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ABSTRACT 

Let R  be a prime ring of characteristic different from 2 , L  a non-central Lie ideal of R , and nm,  fixed positive integers. 

If R  admits a generalized derivation F  associated with a deviation d  such that   )())(()( 22 RZuFuF nm
  for all 

Lu , then R  satisfies 4s , the standard identity in four variables. Moreover, we also examine the case when R  is 

semiprime ring. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized 
derivations on Banach algebras.  
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1  Introduction, Notation, and Statements of the Results 

Throughout this paper, unless specifically stated, R  will be an associative ring, )(RZ  the center of R , Q  its Martindale 

quotient ring and U  its Utumi quotient ring. The center of U , denoted by C , is called the extended centroid of R  (we refer 

the reader to [1], for the definitions and related properties of these objects). Recall that a ring R  is prime if for any Rba , , 

(0)=aRb  implies 0=a  or 0=b , and is semiprime if for any Ra , (0)=aRa  implies 0=a . An additive 

subgroup L  of R  is said to be a Lie ideal if Lrl ],[  for all Ll  and Rr . A Lie ideal L  is said to be 

non-commutative if 0],[ LL . Let L  be a non-commutative Lie ideal of R . It is well known that LRRLLR ],],[[  

(see the proof of [12, Lemma 1.3]). Since 0],[ LL , we have LRI  ],[0  for RLLRI ],[=  a nonzero ideal of L . 

An additive mapping RRd :  is called a derivation if )()(=)( yxdyxdxyd   holds for all Ryx , . In particular, 

d  is an inner derivation induced by an element Ra , if ],[=)( xaxIa  for all Rx . Many results in literature indicate 

that the global structure of a ring R  is often tightly connected to the behaviour of additive mappings defined on R . Derivation 
with certain properties investigated in various paper (see for reference [2],[8] and [26]). Starting from these results, many author 

studied generalized derivation in the context of prime and semiprime rings. By a generalized inner derivation on R , one usually 

means an additive mapping RRF :  if xbaxxF =)(  for fixed Rba , . For a such a mapping F , it is easy to see 

that )()(=],[)(=)( yxIyxFbyxyxFxyF b . This observation leads to the definition given in [4] : an additive 

mapping RRF :  is called generalized derivation associated with a derivation d  if )()(=)( yxdyxFxyF   for all 

Ryx , . Familiar examples of generalized derivation are derivations and generalized inner derivations, and the later includes left 

multipliers (i.e., an additive mapping yxfxyf )(=)(  for all Ryx , ). Since the sum of two generalized derivations is a 

generalized derivation, every map of the form )(=)( xdcxxF   is a generalized derivation, where c  is a fixed element of 

R  and d  is a derivation of R . 

In [14], Hvala studied generalized derivations in the context of algebras on certain norm spaces. In [20], Lee extended the definition 

of a generalized derivation as follows: by a generalized derivation we mean an additive mapping UIF :  such that 

)()(=)( yxdyxFxyF   holds for all Iyx , , where I  is a dense right ideal of R  and d  is a derivation from I  

into U . Moreover, Lee also proved that every generalized derivation can be uniquely extended to a generalized derivation on U , 

and thus all generalized derivations of R  will be implicitly assumed to be defined on the derivation F  on dense right ideal of 

R  can be uniquely extended to U  and assumes the form )(=)( xdaxxF   for some Ua  and a derivation d  on 

U  (see Theorem 3, in [20]). More related results about generalized derivations can be found [10] and [27].  

In [8], Daif and Bell showed that if in a semiprime ring R  there exists a nonzero ideal I  of R  and a derivation d  such that 

],[=]),([ yxyxd  for all Iyx , , then )(RZI  . At this point the natural question is what happens in case the 

derivation is replaced by a generalized derivation. In [27], Quadri et all. proved that if R  is a prime ring, I  a nonzero ideal of 

R  and F  a generalized derivation associated with a nonzero derivation d  such that ],[=]),([ yxyxF  for all 

Iyx , , then R  is commutative. Also in [13] Huang and Davvaz prove the result if R  be a prime ring and nm,  fixed 

positive integers. If R  admits a generalized derivation F  associated with a nonzero derivation d  such that 
nm yxyxF ],[=])),([(  for all Ryx , , then R  is commutative. The present paper is motivated by the previous results 

and we here continue this line of investigation by examining what happens a ring R  ( or an algebra A  ) satisfies the identity 

    nm
uFuF

22 )(=)( . 

Explicitly we shall prove the following theorem. 

Theorem 1.1 Let R  be a prime ring of characteristic different from 2 , L  a non-central Lie ideal of R  and nm,  fixed 

positive integers. If R  admits a generalized derivation F  associated with a nonzero derivation d  such that 

    nm
uFuF

22 )(=)(  for all Lu , then R  is commutative.  

