

# **Dual strongly Rickart modules**

Saad Abdulkadhim Al-Saadi, Tamadher Arif Ibrahiem

Department of Mathematics, College of Science, Al- Mustansiriyah University, Iraq

#### **ABSTRACT**

In this paper we introduce and study the concept of dual strongly Rickart modules as a stronger than of dual Rickart modules [8] and a dual concept of strongly Rickart modules. A module M is said to be dual strongly Rickart if the image of each single element in  $S = \operatorname{End}_R(M)$  is generated by a left semicentral idempotent in S. If M is a dual strongly Rickart module, then every direct summand of M is a dual strongly Rickart. We give a counter example to show that direct sum of dual strongly Rickart module not necessary dual strongly Rickart. A ring R is dual strongly Rickart if and only if R is a strongly regular ring. The endomorphism ring of d-strongly Rickart module is strongly Rickart. Every d-strongly Rickart ring is strongly Rickart. Properties, results, characterizations are studied.

## Indexing terms/Keywords

strongly Rickart rings, strongly Rickart modules, Rickart modules, dual Rickart modules; strongly regular rings.



# Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .11, No.1

www.cirjam.com, editorjam@gmail.com



#### INTRODUCTION

Throughout this paper R is an associative ring with identity and all modules will be unitary right R-modules. A module M is Rickart if the right annihilator in M of any single element of  $S = End_R(M)$  is generated by an idempotent of S[7]. Recently, the authors in [4] introduced the concept of strongly Rickart rings as stronger concepts of Rickart rings. A ring R is strongly Rickart if the right annihilator of each single element in R is generated by left semicentral idempotent of R. A module M is strongly Rickart if the right (resp. left) annihilator in M of any single element of S is generated by an left (resp. right) semicentral idempotent of S[5]. Following [8], a module M is dual Rickart if the image in M of any single element of S is generated by an idempotent of S. In this paper we introduce a dual concept of strongly Rickart modules as a strong concept of dual Rickart modules and a dual concept of strongly Rickart modules. A module M is dual strongly Rickart if the image in M of any single element of S is generated by a left semicentral idempotent of S.

Recall that a submodule N of a module M is stable (resp. fully invariant) if for each  $\alpha: N \to M$  (resp.  $\alpha: M \to M$ ),  $\alpha(N) \le N$  [1](resp. [10]). A module M is weak duo if every direct summand of M is fully invariant for each  $\alpha \in S = \operatorname{End}_R(M)$  [ ]. A module M is said to be abelian if for each  $f \in S$ ,  $e^2 = e \in S$ ,  $m \in M$ , fem = efm [10]. A module M is an abelian if and only if  $S = \operatorname{End}_R(M)$  is an abelian ring [10]. An idempotent  $e \in S$  is called left (resp. right) semicentral if f = efe (resp. f = efe), for all  $f \in S$ . An idempotent  $f \in S = \operatorname{End}_R(M)$  is called central if it commute with each  $f \in S$ . A monomorphism  $f \in S$  is strongly splits if  $f \in S$ . A monomorphism  $f \in S$  is a stable direct summand of M (i.e fully invariant direct summand) for every direct summand N of M [3, Definition (2.3.39)]. A module M is strongly direct injective, if for every direct summand N of M, every monomorphism  $f \in S$  is strongly splits [3, Definition (2.3.40)].

**Notations.** R is a ring and S is the endomorphism ring of a module M. For a ring S and  $\alpha \in S$ , the set  $r_M(\alpha) = \{m \in M: \alpha m = 0\}$  (resp.  $\ell_M(\alpha) = \{m \in M: m\alpha = 0\}$ ) is said to be the right (resp. left) annihilator in M of  $\alpha$  in S. The sets  $S_{\ell}(S)$ ,  $S_r(S)$  and B(S) are the set of all left semicentral, right semicentral and central idempotent of S respectively. The samples  $\leq$ ,  $\leq$ ,  $\leq$ ,  $\leq$ ,  $\leq$ eand  $\leq$  refer to submodule, fully invariant submodule, direct summand, fully invariant direct summand, essential submodule and end the proof.

#### 2. ON DUAL STRONGLY RICKART MODULES

**Definition 2.1.** A module M is said to be dual strongly Rickart (shortly, d-strongly Rickart) if the image of any single element of  $S = \operatorname{End}_R(M)$  is generated by a left semicentral idempotent element of S. A ring R is d-strongly Rickart if and only if  $R_R$  is d-strongly Rickart as right R-module.

## Remarks and examples 2.2.

1. A module M is d-strongly Rickart if and only if Imα is a fully invariant direct summand of M.

**Proof**. Since for any  $e^2 = e \in S$ ,  $eM \subseteq M$  if and only if  $e^2 = e \in S_t(S)$  [6, Lemma 1.9], then the proof is obvious.

