
  ISSN 2347-1921                                                           

 

3931 | P a g e                                                            J u l y  2 3 ,  2 0 1 5  
 

Confidence Interval For The Estimation of The  Pearson's Correlation 
Coefficient 

Rawiyah Muneer Alraddadi 
2055 Napoleon Road, Unit 8 H, Bowling Green, OH 43402 USA 

Abstract:  

Pearson’s correlation coefficient is used to measure the influence of one quantitative variable on another quantitative 
variable. Basing on the sign of correlation, the type of dependence (positive/negative) can be decided in bi-variate data. 
The estimation of parameter can be done in two methods, point estimation and interval estimation. In this paper, various 
methods to find the confidence interval for the correlation are discussed. As the population correlation coefficient is 
estimated by the Pearson’s correlation coefficient, the  Monte-Carlo simulation will give the approximate the estimation of 
the Pearson’s correlation coefficient ( r  ). The Fisher Z, Bootstrap method and variance reduction methods are discussed 

in this paper.  
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1.INTRODUCTION 

The Pearson’s correlation coefficient ( 𝑟  ) is a point estimator which estimates r , population correlation coefficient. The 

statistic ( 𝑟  ) is used to describe the linear relationship between two variables, which are normally distributed. If the 

theoretical sampling distribution is not available, Monte Carlo (MC) procedure to approximate the estimation of the 
Pearson’s correlation coefficient ( 𝑟  ) 

The goal is used Monte Carlo that would improve the accuracy of the correlation coefficient. Then, variance reduction is 
used to improve the efficiency of Monte Carlo methods. 

In this study, the Monte Carlo, the Fisher’s z Method and the Bootstrap have been used for producing good approximate 
confidence intervals for the correlation coefficient. Also, in this paper the coverage of confidence interval for the correlation 
coefficient of the all methods have been used and the average estimate of correlation coefficient, standard error, 
confidence interval (CIs) and the width for the correlation coefficients are established. Finally, variance reduction method 
is used to reduce variability. (e.g.  Importance Sampling). 

2. Simulation Data  

In order to simulate the paired data, two factors are considered, the true correlation and the sample size (n). For the 
purpose of this study, there will be five selected values of correlation, 𝜌 (𝜌 = 0, 0.2, 0.4, 0.6, 0.8) and three values of 

sample size (n=15, 25, 50). In this study, there are total 15 simulation conditions (5*3). 

Four methods, the Fisher’s z method, the Monte Carlo Method, the Variance reduction (e.g. Importance Sampling) and the 
Bootstrap Method, are used. Also, variance reduction method will be used to discover the small standard error. 

 3. Methodology 

3.1. Naïve Monte Carlo 

This study will estimate the confidence interval of the correlation coefficient using the independent and identically 
distributed pairs (𝑋1𝑖 , 𝑌1𝑖), i=1... n from bivariate distribution. Then, the confidence interval of the correlation coefficient can 

be determined by using the Monte Carlo Simulation.  

Here, the Monte Carlo Method will approximate the coverage of the confidence interval for the correlation coefficient and 
to estimate the true Pearson's correlation( 𝑟  ) as in this study, there is no theoretical sampling distribution. For a certain 

value of 𝜌, sample size (n=20, 25, 50) and 10000 (S=10000) random samples will be produced from 𝑁2   0
0
 ,  

1 𝜌
𝜌 1

   

In simple linear regression, one typically estimates the correlation coefficient 𝜌 between two normally distributed variables 

by its sample analog 𝑟𝑛  (Samaniego 252). It can be shown that: 

 𝑛(𝑟 𝑛 − 𝜌)
𝐷
  𝑁(0,  1 − 𝜌2 2)   As  𝑛  ∞         (1) 

In this method, the pair (𝑋1𝑖 , 𝑌1𝑖 ) is simulated from the bivariate normal distribution 𝑁2[0,0, 1,1, 𝜌]. Then  

𝑍 =
𝑟 𝑛−𝜌
 1−𝜌2 

 𝑛

  is calculated by using the central limit theorem. If Z > 1.96 then I (Z > 1.96) = 1and zero otherwise, this process 

will be repeated S times to estimate the mean and standard error of MC.  

Monte Carlo Confidence intervals for  𝑟𝑛  are generally based on the equation (1) and are given below: 

 𝑟 𝑛 − Φ(
𝛼

2
) 

 1−𝜌2 

 𝑛
, 𝑟 𝑛 + Φ(1 −

𝛼

2
)

(1−𝜌2  )

 𝑛
                 (2) 

The width of the confidence interval for the correlation coefficient is calculated in this study. 

