.

One of the following holds:

1. Either d is an inner derivation in Q , the Martindale quotient ring of R , in the sense that there exists q € Q such that
d=ad (CI) and d (X) =ad (Q)(X) = [q, X] ,forall X€R,and | satisfies the generalized polynomial identity

f(r,--r.lanl--[qr])=0;
2. or | satisfies the generalized polynomial identity
f(xl’...’xn’yl’...,yn) =0.
Fact 2.4 Let R be a prime ring and L a non-central Lie ideal of R . If char(R) # 2, by [3, Lemma 1] there exits a
nonzero ideal | of R such that O#[I,R]c L. f char(R)=2 and dim.RC >4, ie, char(R)=2 or R
does not satisfy S4, then by [19, Theorem 13] there exits a nonzero ideal | of R such that 0-¢[| s R] c L. Thus if
char(R) #2 or R does not satisfy S,, then we may conclude that there exits a nonzero ideal I of R such that
[| ) |] c L.in particular, if R isa simple ring it follows that [R, R] c L.
With these lemmas to draw on we are now in a position to prove the main result of this section:

Theorem 2.1 Let R be a prime ring of characteristic different from 2, L anon-central Lie ideal of R and m, N fixed

positive integers. If R admits a generalized derivation F  associated with a nonzero derivation d such that

(F(U)z)m :(F(U))Zn forall U€ L, then R iscommutative.

Proof. since R isa prime ring and F isa generalized derivation of R, by theorem 3 in [20], every generalized derivation
F on a dense right ideal of R can be uniquely extended to the Utumi quotient ring U of R and thus we can think of any
generalized derivation of R to be defined on the whole U and of the form F(X) =ax+d (X) forsome a€U anda

derivation d on U . Since char(R) #2 and L is non-central Lie ideal, by a result of Herstein [12], [| , R] cL for
some | #0 anideal of R , and also L is not commutative. Therefore we will assume that without loss of generality that

L= [|, I]g L (see Fact 2.4). It follows that (F(U)Z)m = (F(U))Zn forall Ue [| ) |] Moreover, by T. K. Lee [20], R

and | satisfy the same differential polynomial identities, that is (F(U)Z)m = (F(U))Zn forall Ue€e [R, R]. By assumption
R satisfies the differential identity,

(@[x, yl+d([x, yD)*™" = (@[x, yI* +d([x, yDIx, yl+[x, yld([x, y])"

(alx, Y1+[d (0, I+ [x dW)" = (alx, yI* +[d(x), YI[x, I+ [x, d ()][x, V]
+[x YI[d (%), 1+ [x, yIIx d(y)D)",

forall X,Y € R . Now by Kharchenko’s theorem [17], we divide the proof into two cases:

if d s Q—outer,then R satisfies the polynomial identity

(@[x, yI* +[s, yI[x, Y1+ [x,t10x, y1+[x, YIS, y1+[x, y1[x, t])"
= (a[x, y]+[s, y]+[x, t])*" forall x,y,s,t € R.

In particular, for Y = 0, R satisfies the blended component [X,'[]2n =0 for all s, te R , and R is commutative by
Herstein [11, Theorem 2].

Let O is Q -innerinduced by an element g€ Q, thatis, d (X) = [q, X] forall X € R. It follows that,
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(alx, yI* +[[a, x1, yI[x, y1+[x[a, yII[x, yI+[x, yII[a, X1, y1+[x, y1[x,[q, yID"
= (alx, y1+[[a, x1, y1+[x,[q, yI)*" forall x,y e R.

By Chuang [6, Theorem 2], R and Q satisfy same generalized polynomial identities (GPIs), we have

m

(alx, yI* +[[a, x1, yI[x, y1+[x[a, yII[x, yI+[x, y1l[a, X1, y1+[x, y1[x.[a, y1I)
= (alx, y1+[[a, x1, y1+[x,[q, yI)*" forall x, y € Q.