2. A module M is d-strongly Rickart if and only if Ima is stable direct summand of M.

**Proof**. From the fact: every fully invariant direct summands of a module M is stable [3, Lemma 2.1.6].

3. Let R = 
$$\begin{pmatrix} Z_4 & Z_4 \\ 0 & Z_4 \end{pmatrix}$$
 and I =  $\begin{pmatrix} 0 & Z_4 \\ 0 & 2Z_4 \end{pmatrix}$  be an ideal in R. From [3, Remarks and examples 2.2.2(6)], End<sub>R</sub>(I)  $\cong$ 

$$\begin{pmatrix} \mathbb{Z}_4 & \mathbb{Z}_4 \\ 2\mathbb{Z}_4 & \mathbb{Z}_4 \end{pmatrix} . \text{ One can takes } \alpha \in \text{End}_R(I) \text{ such that } \text{Im}\alpha = \begin{pmatrix} 0 & \mathbb{Z}_4 \\ 0 & 0 \end{pmatrix}, \text{ Im}\alpha \text{ is a right direct summand of } I_R[3]. \text{ But Im}\alpha \text{ is a right direct summand of } I_R[3].$$

not fully invariant in I. Let  $g \in \text{End}_R(I)$  defined by  $g(\beta) = \begin{pmatrix} a & c \\ 2b & d \end{pmatrix} \beta$  for all  $\beta \in \text{End}_R(I)$  and for some  $a, b, c, d \in \mathbb{Z}_4$ .

So  $g(Im\alpha) = \{\begin{pmatrix} 0 & ax \\ 0 & 2bx \end{pmatrix} | x \in \mathbb{Z}_4 \} \le Im\alpha$ . Therefore, I is not d-strongly Rickart.

4. A module M is d-strongly Rickart if and only if the short exact sequence

$$0 \rightarrow \text{Im}\alpha \xrightarrow{i} M \xrightarrow{\alpha} \frac{M}{\text{Im}\alpha} \rightarrow 0$$

is a strongly split for any  $\alpha \in S = End_R(M)$ .

**Proof.** Obvious, since Ima ⊴<sup>⊕</sup>M if and only if i(Ima) is stable direct summand of M. ■

5. Every d-strongly Rickart module is strongly direct injective.



**Proof.** Let  $N \leq^{\oplus} M$  and  $\alpha : N \to M$  any monomorphism. There exist  $\beta = \alpha \oplus 0|_L$  since  $M = N \oplus L$  for some  $L \leq M$ . By hypothesis, M is a d-strongly Rickart module, then by (1),  $Im\beta \trianglelefteq^{\oplus} M$ . But  $Im\alpha = Im\beta$ , so  $Im\alpha \trianglelefteq^{\oplus} M$ . Therefore, M is a strongly direct injective.  $\blacksquare$ 

- 6. Every d-strongly Rickart module is d-Rickart. The converse is not true in general. In fact, the Z-module M =
  - $Z_2 \oplus Z_2$  is d-Rickart [8, Example 4.6], which is not d-strongly Rickart. If one takes  $\alpha : M \to M$  defined by  $\alpha(\bar{x}, \bar{y}) =$
  - $(\bar{\mathbf{x}},\bar{\mathbf{0}})$  for all  $\bar{\mathbf{x}}\in Z_2$ , then  $Im\alpha=Z_2\oplus\{\bar{\mathbf{0}}\}$  is a direct summand of M. Now, let  $g\in S=End_R(M)$  defined by  $g(\bar{\mathbf{x}},\bar{\mathbf{v}})=Im(M)$
  - $(\overline{y}, \overline{x})$ . So,  $g(\alpha(M)) = g(Z_2 \oplus \{\overline{0}\}) = \{\overline{0}\} \oplus Z_2 \le Z_2 \oplus \{\overline{0}\}$ . Hence Im $\alpha$  is not fully invariant submodule of M. Therefore, M =
  - $Z_2 \oplus Z_2$  is not d-strongly Rickart Z-module.
- 7. Following (4), (5) and (6), a module M is d-strongly Rickart if and only if M is strongly direct injective and d-Rickart module.
- 8. A module M is a d-strongly Rickart if and only if M is a d-Rickart and weak duo (and hence abelian) module.

**Proof.** Let  $N \le^{\oplus} M$  and  $\alpha \in S = End_R(M)$  such that  $Im\alpha = N$ . By hypothesis,  $N = Im\alpha \le^{\oplus} M$ . Hence M is a weak duo module. Following (6), M is a d-Rickart. The converse is an obvious.

- 9. A module M is d-strongly Rickart if and only if Imα is generated by a central idempotent element of S for each α
  - $\in S = End_R(M)$ .

Proof. An immediately consequence from(8).