3.2. Fisher’s z Method 

R. A. Fisher recommended transforming to the variable 𝑧(𝜌) via the transformation, where 𝑧(𝜌) is given by:  

                    𝑧 𝜌 =
1

2
ln⁡

1+𝜌

1−𝜌
                               (3) 

The transformation was motivated by the fact that its asymptotic variance does not depend on 𝜌 and that it converges 
more quickly than r does (Samaniego 252). This statistic is now called “Fisher's Z". This transformation stabilizes the 

variance so that:  

         𝒏 𝑧 𝜌 𝑛  − 𝑧 𝜌  
𝐷
 𝑁 0, 1                            (4) 

In this method also, (𝑋1𝑖 , 𝑌1𝑖) are simulated from the bi-variate normal distribution 𝑁2[0,0, 1,1, 𝜌]. Then,  𝑍 =
𝑧 𝜌 𝑛   −𝑧 𝜌 

 𝑛
  is 

computed. If Z > 1.96 then I (Z > 1.96) = 1 and zero otherwise. Also, the process is repeated again S times and the mean 
and standard error of Fisher's Z are calculated.  

A confidence interval for Fisher's Z, 𝑧 𝜌 ,  is computed by using the below equation: 
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 𝑧 𝜌 𝑛 −
Φ(

𝛼

2
)

 n
, 𝑧 𝜌  𝑛 +

Φ(1−
𝛼

2
)

 n
 =  𝑧𝑙 , 𝑧𝑢         (5) 

Then, the confidence interval 𝑧 𝜌  is inverted to estimate the confidence interval for 𝜌: 

              
𝑒2𝑧𝑙

−1

𝑒2𝑧𝑙
+1

,
𝑒2𝑧𝑢

−1

𝑒2𝑧𝑢
+1

                                    (6) 

3.3. Bootstrap Method 

The aim here is to get the asymptotic distribution of the sample correlation coefficient, r. If we let 
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And  𝑠𝑥 =  𝑚𝑥𝑥 −  𝑚𝑥 
2,𝑠𝑦 =  𝑚𝑦𝑥 −  𝑚𝑦 

2
, and  𝑠𝑥𝑦 = 𝑚𝑥𝑦 − 𝑚𝑥 − 𝑚𝑦 , then   𝑟 =

𝑠𝑥𝑦

𝑠𝑥𝑠𝑦
. 

The delta method is found by using the central limit theorem: 
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Using this method, the coverage probability is determined. 

3.4. Variance Reduction: Importance Sampling  

 Here, the data (y) is generated from the bivariate normal distribution 𝑁2 0,0, 1,1, 𝜌 .  Then  

𝑤 𝑦 =
𝑓 𝑦 

𝑔 𝑦 
=

dmnorm (y,mu ,sigma )

dmnorm (y,mu 2,sigma )
  is computed. In the next step, 𝑍 =

𝑟 𝑛−𝜌
 1−𝜌 2 

 𝑛

 is calculated.  

If Z > 1.96 then I (Z > 1.96) *w(y). Finally, all the steps are repeated S times and the mean and standard error of MC are 
calculated.  

4. Results 

Table 1 shows the coverage of the confidence interval for the correlation coefficient using the MC sampling distribution, 
the Bootstrap (Bootstrap MSE) Method and the Fisher’s z Method. In this study, the Fisher’s z Method shows a bigger 
width than the BT method. Therefore, the Fisher’s z Method shows a larger coverage of the intervals than the Bootstrap 
Simulation. Comparing the coverage between the Bootstrap and the Fisher’s z Methods, it can be observed that Bootstrap 
became smaller as the sample size increases. 

Table 2 displays the confidence interval, the standard error and the width of CI for Monte Carlo. It is clear that the width of 
the confidence interval decreases as the sample size increases for each 𝜌. Also, the standard error decreases when the 

sample size increases for each 𝜌. This result shows that a bigger sample size is related with a true estimate of 𝜌.  

Table 3 presents the variance reduction by using importance sampling - unstandardized weights. The table shows the 
standard error of this method, the confidence interval and the width of CI. It is shown that the width of the confidence 
interval increases as the sample size increases for each 𝜌. The standard error here decreases more than the Naïve Monte 

Carlo for each 𝜌. 
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Table 1: Coverage of intervals for the estimation of the correlation coefficient for MC: Naive Monte Carlo Method, Fisher: 

Fisher Method, sim.MSE: simulation Method, sim.q: simulation Method based on quantiles 