Theorem 1.2 Let R  be a prime ring of characteristic different from 2  with center )(RZ , L  a non-central Lie ideal of R  

and nm,  are fixed positive integers. If R  admits a generalized derivation F  associated with a nonzero derivation d  such 

that     )()()(
22 RZuFuF
nm
  for all Lu . Then R  satisfies 4s , the standard identity in four variables.  
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Theorem 1.3 Let R  be a semiprime ring of characteristic different from 2 , and nm,  fixed positive integers. If R  admits 

a generalized derivation F  associated with a nonzero derivation d  such that     nm
rFrF

22 )(=)(  for all Rr , then 

there exists a central idempotent element e  in U  such that on the direct sum decomposition UeeUR )(1=  , d  

vanishes identically on eU  and the ring Ue)(1  is commutative.  

Theorem 1.4 Let R  be a semiprime ring of characteristic different from 2 , and nm,  fixed positive integers. If R  admits 

a generalized derivation F  associated with a nonzero derivation d  such that     )()()(
22 RZrFrF
nm
  for all 

Rr , then there exists a central idempotent element e  in U  such that on the direct sum decomposition 

UeeUR )(1=  , d  vanishes identically on eU  and the ring Ue)(1  satisfies 4s , the standard identity in four 

variables.  

In the last section of this paper we will consider A  as a Banach algebra with Jacobson radical )(Arad  and let   be a 

generalized derivation on A . The classical result of Singer and Wermer in [29], says that any continuous derivation on a 
commutative Banach algebra has the range in the Jacobson radical of the algebra. Singer and Wermer also formulated the conjecture 
that the continuity assumption can be removed. In 1988 Thomas verified this conjecture [30]. It is clear that the same result of Singer 
and Wermer does not hold in non-commutative Banach algebras (because of inner derivations). Hence in this context a very 
interesting question is how to obtain the non-commutative version of the Singer-Wermer theorem. A first answer to this problem 
was obtained by Sinclair in [28]. He proved that every continuous derivation of a Banach algebra leaves primitive ideals of the 
algebra invariant. Since then many authors obtained more information about derivations satisfying certain suitable conditions in 
Banach algebras. 

In [23], Mathieu and Murphy proved the result that if d  is a continuous derivation on an arbitrary Banach algebra such that 

)(]),([ AZrrd   for all Ar , then d  maps into the radical. Later in [24], Mathieu and Runde removed the continuity 

assumption using the classical result of Posner’s on centralizing derivations of prime rings in [26], and Thomas’s theorem in [30]: they 

showed that if d  is a derivation which satisfies )(]),([ AZrrd   for all Ar , then d  has its range in the radical of the 

algebra. More recently in [25], Park proves that if d  is a derivation of a non-commutative Banach algebra A  such that 

)()](],),([[ Aradxdxxd   for all Ax , then again d  maps into )(Arad . In [10], Filippis extended the Park’s result 

to the generalized derivation. In the meanwhile many authors obtained more information about derivations satisfying certain 

suitable conditions in Banach algebra. For example, in [31], Vukman proved that if d  is a linear derivation of a non-commutative 

semisimple Banach algebra A  such that 0=)(]),([ xdxxd  for all Ax , then 0=d . Also in [13], Huang and Davvaz 

obtain a range inclusion result for continuous generalized derivation. 

Here we will continue the investigation about the relationship between the structure of an algebra A  and the behaviour of 

generalized derivations defined on A . Then we apply our first result on prime rings to the study of analogous conditions for 
continuous or spectrally bounded generalized derivations on Banach algebras. 

More precisely, we will prove the following: 

Theorem 1.5 Let A  be a non-commutative Banach algebra of characteristic different from 2 , and nm,  are fixed positive 

integers. Let dLr a =)(  a continuous generalized derivation of A  for some element Aa  and some derivation d  

on A . If     )()()(
22 Aradrr
nm
   for all Ar , then )()( AA radd  .  

Theorem 1.6 Let A  be a non-commutative Banach algebra of characteristic different from 2  with Jacobson radical 

)(Arad , and nm,  are fixed positive integers. Let dLa =  be a spectrally bounded generalized derivation of A , 

where aL  denote the left multiplication by some element Aa  and d  is a derivation of A . If 

    )()()(
22 Aradrr
nm
   for all Ar , then )()( AA radd  .  

2  The result in Prime Rings 

Some well-known results are necessary in an arguments, so for convenience of reference we record as a facts: 

Fact 2.1 ()  If I  is a two-sided ideal of R , then R , I  and U  satisfies the same generalized polynomial identities with 

coefficient in U .  