10. Every d- strongly Rickart module has strictly SIP and strictly SSP.

**Proposition 2.3.** A module M is d-strongly Rickart if and only if  $\sum_{\alpha \in I} \operatorname{Im} \alpha$  is generated by left semicentral idempotent element in S = End<sub>R</sub>(M), for any finite generated ideal I of S.

**Proof.**  $\Longrightarrow$ ) Let I be any nonzero left ideal of S with finite generators  $\alpha_1, ..., \alpha_n$ . Since M is a d-strongly Rickart module, then  $Im\alpha_i = e_iM$  for some left semicentral idempotent  $e_i^2 = e_i \in S_\ell(S)$ , i = 1, ..., n. So  $\sum_{i=1}^n Im\alpha_i = \sum_{i=1}^n e_iM$ . But M is satisfies the strictly SSP (Remarks and examples (2.2(10))). Now, each of  $e_iM$  is a direct summand of M and  $e_i^2 = e_i \in S_\ell(S)$  for each i = 1, 2, ..., n so there is a  $e^2 = e = \sum_{i=1}^n e_i - e_i = e_i$ .  $e_i \in S_\ell(S)$  such that  $\sum_{i=1}^n Im\alpha_i = e_iM$ .

(2) $\Longrightarrow$  (1) Let  $\mu \in S$  and  $I = S\mu$  be a principle left ideal of S. By hypothesis,  $Im\alpha = eM$  for  $e^2 = e^2 \in S_\ell(S)$ . Hence M is d-strongly Rickart module.

**Proposition 2.4.** For a module M and  $S = End_R(M)$ , the following conditions hold:

- 1. If M is d-strongly Rickart with D<sub>2</sub>-condition, then M is strongly Rickart.
- 2. If M is strongly Rickart with C2-condition, then M is d- strongly Rickart.
- 3. If M is projective morphic, then M is a strongly Rickart if and only if M is a d-strongly Rickart.
- 4. If M is Rickart with SC<sub>2</sub>-condition, then M is d-strongly Rickart.
- 5. A module M is d-strongly Rickart satisfies the D<sub>2</sub>-condition if and only if M is strongly Rickart satisfies the C<sub>2</sub>-condition.

**Proof.** 1. Let  $\alpha \in S$ , then  $Im\alpha \unlhd^{\oplus} M$ . But  $Im\alpha \cong \frac{M}{\ker \alpha}$ , so  $\ker \alpha \subseteq^{\oplus} M$ . Since M is weak duo module, so  $\ker \alpha \unlhd^{\oplus} M$ . Thus M is strongly Rickart module.

- 2. Suppose that M is strongly Rickart module and  $\alpha \in S$ . Then  $\ker \alpha \unlhd^{\oplus}M$ . Hence  $M = \ker \alpha \oplus K$  for some  $K \leq M$ . Then  $Im\alpha \cong \frac{M}{\ker \alpha} \cong K \leq^{\oplus}M$ . By  $C_2$ -Condition,  $Im\alpha \leq^{\oplus}M$ . But M is a weak duo module(Remarks and examples(2.2(6)), hence  $Im\alpha \unlhd^{\oplus}M$ .
- 3. Suppose that M is a d-strongly Rickart module. Since, for each  $\alpha \in S$ ,  $\frac{M}{\ker \alpha} \cong \operatorname{Im}\alpha$  and by hypothesis,  $\operatorname{Im}\alpha \trianglelefteq^{\bigoplus}M$ . Then, by D<sub>2</sub>-condition,  $\ker \alpha \trianglelefteq^{\bigoplus}M$ . Then  $\ker \alpha \trianglelefteq^{\bigoplus}M$  (Remarks and examples(2.2(6)) and hence M is strongly Rickart. Conversely, suppose that M is a strongly Rickart module and  $\alpha \in S$  then  $\ker \alpha \trianglelefteq^{\bigoplus}M$ . Since M is morphic  $(\frac{M}{\operatorname{Im}\alpha} \cong \ker \alpha)$  and satisfies the D<sub>2</sub>, hence  $\operatorname{Im}\alpha \leq^{\bigoplus}M$ . Therefore, M is a d-strongly Rickart module (Remarks and examples(2.2(6)).
- 4. Since the  $SC_2$ -condition implies the  $C_2$ -condition and weak duo module, so from (2) the proof obvious.



5. Obvious. **a** 

#### Examples 2.5.

- The Z-module Z is projective (and hence satisfies the D<sub>2</sub>-condition) module which is not morphic. From[5], Z is strongly Rickart. If α ∈ S = End<sub>R</sub>(Z), such that α(n) = 2n for each n ∈ Z, so Imα ≰<sup>⊕</sup>Z. Hence Z is not d-strongly Rickart Z-module.
- 2. The Z-module  $\mathbb{Z}_{p^m}$  is morphic (also satisfies the  $_{\text{C2}}$ ) which is not projective module. Since every endomorphism

of  $\mathbb{Z}_{p^{=}}$  is an epimorphism so  $\mathbb{Z}_{p^{=}}$  is d-strongly Rickart (see Proposition 3.9). From[5],  $\mathbb{Z}_{p^{=}}$  is not strongly Rickart Z-module [5].