In case the center C of Q is infinite, we have

m

(alx, yI* +I[a, x1, yI[x, y1+Ix.[a, yII[x, y1+[x, Y1, X1, y1+[x, y1[x. [a, 1)

= (a[x, yl+I[q, x], yl+[x,[a, y]))*" forall X,y e Q®, C,

where C s algebraic closure of C . Since both Q and Q®c C are prime and centrally closed [9, Theorem 2.5 and

Theorem 3.5], we may replace R by Q or Q ®c C according as C s finite or infinite. Thus we may assume that R is

centrally closed over C (i.e., RC = R) which is either finite or algebraically closed and

(@x, yI* +I[a, 1, y1[x, y1+Ix.[a, yII[x, y1+[x, Y1, X1, y1+[x, y1[x.[a, yI)"
= (a[x, yl+[la, X1, y1+[x.[a, y11)*" forall x, y € R.

By Martindale [22, Theorem 3], RC (and so R) is a primitive ring having nonzero socle H with D as the associated
division ring. Hence by Jacobson’s theorem [15, p.75], R is isomorphic to a dense ring of linear transformations of some vector

space V. over D and H consists of the finite rank linear transformations in R . If V s a finite dimensional over D .
Then the density of R on V impliesthat R = Mk(C) , where K = dimDV .

Suppose that dimDV > 3. First of all, we want to show that V and QV are linearly D -dependent for all V eVv. Suppose
on contrary that V and QV are linearly D -independent for some V eV . since dimDV >3, then there exists WeV
such that V,(QV,W are also D -independent. By the density of R, there exist X, VS R such that:

xv =0,xqv =w,xw =0,
w=0,yqgv=0,yw=v.
This implies that

v = (alx, yI* +I[a, X1, YI[x, y1+[x.[a, Y[, Y1+ [, y1iia. X1, yI+[x, y1[x.[a, yI)™v
= (a[x, yl+I[[a, 1, y1+[x.[a, yID*"v =0,

a contradiction. So we conclude that {V, QV} are linearly D -dependent forall VeV .

Now we show here that there exists & € D such that Qv =V, for any V eV. In fact, choose V,WEV
linearly D -independent. Since dimDV >3, there exists U €V such that V,W, U are linearly D -independent. It follows

that, there exist &, Q,, &, € D suchthat
Qv=va,, QW =Ww¢,,qu = U,

that is ((V+W+U) =V, +We, +Ua, . Moreover ((V+W+U)=(V+W+U)e,

viwsu ¢ fOr a suitable

a e D. Then

V+W+U
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0= V(av+w+u - av) + W(av+w+u - aw) +u (av+w+u —Q, )’

and, because V, W, U are linearly independent, @, = &, = &, = Q, thatis, & does not depend on the choice of V.

w V+W+U 7

Sothere exists @ € D such that gv=aoV forall V €V . Thus we write gQv=Va forall V eV.

Nowfor e R,veV .since Qv =Va wehave

[q,r]v=(ar)v—(rg)v = q(rv) —r(qv) = (rV)a-r(va) =0,
that is [q, R]V =0.since V isa left faithful irreducible R -module, hence [q, R] =0 ,ie, Q€ Z(R) andso d = 0,

a contradiction.

Suppose now that dimDV <2.1In this case R is a simple GPl-ring with 1, and so it is a central simple algebra finite
dimensional over its center. By Lanski [18, Lemma 2], it follows that there exists a suitable filed F suchthat R c M K (F) , the
ring of all k xK matrices over F , and moreover, M K (F) satisfies the same GPlas R . Assume K > 3, then by the same

argument as above we can get a contradiction. Obviously if k= 1, then R is commutative. Thus we may assume that k = 2,

e, Rc MZ(F) , Where Mz(F) satisfies
(@lx, yI* +[[a. 1, yI[x, yI+[x[a, y1I[x, y1+[x, yIla, ], yI+[x, ylix[g, yID™
= (alx, Y1 +[[a,x], y1+[x[a, yID)*"

Denote by €; the wusual wunit matrix with 18¥in (I, j) -entry and zero elsewhere. Since for any
X,y € M,(F),([x,Y])> € Z(M,(F)) . tet [x,y]=[e,,€,,]=€,. Then (F[X,y])*" =0 ;n>1. That i,
0= (a[x, y] +[[q, X], y1+[x[q, y]])z" ,forall X, Y € R, right multiplying by €,,, one can get 0= (812C])2n812. Now

2n

Ghs G2 q

set (= (q ). By calculation, we can have (] = ( 81) which implies that (,; = 0. In the same manner, by
21 M22

choosing X=6,;,Y =€, weprovethat (;, = 0.