Fact 2.2 ([Proposition 2.5.1]BM)  Every derivation d  of R  can be uniquely extended to a derivation of U .  
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Fact 2.3 ()  Let R  be a prime ring, d  a nonzero derivation of R  and I  a nonzero two-sided ideal of R . Let 

)),(,,( 11 nn xxdxxf   be a differential identity in I , that is  

 .,, forall 0=))(,),(,,( 111 Irrrdrdrrf nnn   

One of the following holds:   

1.  Either d  is an inner derivation in Q , the Martindale quotient ring of R , in the sense that there exists Qq  such that 

)(= qadd  and ],[=))((=)( xqxqadxd , for all Rx , and I  satisfies the generalized polynomial identity  

 0;=]),[,],,[,,,( 11 nn rqrqrrf   

2.  or I  satisfies the generalized polynomial identity  

 0.=),,,,,( 11 nn yyxxf   

Fact 2.4  Let R  be a prime ring and L  a non-central Lie ideal of R . If 2)( Rchar , by [3, Lemma 1] there exits a 

nonzero ideal I  of R  such that LRI  ],[0 . If 2=)(Rchar  and 4>RCdimC , i.e., 2=)(Rchar  or R  

does not satisfy 4s , then by [19, Theorem 13] there exits a nonzero ideal I  of R  such that LRI  ],[0 . Thus if 

2)( Rchar  or R  does not satisfy 4s , then we may conclude that there exits a nonzero ideal I  of R  such that 

LII ],[ . In particular, if R  is a simple ring it follows that LRR ],[ .  

With these lemmas to draw on we are now in a position to prove the main result of this section: 

Theorem 2.1  Let R  be a prime ring of characteristic different from 2 , L  a non-central Lie ideal of R  and nm,  fixed 

positive integers. If R  admits a generalized derivation F  associated with a nonzero derivation d  such that 

    nm
uFuF

22 )(=)(  for all Lu , then R  is commutative. 

Proof. Since R  is a prime ring and F  is a generalized derivation of R , by theorem 3 in [20], every generalized derivation 

F  on a dense right ideal of R  can be uniquely extended to the Utumi quotient ring U  of R  and thus we can think of any 

generalized derivation of R  to be defined on the whole U  and of the form )(=)( xdaxxF   for some Ua  and a 

derivation d  on U . Since 2)( Rchar  and L  is non-central Lie ideal, by a result of Herstein [12], LRI ],[  for 

some 0I  an ideal of R , and also L  is not commutative. Therefore we will assume that without loss of generality that 

LIIL ],[=  (see Fact 2.4). It follows that 
nm uFuF 22 ))((=))((  for all ],[ IIu . Moreover, by T. K. Lee [20], R  

and I  satisfy the same differential polynomial identities, that is 
nm uFuF 22 ))((=))((  for all ],[ RRu . By assumption 

R  satisfies the differential identity,  

 
mn yxdyxyxyxdyxayxdyxa ])),([],[],])[,([],[(=])),([],[( 22   

 

 

,)])(,][,[]),(][,[

],)][(,[],][),([],[(=)](,[]),([],[ 22

m

n

ydxyxyxdyx

yxydxyxyxdyxaydxyxdyxa




 

for all Ryx , . Now by Kharchenko’s theorem [17], we divide the proof into two cases: 

If d  is Q -outer, then R  satisfies the polynomial identity  

 
.,,, forall ]),[],[],[(=

]),][,[],][,[],][,[],][,[],[(
2

2

Rtsyxtxysyxa

txyxysyxyxtxyxysyxa
n

m




 

In particular, for 0=y , R  satisfies the blended component 0=],[ 2ntx  for all Rts , , and R  is commutative by 

Herstein [11, Theorem 2]. 

Let d  is Q -inner induced by an element Qq , that is, ],[=)( xqxd  for all Rx . It follows that,  
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myqxyxyxqyxyxyqxyxyxqyxa ]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[( 2   

 ., forall ]]),[,[]],,[[],[(= 2 Ryxyqxyxqyxa n   

By Chuang [6, Theorem 2], R  and Q  satisfy same generalized polynomial identities (GPIs), we have  

 
myqxyxyxqyxyxyqxyxyxqyxa ]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[( 2   

 ., forall ]]),[,[]],,[[],[(= 2 Qyxyqxyxqyxa n   

In case the center C  of Q  is infinite, we have  

 
myqxyxyxqyxyxyqxyxyxqyxa ]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[( 2   

 

 ,, forall ]]),[,[]],,[[],[(= 2 CQyxyqxyxqyxa C

n   

where C  is algebraic closure of C . Since both Q  and CQ C  are prime and centrally closed [9, Theorem 2.5 and 

Theorem 3.5], we may replace R  by Q  or CQ C  according as C  is finite or infinite. Thus we may assume that R  is 

centrally closed over C  )=.,.( RRCei  which is either finite or algebraically closed and  

 
myqxyxyxqyxyxyqxyxyxqyxa ]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[( 2   

 ., forall ]]),[,[]],,[[],[(= 2 Ryxyqxyxqyxa n   

By Martindale [22, Theorem 3], RC  (and so R ) is a primitive ring having nonzero socle H  with D  as the associated 

division ring. Hence by Jacobson’s theorem [15, p.75], R  is isomorphic to a dense ring of linear transformations of some vector 

space V  over D  and H  consists of the finite rank linear transformations in R . If V  is a finite dimensional over D . 

Then the density of R  on V  implies that )(CMR k , where Vdimk D= . 