A submodule of a d-strongly Rickart module may be not d-strongly Rickart. In fact,  $End_Z(Q) \cong Q$  and every endomorphism of Q is either isomorphism or zero. Hence Q is d-strongly Rickart while the submodule  $Z_Z$  is not, where there is  $\alpha$ :  $Z \rightarrow 2Z$  have  $Im\alpha = 2Z \leq \mathbb{Z}$ .

**Proposition 2.6.** If M is a d-strongly Rickart module, then every direct summand of M is a d-strongly Rickart.

**Proof.** Let  $M = N \oplus L$  and  $\alpha \in H = End_R(N)$ . So  $\alpha$  can be extended to  $\beta \in S = End_R(M)$ . i.e  $\beta = \alpha \oplus 0|_L$ . Since M is d-strongly Rickart module, then  $Im\beta \unlhd^{\oplus}M$ . But  $Im\beta = \alpha N$ . So  $Im\alpha \unlhd^{\oplus}M$ . Thus  $Im\alpha \leq {\oplus}N$  since  $Im\alpha \leq N$ . Now, let  $g \in H$ , consider the following sequence  $M \stackrel{p}{\to} Im\alpha \stackrel{j_1}{\to} N \stackrel{g}{\to} N \stackrel{j_2}{\to} M$ , where  $\rho$  is the projection epimorphism and  $j_1, j_2$  are the injection monomorphism. So,  $Im\alpha \geq j_2gj_1\rho(Im\alpha) = g(Im\alpha)$ . Hence,  $Im\alpha \unlhd^{\oplus}N$ . Therefore, N is a d-strongly Rickart module.  $\blacksquare$ 

**Corollary 2.7.** If R is a d-strongly Rickart ring, then, so is eR for each  $e^2 = e \in R$  as an R-module.

Recall that a module M is an epi-retractable if every submodule of M is a homomorphic image of M [11].

Corollary 2.8. Let M be an epi-retractable module. If M is a d-strongly Rickart module, then so is every submodule of M

**Proof**. Let N be any submodule of a d-strongly Rickart module M. By hypothesis, there exists an epimorphism  $\alpha: M \to M$  such that  $N = \alpha(M)$ . So  $N = Im\alpha \unlhd^{\oplus} M$ , since M is a d-strongly Rickart module. Therefore, N is a d-strongly Rickart module (Proposition 2.6).

#### **Examples 2.9**

- The Z-module Q is not epi-retractable module[11]. From Example (2.5), the submodule Z is not d-strongly Rickart although the Z-module Q is d-strongly Rickart.
- 2. The Z-module  $Z_4$  is not strongly Rickart while the submodule  $2Z_4 \cong Z_2$  is d-strongly Rickart module.

In general, d-strongly Rickart property is not closed under direct sum, see Remarks and example (2.2(6)), although it closed under direct summand. The following proposition gives the necessary condition to a direct sum of d-strongly Rickart.

**Proposition 2.10.** Let  $M = M_1 \oplus M_2$ . Then M is d-strongly Rickart if and only if  $M_i$  is d-strongly Rickart module (i $\in$ {1, 2}) and  $M_i \triangleleft M$ , i $\in$ {1, 2}.

 $\begin{array}{l} \textbf{Proof.} \Leftarrow \text{) Suppose that } M_i, \ i \in \{1, \, 2\}, \ \text{is d-strongly Rickart modules and } S_i = \text{End}_R(M_i). \ \text{Since } M_i \trianglelefteq M, \ \text{So } S = \text{End}_R(M) = \begin{pmatrix} S_1 & 0 \\ 0 & S_2 \end{pmatrix}. \ \text{Let } \alpha \in S, \ \text{then } \alpha = \begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{pmatrix}, \ \text{where } \alpha_i \in S_i. \ \text{But } M_i \ \text{is d-strongly Rickart module, hence } \ \text{Im}\alpha_i = e_iM_i \ \text{for } e_i^2 = e_i \in S_i(S_i). \ \text{We claim that } \ \text{Im}\alpha = \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} M \ \text{ and } \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} \in S_i(S_i). \ \text{Firstly, } \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix}^2 = \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} \ \text{and } \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix} \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} = \begin{pmatrix} x_1e_1 & 0 \\ 0 & x_2e_2 \end{pmatrix} = \begin{pmatrix} e_1x_1e_1 & 0 \\ 0 & e_2x_2e_2 \end{pmatrix} \ \text{for all } \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix} \in S. \ \text{Thus } e = \begin{pmatrix} e_1 & 0 \\ 0 & e_1 \end{pmatrix} \ \text{is a left semicentral idempotent of } S. \ \text{Now, let } \\ \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} \in \text{Im}\alpha \ \text{where } m_i \in \text{Im}\alpha_i = e_iM_i. \ \text{So } m_i = e_im_i. \ \text{Hence } \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} = \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} \in \text{eM. Clearly that, } \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} M \leq \text{Im}\alpha. \ \text{Thus } \\ \text{Im}\alpha = \text{eM for } e^2 = e \in S_i(S). \ \text{Therefore } M \ \text{is } d\text{-strongly Rickart.} \end{aligned}$ 