Thus we conclude that (] is a diagonal matrixin MZ(F) et fe AU'[(MZ(F)) . Since

(F@LE), fOMIF + [[f (@), F O FWILT(X), T (1+0F(x),[F (@), T I (X), T (y)]
+LF (), FDILE (@), FOAL F (WI+LF(X), £ WMILE (). L (@), f (Y)ID"
= (F@LF ), FOMI+IIT @), FOL FI+IF),[F (@), F()ID™

So, f(C]) must be diagonal matrix in Mz(F) . In particular, let f(X) = (1—eij)x(1+ eij) for 1# ] . Then
f(9)=q +(qii —0j )eij ,thatis (; =(Qj; for I # ]. This implies that g iscentral in Mz(F) , which leadsto d =0
contradiction, this completes the proof of the theorem.

We prove our next theorem for central case:

Theorem 2.2 Let R be a prime ring of characteristic different from 2 with center Z(R), and M, N are fixed positive

integers, L a non-central Lie ideal of R.1f R admits a generalized derivation F associated with a nonzero derivation d

m 2
such that (F (U)Z) —(F(U)) "e Z(R) forall U€L.Then R satisfies S, the standard identity in four variables.

Proof. On contrary suppose that R does not satisfy S, . Then by Fact 2.4, there exists an ideal 0= [| s |] c L.tet J be
any nonzero two-sided ideal of R . Then wee see V = [| ,J 2] c L is a non-central Lie ideal of R . If for each U€V .
(F (U)Z)m —(F(U))zn =0 , then by Theorem 21, O =0 a contradiction. Hence for some U€V ,
0= (F(U)z)m —(F(U))Zn elJ ﬁZ(R) . Since F(V) cJ . Thus J ﬁZ(R) #0.Nowlet K be anonzero two-sided
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ideal of RZ , the ring of central quotients of R .Since K MR is a nonzero two-sided ideal of R, (K M R) F\Z(R) #0.

Therefore, K contain an invertible element in RZ and so RZ is a simple ring with identity 1.
Moreover, without loss of generality, we may assume that L= [| , |]. Forany X,Y € l,
@[x, yI’ +d(x yDIx, y1+[x yld ([ yD)™ - (a[x, y]+d([x y]))*" € Z(R).
Thus | satisfies the generalized differential identity
[@lx, yI* +d([x, yDIx, yI+[x yld ([x, y])" (@ x, y]+d([x, y1)*",w] = 0 (1)
since | and Q satisfy the same differential identities, we may assume that Q satisfies (1). Now consider two cases.

Casel. if d isnot Q -inner derivation of R . By Kharchenko’s theorem [17], Q satisfies the same polynomial identity,

[@[x, yI* +[s, YI[x, Y1+Dx 0% Y1+ %, YILS, Y1+ [x ylIx, )™ = (@lx, y1+[s, y1+[x,t])*", w] = 0.
This is a polynomial identity and hence there exists a field F such that Q c Mk(F) with K >1 and Q, Mk(F)
satisfy the same polynomial identity [18]. If k>2 , then by choosing X =8€,,,Y = 0,t= €,,,W=€; onecan get,

0 = [(@[x, yI* +[s, yI[x, y1+I[x t1[x, y1+[x, y1[s, y1+[x, yI[x, tD)"
—(@alx, yl+I[s, yl+[x thH*", w]
= —eg,,, acontradiction.

Case2. Let d bea Q -inner derivation of R . In this case there exists € Q suchthat d(X)=[q,X] foral XeR
. Then by (1) we have

[@lx, y)* +I[a, x], yI[x, y1+[x, [, y1IIx, y1+[x, yIIla, X1, y1+ [, y1[x, [a, yII)"
—(a[X, y]+[[q1 X]’ y]+[X,[q, y]])Zn’W] = O:

for all x,yel and We R.ByChuang [6], Q satisfy (2). By localizing R at Z(R) it follows that

(@[x,yI* + [a,x], yIIx, yI+[x.[a, yIIIx, y1+[x, yIIa, X1, yI+[x, yl[x, [, y1)"
= (alx yl+[[a, X1, ylI+[x.[a, yI)*" € Z(R,) forall x, y € R,

(2)

Since R and Rz satisfy the same polynomial identities, by our assumption, we have that Rz does not satisfy S,. Thus
replacing R with RZ , we may assume that R is a simple ring with 1 and [R, R] C L. By Martindale theorem [22], R
is a primitive ring with minimal right ideal, whose commuting ring D is a division ring which is finite dimensional over Z(R)

However, since R isa simple with 1, R must be Artinian. Hence R= DS, the SXS matricesover D, forsome S2 1.