Suppose that 3VdimD . First of all, we want to show that v  and qv  are linearly D -dependent for all Vv . Suppose 

on contrary that v  and qv  are linearly D -independent for some Vv . Since 3VdimD , then there exists Vw  

such that wqvv ,,  are also D -independent. By the density of R , there exist Ryx ,  such that:  

 0,=,=0,= xwwxqvxv  

 .=0,=0,= vywyqvyv  

This implies that  

 vyqxyxyxqyxyxyqxyxyxqyxav m]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[(= 2   

 0,=]]),[,[]],,[[],[(= 2 vyqxyxqyxa n  

a contradiction. So we conclude that },{ qvv  are linearly D -dependent for all Vv . 

Now we show here that there exists D  such that vqv = , for any .Vv  In fact, choose Vwv ,  

linearly D -independent. Since 3VdimD , there exists Vu  such that uwv ,,  are linearly D -independent. It follows 

that, there exist Duwv  ,,  such that  

 uwv uquwqwvqv  =,=,=  

that is uwv uwvuwvq   =)( . Moreover uwvuwvuwvq  )(=)( , for a suitable 

.Duwv   Then  
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 ),()()(=0 uuwvwuwvvuwv uwv     

and, because uwv ,,  are linearly independent, uwvvwu  === , that is,   does not depend on the choice of v . 

So there exists D  such that vqv =  for all Vv . Thus we write vqv =  for all Vv . 

Now for VvRr  , . Since vqv =  we have  

 0,=)()(=)()(=)()(=],[  vrrvqvrrvqvrqvqrvrq   

that is 0=],[ VRq . Since V  is a left faithful irreducible R -module, hence 0=],[ Rq , i.e., )(RZq  and so 0=d , 

a contradiction. 

Suppose now that 2VdimD . In this case R  is a simple GPI-ring with 1 , and so it is a central simple algebra finite 

dimensional over its center. By Lanski [18, Lemma 2], it follows that there exists a suitable filed F  such that )(FMR k , the 

ring of all kk  matrices over F , and moreover, )(FM k  satisfies the same GPI as R . Assume 3k , then by the same 

argument as above we can get a contradiction. Obviously if 1=k , then R  is commutative. Thus we may assume that 2=k , 

i.e., )(2 FMR , where )(2 FM  satisfies  

 
myqxyxyxqyxyxyqxyxyxqyxa ]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[( 2   

 
nyqxyxqyxa 2]]),[,[]],,[[],[(=   

Denote by ije  the usual unit matrix with 1  in ),( ji -entry and zero elsewhere. Since for any 

))((]),([),(, 2

2

2 FMZyxFMyx  . Let 122212 =],[=],[ eeeyx . Then 0=]),[( 2nyxF  ; 1n . That is, 

nyqxyxqyxa 2]]),[,[]],,[[],[(=0  , for all Ryx , , right multiplying by 12e , one can get 12

2

12 )(=0 eqe n
. Now 

set ).(=
2221

1211

qq

qq
q  By calculation, we can have )

00

0
(=

2

21

nq
q  which implies that 0=21q . In the same manner, by 

choosing 1121 =,= eyex  we prove that 0=12q . 

Thus we conclude that q  is a diagonal matrix in )(2 FM . Let ))(( 2 FMAutf  . Since 

 

.)]])(),([),([)]()],(),([[)](),()[((=

)]])(),([),()][(),([)]()],(),()][[(),([

)](),()]][(),([),([)](),()][()],(),([[)](),()[((

2

2

n

m

yfqfxfyfxfqfyfxfaf

yfqfxfyfxfyfxfqfyfxf

yfxfyfqfxfyfxfyfxfqfyfxfaf







 

So, )(qf  must be diagonal matrix in )(2 FM . In particular, let )(1)(1=)( ijij exexf   for ji  . Then 

ijjjii eqqqqf )(=)(  , that is jjii qq =  for ji  . This implies that q  is central in )(2 FM , which leads to 0=d  

contradiction, this completes the proof of the theorem.  

We prove our next theorem for central case: 

Theorem 2.2  Let R  be a prime ring of characteristic different from 2  with center )(RZ , and nm,  are fixed positive 

integers, L  a non-central Lie ideal of R . If R  admits a generalized derivation F  associated with a nonzero derivation d  

such that     )()()(
22 RZuFuF
nm
  for all Lu . Then R  satisfies 4s , the standard identity in four variables.  

Proof. On contrary suppose that R  does not satisfy 4s . Then by Fact 2.4, there exists an ideal LII  ],[0 . Let J  be 

any nonzero two-sided ideal of R . Then wee see LJIV ],[= 2
 is a non-central Lie ideal of R . If for each Vu . 

    0=)()(
22 nm

uFuF  , then by Theorem 2.1, 0=d  a contradiction. Hence for some Vu , 

    )()()(0
22 RZJuFuF
nm

 . Since JVF )( . Thus 0)(  RZJ . Now let K  be a nonzero two-sided 
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ideal of ZR , the ring of central quotients of R . Since RK  is a nonzero two-sided ideal of R , 0)()(  RZRK . 