⇒) The proof is a consequence immediately from (Proposition (2.6)) and (Remarks and examples (2.2(8))) respectively. ■

#### 3. ENDOMORPHISM RING OF d-STRONGLY RICKART MODULES.

## ISSN 2347-1921



As well as d-Rickart [8], the following proposition proves that the endomorphism ring of d-strongly Rickart module is strongly Rickart ring. Following [4], every strongly Rickart ring is a left-right symmetric.

Proposition 3.1. The endomorphism ring of d-strongly Rickart module is strongly Rickart.

**Proof.** Let M be a d-strongly Rickart module and  $\alpha \in S = End_R(M)$ . Then  $Im\alpha = eM$  for some  $e^2 = e \in S_\ell(S)$ . Hence  $\ell_S(\alpha) = \ell_S(\alpha) = \ell_S(eM) = S(1-e)$ . Since  $(1-e)^2 = 1-e \in S_r(S)$ , therefore S is a strongly Rickart ring.

It's well known that the endomorphism ring of  $Z_Z$  is an isomorphic to Z, this example shows that the converse of Proposition (3.1) is not true in general.

Corollary 3.2. Let M be a retractable module. Then every d-strongly Rickart module is a strongly Rickart.

**Proof.** Following (Proposition (3.1)),  $S = End_R(M)$  is a strongly Rickart ring. By Proposition [5, Proposition (2.3)], M is strongly Rickart module.

Corollary 3.3. Every d-strongly Rickart ring is strongly Rickart ring.

**Corollary 3.4.** If R is a d-strongly Rickart ring, then for each  $e^2 = e \in R$ , eRe is strongly Rickart ring.

**Proof.** Since for each  $e^2 = e \in R$ ,  $eRe = End_R(eR)[12, 7.8, p.60]$ . Then, by Proposition (2.7) and Proposition (3.1) the proof is complete.

Recall that a module is called self-cogenerator if it cogenerates all its factor modules [12, Exercises17.15, p.147]. It's easy to prove that if a module M is d-strongly Rickart and  $f \in S = \operatorname{End}_R(M)$ . Then Sf is projective left S-module.

**Proposition 3.5.** If a module M is self-cogenerater and S is a strongly Rickart ring, then M is d-strongly Rickart modules.

**Proof.** Suppose that  $S = End_R(M)$  is strongly Rickart ring and  $\alpha \in S$ . Since M is self-cogenerater, by [12, 39.11, p.335],  $Im\alpha \leq^{\bigoplus} M$ . But S is an abelian ring, so  $Im\alpha \leq^{\bigoplus} M$ .

Recall that a homomorphic image of projective module over semihereditary ring is projective.

**Proposition 3.6.** Let M be a finitely generated projective R-module satisfies the  $SC_2$ -condition over a right (semi)hereditary ring R. Then M is a d-strongly Rickart module. Furthermore,  $S = End_R(M)$  is a strongly regular ring.

**Proof.** Let M be a finitely generated projective over right semihereditary ring. Then for each  $\alpha \in S$ , Im $\alpha$  is a projective module. So M = ker $\alpha \oplus N$ . But  $\frac{M}{\ker \alpha} \cong \operatorname{Im}\alpha \cong N \leq^{\oplus} M$ . Since M satisfies  $SC_2$ -condition, then  $\operatorname{Im}\alpha \trianglelefteq^{\oplus} M$  and so M is d-strongly Rickart. Thus, Im $\alpha$  and ker $\alpha$  are fully invariant direct summand in M. Hence, S is strongly regular ring.  $\blacksquare$ 

**Corollary 3.7.** Every right semihereditary right SC<sub>2</sub>- ring R is d-strongly Rickart as right R-module and strongly regular ring.

**Remark 3.8**. It's well known that the ring Z is a left semihereditary ring (since its hereditary) which is not satisfies the  $SC_2$ -condition, and then Z is not d-strongly Rickart ring.

**Proposition 3.9.** A module M is d-strongly Rickart and  $S = End_R(M)$  is a domain if and only if every nonzero element of S is an epimorphism.