By [18], there exists a field F such that R - Mk(F), the ring of K xK matrices over field F , with k >1, and
M K (F) satisfies (2) that is,

@[x, y¥ + [[a,x], yI[x, y1+[x[a, yII[x, y1+[x, y10a, X1, y1+[x, yIx[a, yI)"
— (alx, y1+[[a, X1, yI+[x[a, yI)* € Z(M, (F)) = F.I,.e Z(R,).

if K>2,now let g= (qij)kxk . By assumption, forevery X,y €R,

@lx y* + [a,x], yl[x, y1+[x[a, yIIIx, y1+[x, yII[a, x1, y1+[x, y1Ix.[q, yID"
— (a[x, y+[[a,x], y]+[x,[q, y])*" iszeroorinvertible.

We choose x=eij,y=ejj for any i# j Then by solving above and right multiplying by eij , one can get

0= (eijq)zn eij = qﬁ”eji implying qij =0. Thus for any | # j, qij =0 thatis g is diagonal. Now set (] = aneﬁ

3954 |Page July 31, 2015



L& ISSN 2347-1921

with Q; € F . For any automorphism f of R , we have

(F@LF ), TN+ [ (@), FOOL FIILE ), FI+LF ()L (@), FWDIILE (), f(¥)]
+ [F00, FWILLE (@), £ 0L, FNI+LF O, FNILE (X)L F (@), £ (NID™
= (F@Lf (), FWI+ILT @), F OO FWI+IF(x),[F (@), F()ID™

is zero or invertible, for every X,Y € R. By above argument f (C]) must be diagonal. Therefore for each _| * i, we have
k
f(q)=(1+ eij)q(l—eij) = Zizl iCii +(qjj —q”)eij is diagonal. Therefore (j = (J; and so (&€ F.'k , and hence
d= 0, which is a contradiction. With this completes the proof of the theorem.
We immediately get the following corollaries from the above theorems:
Corollary 2.1 Let R be a prime ring of characteristic different from 2, and M, N fixed positive integers. If R admits a
ul 2

generalized derivation F associated with a nonzero derivation 0 such that (F (r)z) = (F(I")) : forall reR , then
R is commutative.

Corollary 2.2 Let R be a prime ring of characteristic different from 2 with center Z(R), and M, N are fixed positive

integers. If R admits a generalized derivation F  associated with a nonzero derivation d such that

(F(r))z)m —(F(r))Z” €Z(R) forall reR.Then R satisfies S, the standard identity in four variables.

The following example demonstrates that R tobe prime is essential in the hypothesis.

a b 0 a
Example 2.1 Let S beanyringand R :{(0 O) :a,beS} andlet L= {(0 0) :a€ S} be a nonzero ideal of R

and we define a map F:R—>R by F(X) = 2611X—X611. Then it is easy to see that F is a generalized derivation

associated with a nonzero derivation d(X) = €,X—X€, and L isa Lieideal. It is straightforward to check that F satisfies

the properties, (F(U)z)m = (F(U))Zn for U € L .However, R isnot commutative.

3 The result in Semiprime Rings

In all that follows R will be semiprime ring, U s the left Utumi quotient ring of R . For developing the proof of the main
theorem we require the following facts:

Fact 3.1 ([Proposition~2.5.1]BM) Any derivation of a semiprime ring R can be uniquely extended to a derivation of its

left Utumi quotient ring U, andso any derivation of R can be defined on the whole U.

Fact 3.2 ([p-38]C1) If R issemiprime then so is its left Utumi quotient ring. The extended centroid C of a semiprime ring
coincides with the center of its left Utumi quotient ring.

Fact 3.3 ([p-42]C1) Let B be the set of all the idempotents in C, the extended centroid of R . Assume R isa B
-algebra orthogonal complete. For any maximal ideal P of B, PR forms a minimal prime ideal of R, which is invariant
under any derivation of R ..

Fact3.4() i | isatwo-sidedidealof R,then R, | and U satisfies the same generalized polynomial identities.

We refer the reader to [1, Chapter 7], for a complete and detailed description of the theory of generalized polynomial
identities involving derivations.