Therefore, K  contain an invertible element in ZR  and so ZR  is a simple ring with identity 1 . 

Moreover, without loss of generality, we may assume that ],[= IIL . For any Iyx , ,  

 ).(])),([],[(])),([],[],])[,([],[( 22 RZyxdyxayxdyxyxyxdyxa nm   

Thus I  satisfies the generalized differential identity  

 0=],])),([],[(])),([],[],])[,([],[[( 22 wyxdyxayxdyxyxyxdyxa nm   (1) 

 Since I  and Q  satisfy the same differential identities, we may assume that Q  satisfies (1). Now consider two cases. 

1. Case  If d  is not Q -inner derivation of R . By Kharchenko’s theorem [17], Q  satisfies the same polynomial identity,  

 0.=],]),[],[],[(]),][,[],][,[],][,[],][,[],[[( 22 wtxysyxatxyxysyxyxtxyxysyxa nm   

This is a polynomial identity and hence there exists a field F  such that )(FMQ k  with 1>k  and Q , )(FM k  

satisfy the same polynomial identity [18]. If 2k , then by choosing 112212 =,=0,=,= ewetyex  one can get,  

 

.tionacontradic ,=

],]),[],[],[(

]),][,[],][,[],][,[],][,[],[[(=0

12

2

2

e

wtxysyxa

txyxysyxyxtxyxysyxa
n

m







 

2. Case  Let d  be a Q -inner derivation of R . In this case there exists Qq  such that ],[=)( xqxd  for all Rx
. Then by (1) we have  

0,=],]]),[,[]],,[[],[(

]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[[(
2

2

wyqxyxqyxa

yqxyxyxqyxyxyqxyxyxqyxa
n

m




 (2) 

 for all Iyx ,  and Rw . By Chuang [6], Q  satisfy (2). By localizing R  at )(RZ  it follows that  

 
., forall )(]]),[,[]],,[[],[(

]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[(
2

2

ZZ

n

m

RyxRZyqxyxqyxa

yqxyxyxqyxyxyqxyxyxqyxa




 

Since R  and ZR  satisfy the same polynomial identities, by our assumption, we have that ZR  does not satisfy 4s . Thus 

replacing R  with ZR , we may assume that R  is a simple ring with 1  and LRR ],[ . By Martindale theorem [22], R  

is a primitive ring with minimal right ideal, whose commuting ring D  is a division ring which is finite dimensional over )(RZ . 

However, since R  is a simple with 1 , R  must be Artinian. Hence sDR = , the ss  matrices over D , for some 1s . 

By [18], there exists a field F  such that )(FMR k , the ring of kk  matrices over field F , with 1>k , and 

)(FM k  satisfies (2) that is,  

 
).(..=))((]]),[,[]],,[[],[(

]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[(
2

2

Zkk

n

m

RZIFFMZyqxyxqyxa

yqxyxyxqyxyxyqxyxyxqyxa




  

If 2k , now let kkijqq )(= . By assumption, for every Ryx , ,  

 
vertible.iszeroorin ]]),[,[]],,[[,[(

]]),[,][,[]],,][[,[],]][,[,[],][],,[[],[(
2

2

n

m

yqxyxqyxa

yqxyxyxqyxyxyqxyxyxqyxa




 

We choose jjij eyex =,=  for any ji  . Then by solving above and right multiplying by ije , one can get 

ji

n

ijij

n

ij eqeqe 22 =)(=0  implying 0=ijq . Thus for any ji  , 0=ijq  that is q  is diagonal. Now set ttttt
eqq =  
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with Fqtt  . For any automorphism f  of R , we have  

 

n

m

yfqfxfyfxfqfyfxfaf

yfqfxfyfxfyfxfqfyfxf

yfxfyfqfxfyfxfyfxfqfyfxfaf

2

2

)]])(),([),([)]()],(),([[)](),()[((

)]])(),([),()][(),([)]()],(),()][[(),([

)](),()]][(),([),([)](),()][()],(),([[)](),()[((







 

is zero or invertible, for every Ryx , . By above argument )(qf  must be diagonal. Therefore for each ij  , we have 

ijiijjiiii

k

iijij eqqeqeqeqf )(=)(1)(1=)(
1=

   is diagonal. Therefore iijj qq =  and so kIFq . , and hence 

0=d , which is a contradiction. With this completes the proof of the theorem.  

We immediately get the following corollaries from the above theorems:  

Corollary 2.1  Let R  be a prime ring of characteristic different from 2 , and nm,  fixed positive integers. If R  admits a 

generalized derivation F  associated with a nonzero derivation d  such that     nm
rFrF

22 )(=)(  for all Rr , then 

R  is commutative.  

Corollary 2.2  Let R  be a prime ring of characteristic different from 2  with center )(RZ , and nm,  are fixed positive 

integers. If R  admits a generalized derivation F  associated with a nonzero derivation d  such that 

    )()())(
22 RZrFrF
nm
  for all Rr . Then R  satisfies 4s , the standard identity in four variables.  