**Proof.**  $\Leftarrow$ ) A module M is d-strongly Rickart since Im $\alpha$  = M for each nonzero endomorphism  $\alpha$  of M. Now, if  $\beta\alpha$ = 0 and  $\alpha \neq$  0, then  $\alpha(M)$  = M. Hence  $\beta\alpha(M)$  =  $\beta(M)$  = 0. Thus  $\beta$  = 0. So S is domain.

 $\Rightarrow$ ) Suppose that M is a d-strongly Rickart and  $0 \neq \alpha \in S$ , then Im $\alpha$  = eM. Since S is a domain and  $\alpha \neq 0$ , then e =1 and hence Im $\alpha$  = M. This implies that  $\alpha$  is an epimorphism.  $\blacksquare$ 

Recall that a module M is an indecomposable strongly Rickart if and only if each nonzero element of S is a monomorphism[5]. The following result is the dual of this fact can be proved in the following proposition.

**Proposition 3.10.** A module M is indecomposable d-strongly Rickart if and only if each nonzero element of S is an epimorphism.

**Proof** .⇒) Let  $\alpha \in S$ . Since M is d-strongly Rickart, then  $\alpha(M) = eM$  for some  $e^2 = e \in S_\ell(S)$ . But M is indecomposable module then either e = 1 and then  $\alpha$  is an epimorphism or e = 0 and so  $\alpha$  is zero.

 $\Leftarrow$ ) By hypothesis, if  $(0 \neq )$   $e^2 = e \in S$ , then, e = 1. Hence M is an indecomposable. In the same way, for any  $\alpha \in S$ , either  $\alpha = 0$  and so  $\alpha(M) = 0 \leq \Phi$ M or  $\alpha$  is an epimorphism and hence  $\alpha(M) = M \leq \Phi$ M. Then M is d-strongly Rickart module.

**Proposition 3.11.** Let M be a module and  $S = End_R(M)$ . Then the following conditions are equivalent

- 1. M is d-strongly Rickart
- 2. S is a strongly Rickart ring and  $\alpha(M) = r_M(\ell_S(\alpha M))$ , for all  $\alpha \in S$ .

## ISSN 2347-1921



**Proof**. (1 $\Rightarrow$ 2) By Proposition (3.1), S is a strongly Rickart ring. Let  $\alpha \in S$ , then Im $\alpha$  = eM for some  $e^2 = e \in S_\ell(S)$ . Then  $\ell_S(\alpha M) = S(1-e)$  and hence  $r_M(\ell_S(\alpha(M))) = eM = \alpha(M)$ .

 $(2\Rightarrow 1)$  Suppose that S is strongly Rickart ring. Let  $\alpha \in S$ , then  $\ell_S(\alpha) = Se$  for some  $e^2 = e \in S_r(S)$ . Since  $\alpha(M) = r_M(\ell_S(\alpha(M)), then \alpha(M) = (1-e)M$  for  $(1-e) \in S_r(S)$ . Therefore M is d-strongly Rickart module.

**Corollary 3.12.** For a module M and S =  $End_R(M)$ , the following conditions are equivalent:

- 1. M is a d-strongly Rickart module.
- 2.  $\alpha(M) = r_M(\ell_S(\alpha(M))) \leq^{\oplus} M$  for all  $\alpha \in S$ .

Proof. Obvious.

**Proposition 3.10.** For a module M and  $S = End_R(M)$ , the following conditions are equivalent:

- 1. M is d-strongly Rickart module;
- 2. M is satisfies  $SC_2$ -condition and  $Im\alpha$  is isomorphic to a direct summand of M for all  $\alpha \in S$ .

**Proof.** 1 $\Rightarrow$ 2) Let N be a submodule of M such that N  $\cong$  L  $\leq^{\oplus}$  M. Hence N = i $\alpha$ p(M), where  $\rho$  : M $\rightarrow$  L be projection,  $\alpha$  : L  $\rightarrow$  N be an isomorphism and i: N  $\rightarrow$  M be injection. Since M is d-strongly Rickart module, so N = Im(i $\alpha$ p)  $\leq^{\oplus}$  M. the second condition is an obvious.

2⇒1) Let  $\alpha \in S = \text{End }_R(M)$ . Then by hypothesis, Im $\alpha$  is an isomorphic to a direct summand of M. Hence by  $SC_2$ -condition Im $\alpha \unlhd^{\oplus}M$ .  $\blacksquare$ 

**Proposition 3.11.** A module M is d-strongly Rickart satisfies the  $D_2$ -condition if and only if  $S = \text{End }_R(M)$  is a strongly regular ring.