We will prove the following:

Theorem 3.1 Let R be a semiprime ring of characteristic different from 2, and M, N fixed positive integers. If R

m 2
admits a generalized derivation F  associated with a nonzero derivation d such that (F(r)z) = (F(r)) " forall reR
, then there exists a central idempotent element € in U such that on the direct sum decomposition R=eU® (1—E)U )

d vanishes identicallyon €U and the ring (1—e)U is commutative.
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Proof. Since R s semiprime and F is a generalized derivation of R , by Lee [20, Theorem 3],
F(x):ax+d(x) for  some aeU and a  derivation d on U . we are given that

(ar2 +d(r)r+ rd(r))m —(ar +d(r))2" =0 forall reR.ByFact3.2, Z(U)=C, the extended centroid of R,
and by Fact 3.1, the derivation d can be uniquely extended on u. By Lee [21, Theorem 3], R and U satisfy the same
differential identities. Then (arz +d(r)r+rd(r))m —(ar+d(r))2“ =0 for all reU . Let B be the complete
Boolean algebra of idempotents in C and M be any maximal ideal of B . By Chuang [7, p.42], U is orthogonal complete
B -algebra, and by Fact 3.3, MU isa prime ideal of U, which is d -invariant. Let C_i be the derivation induced by d on
U=UMU, ie, du)=d(u) for all UeU . for al T,eU, (@r +d(r)r+rd(r)" —(ar+d(r)>. i is
obvious that U is prime. Therefore, by Corollary 2.1, we have either U is commutative or a =0 , that is either
d(U) c MU or [U ,U] < MU . Hence d(U)[U,U] c MU , where MU runs over all prime ideals of U . since
ﬂMMU =0, we obtain d(U)[U,U] =0.

By using the theory of orthogonal completion for semiprime rings [1, Chapter 3], it is clear that there exists a central idempotent
element € in U such that on the direct sum decomposition R =eU @(1—E)U , 0 vanishes identically on €U and
the ring (1— e)U is commutative. With this completes the proof.

We come now to our last result of this section:

Theorem 3.2 Let R be a semiprime ring of characteristic different from 2 with center Z(R), and M, N fixed positive
integers. If R admits a generalized derivation F  associated with a nonzero derivation d such that
(F(I’)z)m —(F(I’))zn E Z(R) for all I € R, then there exists a central idempotent element € in U such that on the
direct sum decomposition R =eU @ (1—8)U , d vanishes identicallyon €U andthering (1—€)U is satisfies Sy

Proof. Since R is semiprime and F isa generalized derivation of R, by Lee [20, Theorem 3], F(X) = ax+d(x) for
some @€U andaderivation d on U . We are given that (ar2 + d(r)r + rd(r))”‘ —(ar +d (r))2" E Z(R) for all
reR. By Fact 3.2, Z (U) =G , the extended centroid of R , and by Fact 3.1, the derivation d canbe uniquely extended on
U . 1t follows from Lee [21, Theorem 3], R and U satisfy the same differential identities. Then
(aI‘2 it d(r)r + rd(r))m —(ar +d (r))Z” €C forall F€U .Let B be the complete Boolean algebra of idempotents in
C and M be any maximal ideal of B.As already pointed out in the proof of Theorem 3.1, U isa B -algebra orthogonal
complete and by Fact 3.3, MU is a prime ideal of U, which is d -invariant. Let a is the derivation induced by d on
U =U/MU . Since Z(U) =(C+MU)/MU =CIMU , then
(ar2 +d(r)r+ rd(r))”‘ —(ar+d(r))2“ e(C+MU)/MU , for all 1 EL_J. Moreover U is prime, hence we may
conclude, by Corollary 2.2, either U satisfies S4 or a =0 in U This implies that, for any maximal ideal M of B ,
either d(U) C MU or S4(X1, X5, X3, X4) C MU , for all X1 X5y X3, %4 eU . n any case
d (U )84(Xl, X, Xgy X4) C ﬂMMU =0. From [1, Chapter 3], there exists a central idempotent element € of U, the left
Utumi quotient ring of R, such that on the direct sum decomposition R =eU @(1—€)U , d(EU) =0 and the ring
(1—e)U is satisfies S, . This completes the proof of the theorem.

4 Applications on Banach algebras

This section deals with applications of our main result. Let us introduce some well known and elementary definitions for the sake of

completeness. Here A will denote a complex Banach algebra and O bea generalized derivation on A.