The following example demonstrates that R  to be prime is essential in the hypothesis. 

Example 2.1 Let S  be any ring and },:)
00

{(= Sba
ba

R   and let }:)
00

0
{(= Sa

a
L   be a nonzero ideal of R 

and we define a map RRF :  by 11112=)( xexexF  . Then it is easy to see that F  is a generalized derivation 

associated with a nonzero derivation 1111=)( xexexd   and L  is a Lie ideal. It is straightforward to check that F  satisfies 

the properties, 
nm uFuF 22 ))((=))((  for Lu . However, R  is not commutative.  

3  The result in Semiprime Rings 

 In all that follows R  will be semiprime ring, U  is the left Utumi quotient ring of R . For developing the proof of the main 

theorem we require the following facts: 

Fact 3.1 ([Proposition~2.5.1]BM)  Any derivation of a semiprime ring R  can be uniquely extended to a derivation of its 

left Utumi quotient ring U , and so any derivation of R  can be defined on the whole U .  

Fact 3.2 ([p-38]C1)  If R  is semiprime then so is its left Utumi quotient ring. The extended centroid C  of a semiprime ring 

coincides with the center of its left Utumi quotient ring.  

Fact 3.3 ([p-42]C1)  Let B  be the set of all the idempotents in C , the extended centroid of R . Assume R  is a B

-algebra orthogonal complete. For any maximal ideal P  of B , PR  forms a minimal prime ideal of R , which is invariant 

under any derivation of R .  

Fact 3.4 ()  If I  is a two-sided ideal of R , then R , I  and U  satisfies the same generalized polynomial identities.  

 We refer the reader to [1, Chapter 7], for a complete and detailed description of the theory of generalized polynomial 
identities involving derivations. 

We will prove the following: 

Theorem 3.1  Let R  be a semiprime ring of characteristic different from 2 , and nm,  fixed positive integers. If R  

admits a generalized derivation F  associated with a nonzero derivation d  such that     nm
rFrF

22 )(=)(  for all Rr

, then there exists a central idempotent element e  in U  such that on the direct sum decomposition UeeUR )(1=  , 

d  vanishes identically on eU  and the ring Ue)(1  is commutative.  
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Proof. Since R  is semiprime and F  is a generalized derivation of R , by Lee [20, Theorem 3], 

)(=)( xdaxxF   for some Ua  and a derivation d  on U . We are given that 

0=))(())()(( 22 nm rdarrrdrrdar   for all Rr . By Fact 3.2, CUZ =)( , the extended centroid of R , 

and by Fact 3.1, the derivation d  can be uniquely extended on U . By Lee [21, Theorem 3], R  and U  satisfy the same 

differential identities. Then 0=))(())()(( 22 nm rdarrrdrrdar   for all Ur . Let B  be the complete 

Boolean algebra of idempotents in C  and M  be any maximal ideal of B . By Chuang [7, p.42], U  is orthogonal complete 

B -algebra, and by Fact 3.3, MU  is a prime ideal of U , which is d -invariant. Let d  be the derivation induced by d  on 

MUUU /= , i.e., )(=)( udud  for all Uu . For all Ur , ,
nm rdrardrrrdra 22

))(())()((  . It is 

obvious that U  is prime. Therefore, by Corollary 2.1, we have either U  is commutative or 0=d , that is either 

MUUd )(  or MUUU ],[ . Hence MUUUUd ],)[( , where MU  runs over all prime ideals of U . Since 

0=MU
M , we obtain 0=],)[( UUUd . 

By using the theory of orthogonal completion for semiprime rings [1, Chapter 3], it is clear that there exists a central idempotent 

element e  in U  such that on the direct sum decomposition UeeUR )(1=  , d  vanishes identically on eU  and 

the ring Ue)(1  is commutative. With this completes the proof.  

We come now to our last result of this section: 

Theorem 3.2 Let R  be a semiprime ring of characteristic different from 2  with center )(RZ , and nm,  fixed positive 

integers. If R  admits a generalized derivation F  associated with a nonzero derivation d  such that 

    )()()(
22 RZrFrF
nm
  for all Rr , then there exists a central idempotent element e  in U  such that on the 

direct sum decomposition UeeUR )(1=  , d  vanishes identically on eU  and the ring Ue)(1  is satisfies 4s .  