**Proof.**  $\Leftarrow$  ) Following [5],  $\text{Im}\alpha \trianglelefteq^{\oplus} M$  for each  $\alpha \in S$ .

⇒ ) Let  $\alpha \in S$ . So Im $\alpha \trianglelefteq^{\oplus} M$ , since M is d-strongly Rickart. Indeed,  $\frac{M}{\ker \alpha} \cong \operatorname{Im} \alpha$  and by D<sub>2</sub>-condition,  $\ker \alpha \leq^{\oplus} M$ . But M is an abelian module, so  $\ker \alpha \trianglelefteq M$ . Therefore, S is strongly regular ring.  $\blacksquare$ 

We can summarize the previous propositions in the following theorem

**Theorem 3.12.** For a module M and S =  $End_R(M)$ , the following conditions are equivalent:

- 1. S is a strongly regular ring;
- 2. M is d-strongly Rickart module satisfies the D<sub>2</sub>-condition;
- 3. M is satisfies  $D_2$ -condition and  $SC_2$ -condition, and  $Im\alpha$  is isomorphic to a direct summand of M for all  $\alpha \in S$ ;
- 4. M is an abelian module and  $S = End_R(M)$  is a von Neumann regular ring.

**Proposition 3.13.** A ring R is d-strongly Rickart if and only if R is a strongly regular ring.

**Proof**.  $\Rightarrow$ ) Let aR be a principle right ideal in R for a  $\in$  R. There is  $\alpha$ : R  $\rightarrow$  aR such that  $\alpha(r)$  = ar for each  $r \in$  R. It's clear that  $\alpha$  is an endomorphism of R and Im $\alpha$  = aR. By hypothesis, aR = Im $\alpha$  = eR for  $e^2$  =  $e \in$  B(R). Therefore, R is a strongly regular ring [12, 3.11, p.21].

 $\Leftarrow$ ) Since S = End <sub>R</sub>(R)  $\cong$  R, by (Theorem 3.12), the proof holds.

A quotient  $\frac{M}{N}$  of quasi-projective is quasi-projective module M, if a submodule N is fully invariant of M [12, 18.2(4), p.149].

**Proposition 3.15.** Let M be a quasi-projective module. If M is a d-strongly Rickart, then so is  $\frac{M}{L}$  for each fully invariant submodule L of M.

**Proof.** Let  $\beta \in \text{End}_R(\frac{M}{L})$  and  $S = \text{End}_R(M)$ . Since M is a quasi-projective module, so there is an epimorphism  $\mu: S \to \text{End}_R(\frac{M}{L})$  defined by:  $\mu(\alpha) = \beta$ . It's easy to show that  $\mu$  is a well define and ring homomorphism. So  $\text{End}_R(\frac{M}{L}) \cong \frac{S}{\text{ker}\mu}$  Furthermore, M is d-strongly Rickart module satisfies the D<sub>2</sub>-condition (since M is quasi-projective), hence S is a strongly regular ring (Proposition 3.11). So  $\frac{S}{\text{ker}\mu}$  and hence  $\text{End}_R(\frac{M}{L})$  is strongly regular ring. Therefore by Proposition (3.11),  $\frac{M}{N}$  is a d-strongly Rickart module.

**Corollary 3.16.** If a module M is d-strongly Rickart and quasi-projective then  $\frac{M}{Im\alpha}$  is a d-strongly Rickart and quasi-projective module for all  $\alpha \in S = End_R(M)$ .

## ISSN 2347-1921



Recall that Soc M =  $\cap$  {L \le M | L \le eM} is fully invariant in M [12, 21.1, p. 174] and Rad M =  $\cap$  {K \le M | K is a maximal submodule of M} is fully invariant in M [12, 21.5, P.176]

Corollary 3.17. If M is a quasi-projective and d-strongly Rickart, then  $\frac{M}{Rad \, (M)}$  and  $\frac{M}{Soc(M)}$  are d-strongly Rickart.

#### 4. RELATIVE d-STRONGLY RICKART MODULES

**Definition 4.1.** Let M and N be modules. Then M is called N-d-strongly Rickart (relative d-strongly Rickart to N) if for all  $\alpha$ : M  $\rightarrow$  N, Im $\alpha \trianglelefteq^{\oplus}$  N.

#### Remarks and examples 4.2.

- 1. A module M is d-strongly Rickart if and only if M is M-d-strongly Rickart.
- 2. For each semisimple abelian module N, M is N-d-strongly Rickart for each module M.
- 3. Let M and N are modules such that  $Hom_R(M, N) = 0$ . Then M is N-d-strongly Rickart. In fact, Let  $N = \mathbb{Z}_p$  and  $M = \mathbb{Z}_{p^{\varpi}}$ . It's well known that  $Hom_Z(M, N) = 0$ . Then M is N-d-strongly Rickart. Furthermore N is not M-d-strongly Rickart. In fact, if  $\alpha \in Hom_Z(N, M)$  since N is simple module, then either  $\alpha$  is zero or monomorphism. If  $\alpha$  is monomorphism then  $Im\alpha$  is not direct summand in M, since M is an indecomposable.