𝜌 n MC Fisher's Z Bootstrap MSE Sim.q 

0 15 

25 

50 

0.8752 

0.9065 

0.9319 

0.9148 

0.9324 

0.9431 

0.9625 

0.9468 

0.9420 

0.9468 

0.9501 

0.9498 

0.2 15 

25 

50 

0.8801 

0.9140 

0.9276 

0.9231 

0.9365 

0.9400 

0.9606 

0.9483 

0.9344 

0.9441 

0.9528 

0.9466 

0.4 15 

25 

50 

0.8832 

0.9004 

0.9275 

0.9226 

0.9244 

0.9394 

0.9697 

0.9422 

0.9380 

0.9470 

0.9441 

0.9446 

0.6 15 

25 

50 

0.8811 

0.9068 

0.9279 

0.9274 

0.9368 

0.9412 

0.9752 

0.9534 

0.9378 

0.9464 

0.9503 

0.9475 

0.8 15 

25 

50 

0.8783 

0.9068 

0.9282 

0.9226 

0.9327 

0.9432 

0.9829 

0.9585 

0.9436 

0.9445 

0.9492 

0.9487 

 

Table 2: Naive Monte Carlo 

𝜌 n 𝑟  𝑛  SE Lower limit Upper limit Width 

0 20 

25 

50 

- 0.0006841315 

0.0031949871 

- 0.0001045960 

0.22741436 

0.20391388 

0.14333765 

- 0.4492943 

- 0.39216347 

- 0.27946727 

0.4366636 

0.3943166 

0.2784509 

0.8859586 

0.7864800 

0.5579182 

0.2 20 

25 

50 

0.1935608907 

0.1966145010 

0.1980162855 

0.22112551 

0.19706008 

0.13788643 

- 0.26264024 

- 0.21376567 

- 0.08354724 

0.5959719 

0.5503549 

0.4587595 

0.8586122 

0.7641205 

0.5423068 

0.4 20 

25 

50 

0.3929804751 

0.3929961484 

0.3971043350 

0.19673612 

0.17401970 

0.12125242 

- 0.03605734 

0.01611421 

0.14459053 

0.7218536 

0.6887630 

0.6109903 

0.7579109 

0.6726488 

0.4663997 

0.6 20 

25 

50 

0.5899780688 

0.5938542714 

0.5962610979 

0.15450382 

0.13541788 

0.09224753 

0.22672329 

0.28072914 

0.39774157 

0.8285812 

0.8122404 

0.7548107 

0.6018579 

0.5315113 

0.3570691 

0.8 20 

25 

50 

0.7917126904 

0.794568243 

0.7965827399 

0.09178333 

0.07940452 

0.05382884 

0.56291471 

0.60618550 

0.67442324 

0.9226877 

0.9117592 

0.8849812 

0.3597730 

0.3055737 

0.2105580 
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Table 3: Importance Sampling 

𝜌 n SE Lower limit Upper limit Width 

0 20 

25 

50 

0.010332500 

0.010118754 

0.010941349 

0.5371283 

0.5602496 

0.5055317 

1.425926 

1.697652 

1.658526 

0.8887972 

1.1374025 

1.1529945 

0.2 20 

25 

50 

0.008926193 

0.009097279 

0.011084896 

0.7046792 

0.6066346 

0.5336968 

1.471421 

1.393767 

1.569317 

0.7667415 

0.7871328 

1.0356197 

0.4 20 

25 

50 

0.011756620 

0.010475668 

0.009403558 

 0.5555878 

0.6766047 

0.6753384 

1.517867 

1.728799 

1.462166 

0.9622768 

1.0521939 

0.7868273 

0.6 20 

25 

50 

0.010240777 

0.009317214 

0.010703651 

0.7916117 

0.8294164 

0.7320566 

1.780885 

1.620201 

1.736110 

0.989273 

0.7907845 

1.0040537 

0.8 20 

25 

50 

0.010703651 

0.013465334 

0.010205929 

0.6291310 

0.7063542 

0.7278479 

1.880384 

1.581554 

1.516217 

1.2512527 

0.8751995 

0.7883692 

                                            

5. Conclusion 

In conclusion, the Fisher’s z and the Bootstrap Simulations do better than the Monte Carlo. In this study the Fisher’s z 
Method is recommended, because it is not changed by increasing the sample size. Both the Monte Carlo and the Fisher’s 
z Methods are easier to program than the Bootstrap Method. The data in the Monte Carlo and the Fisher’s z Method are 
simulated from a bivariate normal distribution. Since the data is generated from a bivariate normal distribution the process 
is easier to arrive on a conclusion.  

The Monte Carlo standard error decrease by increasing the sample size and  
𝜌.  In the variance reduction method, the standard error is smaller compared to the standard error in Naïve Monte Carlo 

method.  
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