Proof. Since R  is semiprime and F  is a generalized derivation of R , by Lee [20, Theorem 3], )(=)( xdaxxF   for 

some Ua  and a derivation d  on U . We are given that )())(())()(( 22 RZrdarrrdrrdar nm   for all 

Rr . By Fact 3.2, CUZ =)( , the extended centroid of R , and by Fact 3.1, the derivation d  can be uniquely extended on 

U . It follows from Lee [21, Theorem 3], R  and U  satisfy the same differential identities. Then 

Crdarrrdrrdar nm  22 ))(())()((  for all Ur . Let B  be the complete Boolean algebra of idempotents in 

C  and M  be any maximal ideal of B . As already pointed out in the proof of Theorem 3.1, U  is a B -algebra orthogonal 

complete and by Fact 3.3, MU  is a prime ideal of U , which is d -invariant. Let d  is the derivation induced by d  on 

MUUU /= . Since MUCMUMUCUZ /=)/(=)(  , then 

MUMUCrdarrrdrrdar nm )/())(())()(( 22  , for all Ur . Moreover U  is prime, hence we may 

conclude, by Corollary 2.2, either U  satisfies 4s  or 0=d  in U . This implies that, for any maximal ideal M  of B , 

either MUUd )(  or MUxxxxs ),,,( 43214 , for all Uxxxx 4321 ,,, . In any case 

0=),,,()( 43214 MUxxxxsUd
M . From [1, Chapter 3], there exists a central idempotent element e  of U , the left 

Utumi quotient ring of R , such that on the direct sum decomposition UeeUR )(1=  , 0=)(eUd  and the ring 

Ue)(1  is satisfies 4s . This completes the proof of the theorem.  

4 Applications on Banach algebras 

This section deals with applications of our main result. Let us introduce some well known and elementary definitions for the sake of 

completeness. Here A  will denote a complex Banach algebra and   be a generalized derivation on A . 

By Banach algebra we shall mean that complex normed algebra A  whose underlying vector space is a Banach space. The Jacobson 

radical )(Arad  of A  is the intersection of all primitive ideals. If the Jacobson radical reduces to the zero element, A  is 

called semisimple. In fact any Banach algebra A  without a unity can be embedded into a unital Banach algebra CAA =I  

as an ideal of codimension one. In particular, we may identify A  with the ideal }:,0){( Axx  in IA  via the isometric 
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isomorphism ,0)(xx . 

In this section we apply the purely algebraic results which is obtained in section 2  and obtain the conditions that every continuous 
derivation on a Banach algebra maps into the radical. The proofs of the results rely on a Sinclair’s theorem [28] which States that 

every continuous derivation d  of a Banach algebra A  leaves the primitive ideals of A  invariant. As we have mentioned 

before, Thomas [30], has generalized the Singer-Wermer theorem by proving that any derivation on a commutative Banach algebra 
maps the algebra into its radical. This result leads to the question whether the theorem can be prove without any commutativity 
assumption. There are many papers that the theorem holds without commutativity assumption [22, 23, 28]. 

We also obtain that every derivation maps into its radical with some property, but without any commutativity assumption. 
Derivations may serve as the generators of reversible evolutions of a physical system, say, if this is modelled by a Banach algebra. 
Not only historically, this point of view gave a strong impetus to the investigation of derivations and of how their properties relate to 
the structure of Banach algebras. 

Our first result in this section concerns continuous generalized derivations on Banach algebras: 

Theorem 4.1  Let A  be a non-commutative Banach algebra of characteristic different from 2 , and nm,  are fixed positive 

integers. Let dLr a =)(  a continuous generalized derivation of A  for some element Aa  and some derivation d  

on A . If )())(())(( 22 Aradrr nm    for all Ar , then )()( AA radd  .  

Proof. Under the assumption that   is continuous, and since it is well known that the left multiplication map is also continuous, 

we have that the derivation d  is continuous. In [28], Sinclair proved that any continuous derivation of a Banach algebra leaves the 

primitive ideals invariant. Therefore, for any primitive ideal P  of A , it is follows that PPPP  )()( da . It means 

that the continuous generalized derivation   leaves the primitive ideals invariant. Hence we can introduced the generalized 

derivation AAP :  by PPPP PPP  arrdarrrr )()()(=)(   for all Ar  and 

Prr = , where APA =/  is a factor Banach algebra, for any primitive ideals P . Moreover, by 

)())(())(( 22 Aradrr nm    for all Ar , it follows that 0=)(())(( 22 nm rr    for all Ar . Since A  is 

primitive, a fortiori it is prime. Thus by Corollary 2.1, it is immediate that either A  is commutative or 0=d ; that is, 

PAA ],[  or PA )(d . 

Now let P  be a primitive ideal such that A  is commutative. Singer and Wermer in [29], proved that any continuous linear 
derivation on a commutative Banach algebra maps the algebra into its radical. Moreover, by a result of Johnson and Sinclair [16], any 
linear derivation on a semisimple Banach algebra is continuous. Hence there are no nonzero linear continuous derivations on 

commutative semisimple Banach algebras. Therefore 0=d  in A . Hence in any case we get PA )(d  for all primitive ideal 

P  of A . Since radical )(Arad  of A  is the intersection of all primitive ideals, we get the required conclusion.  

In order to prove our next theorem we will use the following well-known result concerning semisimple Banach algebra contained in 
[16]. 

Remark 4.1  In [16], Johnson and Sinclair shown that every derivation on a semisimple Banach algebra is continuous. Then every 

derivation on a simple Banach algebra leaves the primitive ideals of the algebra invariant. Also, since any left multiplication map is 

continuous, so   is continuous. Since A  is semisimple, so, 0=)(Arad .  