**Proposition 4.3.** For a module M and N⊕L≤⊕M if M satisfies the strictly SSP then N is L-d-strongly Rickart.

**Proof.** By the strictly SSP, every direct summand of M is a fully invariant. Then  $Hom_R(N, L) = Hom_R(L, N) = 0$ .

**Proposition 4.4.** If M

M satisfies the strictly SSP then M is d-strongly Rickart module.

**Proof.** Since M⊕M satisfies the SSP, so M is a d-Rickart module[8, Corollary 2.17]. But M satisfies the strictly SSP, hence M is d-strongly Rickart module

**Proposition 4.5.** Let M and N be modules. Then M is N-d-strongly Rickart if and only if for any  $A \le \mathbb{H}M$  and  $B \le N$ , A is B-d-strongly Rickart.

**Proof.** Let  $A \leq^{\oplus}M$ ,  $B \leq N$  and  $\alpha : A \to B$  be any homomorphism. Then  $\alpha$  can be extended to  $\beta = i\alpha p$ :  $M \to N$  where  $p : M \to A$  is projection and  $p : B \to N$  is injection. Since M is N-d-strongly Rickart, so  $Im\beta = \alpha(A) \not \supseteq^{\oplus}N$ . But  $Im\alpha \leq B$ , so  $Im\alpha \leq^{\oplus}B$ . Now, let  $g \in End_R(B)$ , then  $g(\alpha(A)) = ig\alpha(A) \leq \alpha(A)$ , where i is the inclusion homomorphism from  $B \to N$ . Therefore  $Im\alpha \not \supseteq^{\oplus}B$  and hence A is B-d-strongly Rickart.

For the converse, put M = A and N = B.

Corollary 4.6. For modules M, N, and a direct summand A of M, if M is N-d-strongly Rickart then A is N-d-strongly Rickart.

**Corollary 4.7.** A modules M is d-strongly Rickart if and only if for any submodule L of M and a direct summand A of M, A is L-d-strongly Rickart.

**Corollary 4.8**. Let N satisfies the strictly SSP and  $M = \bigoplus_{i=1}^{n} M_i$ , then  $\bigoplus_{i=1}^{n} M_i$  is N-d-strongly Rickart if and only if  $M_i$  is N-d-strongly Rickart for each i = 1,...,n.

**Proof.** From Proposition (4.5), if  $M = \bigoplus_{i=1}^n M_i$  is N-d-strongly Rickart, then  $M_i$  is N-d-strongly Rickart for each i=1,...,n. Conversely, let  $\alpha \in \text{Hom}_R(\bigoplus_{i=1}^n M_i, N)$ . Then  $\alpha = (\alpha)_{i=1}^n$  where  $\alpha_i \in \text{Hom}_R(M_i, N)$  for each i=1,...,n. Since each  $M_i$  is N-d-strongly Rickart, then  $\text{Im}\alpha_i \unlhd^{\oplus} N$ . But N satisfies the strictly SSP and  $\text{Im}\alpha = \sum_{i=1}^n \text{Im}\alpha_i \unlhd^{\oplus} N$ . Therefore  $\bigoplus_{i=1}^n M_i$  is N-d-strongly Rickart module.  $\blacksquare$ 

#### REFRENCES

- [1] M.S. Abbas(1990), On fully stable modules, ph. D, thesis Univ. of Baghdad.
- [2] M. Alkan and A.Harmanci .(2002). On summand sum and summand intersection property of modules, Turk J.Math., 26, pp.131-147.
- [3] S. A. Al-Saadi(2007), S-Extending Modules and Related Concept, ph. D, thesis Univ. of Al-Mustansiriya.
- [4] S. A. Al-Saadi and T. A. Ibrahiem (2014), Strongly Rickart rings, Math. Theory and Modeling., Vol.4, No.8.
- [5] S. A. Al-Saadi and T. A. Ibrahiem(2014), Strongly Rickart modules, Vol.9, No.4, pp. 2506-2514.
- [6] G.F. Birkenmeier, B.J. Muller and S.T. Rizvi (2002), Modules with fully invariant submodules essential in fully invariant summand, Comm. algebra, 30 (4), 1388-1852.





[7]G. Lee; S.T. Rizvi; C.S. Roman(2010), Rickart modules, Comm. Algebra, 38 (11), 4005-4027.

[8] G. Lee, S. T. Rizvi and C. Roman(2011), Dual Rickart modules, Comm. Algebra 39, 4036-4058.

[9] S.H. Mohamed and B.J. Müller(1990), Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge.

[10] A. Ç. ÖZcan and A.Harmanci (2006), Duo modules, Glasgow Math J. 48, pp.533-545.

[11] B. M. Pandeya, A. K. Chaturvedi and A. J. Gupta(2012), Applications of epi-retractable modules, Bulletin of the Iranian Math. Society Vol. 38 No. 2, pp 469-477.

[12] R. Wisbauer(1991), foundation of rings and modeling,, Gorden and Breach.