By Banach algebra we shall mean that complex normed algebra A whose underlying vector space is a Banach space. The Jacobson

radical rad (A) of A s the intersection of all primitive ideals. If the Jacobson radical reduces to the zero element, A s
called semisimple. In fact any Banach algebra A without a unity can be embedded into a unital Banach algebra Al =A®C

as an ideal of codimension one. In particular, we may identify A with the ideal {(X,O) X€E A} in Al via the isometric
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isomorphism X — (X,O) .

In this section we apply the purely algebraic results which is obtained in section 2 and obtain the conditions that every continuous
derivation on a Banach algebra maps into the radical. The proofs of the results rely on a Sinclair’s theorem [28] which States that

every continuous derivation d of a Banach algebra A leaves the primitive ideals of A invariant. As we have mentioned
before, Thomas [30], has generalized the Singer-Wermer theorem by proving that any derivation on a commutative Banach algebra
maps the algebra into its radical. This result leads to the question whether the theorem can be prove without any commutativity
assumption. There are many papers that the theorem holds without commutativity assumption [22, 23, 28].

We also obtain that every derivation maps into its radical with some property, but without any commutativity assumption.
Derivations may serve as the generators of reversible evolutions of a physical system, say, if this is modelled by a Banach algebra.
Not only historically, this point of view gave a strong impetus to the investigation of derivations and of how their properties relate to
the structure of Banach algebras.

Our first result in this section concerns continuous generalized derivations on Banach algebras:
Theorem 4.1 Let A be anon-commutative Banach algebra of characteristic different from 2, and M, N are fixed positive

integers. Let 5(I’) = La +d a continuous generalized derivation of A for some element @ € A and some derivation d

on A.If (5(r)2)”‘ —(5(['))2" € rad(A) forall I € A, then d(A) c rad(A).

Proof. Under the assumption that O is continuous, and since it is well known that the left multiplication map is also continuous,
we have that the derivation 0 is continuous. In [28], Sinclair proved that any continuous derivation of a Banach algebra leaves the
primitive ideals invariant. Therefore, for any primitive ideal P of A, itis follows that 5(P) c aP+d (P) c P. it means

that the continuous generalized derivation O leaves the primitive ideals invariant. Hence we can introduced the generalized
derivation 5P K—)K by §P(F) = §P(r+P)g&P(r)+Pgar+d(r)+Pgar+P for al reA and
F: r+P , where A/P = K is a factor Banach algebra, for any primitive ideals P . Moreover, by
(5(r)2)”‘ —(5(r))2" erad(A) foral reA, it follows that (5('_,)2)m _(5(F)2n = 6 for all FE K Since K is

primitive, a fortiori it is prime. Thus by Corollary 2.1, it is immediate that either A is commutative or d = 0; that is,

[A,A]QP or d(A)gP.

Now let P be a primitive ideal such that A is commutative. Singer and Wermer in [29], proved that any continuous linear
derivation on a commutative Banach algebra maps the algebra into its radical. Moreover, by a result of Johnson and Sinclair [16], any
linear derivation on a semisimple Banach algebra is continuous. Hence there are no nonzero linear continuous derivations on

commutative semisimple Banach algebras. Therefore d =0 in A .Hencein any case we get d (A) = P forall primitive ideal

P of A .Sinceradical rad (A) of A isthe intersection of all primitive ideals, we get the required conclusion.

In order to prove our next theorem we will use the following well-known result concerning semisimple Banach algebra contained in
[16].

Remark 4.1 In [16], Johnson and Sinclair shown that every derivation on a semisimple Banach algebra is continuous. Then every
derivation on a simple Banach algebra leaves the primitive ideals of the algebra invariant. Also, since any left multiplication map is

continuous, so O s continuous. Since A s semisimple, so, rad (A) =0.

In view of the Remark 4.1, and Theorem 4.1, we may prove the following theorem in the special case when A isa semisimple
Banach algebra.

Theorem 4.2 Let A be a non-commutative semisimple Banach algebra of characteristic different from 2, and M,N are

fixed positive integers. Let 5(!’) = La +d be a continuous generalized derivation of A forsomeelement & €A and some
derivation d on A .If (5(|’)2)m —(5(!’))2n € rad(A) forall e A, then d(A) =0.