In view of the Remark 4.1, and Theorem 4.1, we may prove the following theorem in the special case when A  is a semisimple 
Banach algebra. 

Theorem 4.2 Let A  be a non-commutative semisimple Banach algebra of characteristic different from 2 , and nm,  are 

fixed positive integers. Let dLr a =)(  be a continuous generalized derivation of A  for some element Aa  and some 

derivation d  on A . If )())(())(( 22 Aradrr nm    for all Ar , then 0=)(Ad .  

Proof. The proof goes through in the same way as the proof of Theorem 4.1 with the only exception that at the beginning of the 
proof one has to use the fact that any linear derivation on a semisimple Banach algebra is continuous and by using Remark 4.1 we 
omit the proof for brevity.  

5  Spectrally boundedness of Generalized derivations 

 In [5, Theorem 2.8], Bre s


ar and Mathieu obtained a necessary and sufficient condition for a generalized derivation to be spectrally 
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bounded on a unital Banach algebra. Here dLa =  will denote spectrally bounded generalized derivation. Let us introduce 

some well known and elementary definitions for the sake of completeness. 

    A linear mapping   on A  is said to be a derivationdgeneralize   if  

 .,, forall ),()()(=)( A zyxyzxyxzxyxyz   (3) 

 In the application such operators correspond to irreversible dynamics while derivations generate reversible ones. Put (1)= a . 

Using (3), it is easily computed that axxxd )(=)(  , for all Ax  defines a derivation on A . Hence, every generalized 

derivation   is of the form dLa =  with (1)= a  and d  a derivation, and every generalized inner  derivation is 

given by bbaba RLdL  =  (here, aL  and bR  denote the left and right multiplication by a  and b , respectively). A 

spectrally bounded generalized derivation need not map into radical, but if it is inner, both its constituents aL  and bd  have to 

be spectrally bounded. 

The last result of this paper has the same behaviour as the Theorem 4.1. We now turn our attention to the spectrally bounded 
generalized derivations. In order to prove our main theorem of this section we will use some results concerning spectrally bounded 
derivations and generalized derivations, more precisely, we need the following: 

Lemma 5.1 ([Theorem 2.5]B1)  Every spectrally bounded derivation on a unital Banach algebra maps the algebra into the 

radical.  

Lemma 5.2 ([Lemma 2.7]B1)  Every spectrally bounded generalized derivation leaves each primitive ideal invariant.  

Lemma 5.3 ([Theorem 2.8]B1)  Let dLa =  be a generalized derivation on a unital Banach algebra A , where aL  

is the left multiplication (by the element a ) map and d  some derivation of A . Then   is spectrally bounded if and only if 

both aL  and d  are spectrally bounded.  

We close this section with the theorem given below. The motivation comes from the various results already mention in the 
introduction; the reader will notice that virtually the same proof can be used. Adapting the proof of the Theorem 4.1 we finally prove 

the following result to spectrally bounded generalized derivations. 

Theorem 5.1 Let A  be a non-commutative Banach algebra of characteristic different from 2  with Jacobson radical 

)(Arad , and nm,  are fixed positive integers. Let dLa =  be a spectrally bounded generalized derivation of A , 

where aL  denote the left multiplication by some element Aa  and d  is a derivation of A . If 

  )())(()( 22 Aradrr nm
   for all Ar , then )()( AA radd  .  

Proof. Since   is spectrally bounded, by Lemma 5.3, aL  and d  are spectrally bounded. Combining this with Lemma 5.2 we 

have that )()( AA radd  . In [28], Sinclair proved that any continuous derivation of a Banach algebra leaves the primitive 

ideals invariant. Hence, for any primitive ideal P  of A , it is obvious that PP )(  . It means that the continuous 

generalized derivation   leaves the primitive ideals invariant. Thus we can define the generalized derivation AAP :  by 

PPPP PPP  arrdarrrr )()(=)(=)(   for all Ar , where APA =/  is a factor Banach 

algebra. Since P  is a primitive ideal, the factor algebra A  is primitive and so it is prime. The hypothesis 

)())(())(( 22 Aradrr nm    yields that 0=))(())(( 22 nm rr    for all Ar . By Corollary 2.1, it is immediate 

that either A  is commutative or 0=d ; that is, PAA ],[  or PA )(d . Now we assume that P  is a primitive ideal 

such that A  is commutative. In [29], Singer and Werner proved that any continuous linear derivation on a commutative Banach 
algebra maps the algebra into the radical. Furthermore by a result of Jonhson and Sinclair [16], any linear derivation on semisimple 
Banach algebra is continuous. We know that there are no nonzero linear continuous derivations on commutative semisimple Banach 
algebras. 

Therefore, 0=d  in A . Hence in any case we get PA )(d  for all primitive ideal P  of A . Since radical )(Arad  of 

A  is the intersection of all primitive ideals, we get the required conclusion.   
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