Proof. The proof goes through in the same way as the proof of Theorem 4.1 with the only exception that at the beginning of the
proof one has to use the fact that any linear derivation on a semisimple Banach algebra is continuous and by using Remark 4.1 we
omit the proof for brevity.

5 Spectrally boundedness of Generalized derivations

In [5, Theorem 2.8], Bre § ar and Mathieu obtained a necessary and sufficient condition for a generalized derivation to be spectrally
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bounded on a unital Banach algebra. Here o= La +d will denote spectrally bounded generalized derivation. Let us introduce

some well known and elementary definitions for the sake of completeness.

Alinear mapping & on A issaidtobea generalized derivation if

S(xyz) = 6(xy)z—x5(y) +xo(yz), forall X, y,z € A. 3)

In the application such operators correspond to irreversible dynamics while derivations generate reversible ones. Put a = 5(1) .
Using (3), it is easily computed that d (X) = 5(X) —aX, forall Xe& A defines a derivation on A . Hence, every generalized
derivation O is of the form O = La +d with a= 5(1) and d a derivation, and every generalized iNner derivation is

given by Lé1 +db =L

a

T Rb (here, |_a and Rb denote the left and right multiplication by @ and b , respectively). A

spectrally bounded generalized derivation need not map into radical, but if it is inner, both its constituents L. and db have to

a
be spectrally bounded.

The last result of this paper has the same behaviour as the Theorem 4.1. We now turn our attention to the spectrally bounded
generalized derivations. In order to prove our main theorem of this section we will use some results concerning spectrally bounded
derivations and generalized derivations, more precisely, we need the following:

Lemma 5.1 ([Theorem 2.5]B1) Every spectrally bounded derivation on a unital Banach algebra maps the algebra into the
radical.

Lemma 5.2 ([Lemma 2.7]B1) Every spectrally bounded generalized derivation leaves each primitive ideal invariant.

Lemma 5.3 ([Theorem 2.8]B1) Let O =L, +d beageneralized derivation on a unital Banach algebra A, where L,
is the left multiplication (by the element @) map and d some derivation of A .Then O s spectrally bounded if and only if

both La and d are spectrally bounded.

We close this section with the theorem given below. The motivation comes from the various results already mention in the
introduction; the reader will notice that virtually the same proof can be used. Adapting the proof of the Theorem 4.1 we finally prove

the following result to spectrally bounded generalized derivations.

Theorem 5.1 Let A be a non-commutative Banach algebra of characteristic different from 2 with Jacobson radical
rad(A), and M, N are fixed positive integers. Let o= La +d bea spectrally bounded generalized derivation of A,

o denote the left multiplication by some element acA and d is a derivation of A . If

(8(r)2 ) =(5(r)*" erad(A) forall T €A, then d(A)C rad(A).

where L

Proof. Since O is spectrally bounded, by Lemma 5.3, |_a and d are spectrally bounded. Combining this with Lemma 5.2 we
have that d(A) c rad (A) In [28], Sinclair proved that any continuous derivation of a Banach algebra leaves the primitive
ideals invariant. Hence, for any primitive ideal P of A, it is obvious that 5(P) gP . It means that the continuous

generalized derivation O leaves the primitive ideals invariant. Thus we can define the generalized derivation 5,3 ZZ —> Z by
5.1 =8,(r+P) =8,(r)+Pcar+d(r)+Pcar+P for al FeA, where AIP=A s a factor Banach
algebra. Since P is a primitive ideal, the factor algebra K is primitive and so it is prime. The hypothesis
(5(r)2)m —(5(['))2” erad (A) yields that (5(F)2)m - (5(?))2n = 6 for all F € K By Corollary 2.1, it is immediate
that either K is commutative or a = 6; that is, [A, A] cP ord (A) < P. Now we assume that P is a primitive ideal

such that A is commutative. In [29], Singer and Werner proved that any continuous linear derivation on a commutative Banach
algebra maps the algebra into the radical. Furthermore by a result of Jonhson and Sinclair [16], any linear derivation on semisimple
Banach algebra is continuous. We know that there are no nonzero linear continuous derivations on commutative semisimple Banach
algebras.

Therefore, d =0 in A . Hence in any case we get d (A) P forall primitive ideal P of A . since radical rad (A) of

A s the intersection of all primitive ideals, we get the required conclusion.
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