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ABSTRACT 

A particular means of producing nonseparable solutions to a linear partial differential equation from given separable 

solutions to the same partial differential equation is exposed and extended. The method, involving symmetry operators, is 

straightforward, requiring only basic partial differentiation. Examples are presented for important standard second-order 

linear partial differential equations, with particular attention being given to Helmholtz equations, for which previously known 

ad hoc solutions are derived within the current methodology. Although the examples presented are restricted to second-

order linear partial differential equations, the method is developed in sufficient generality to cover all linear partial 

differential equations and to make comparison with previous work meaningful. Indeed, comparison with previous work 

enables the development of certain novel results. 
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1.  Introduction 

One of the standard methods of solving linear partial differential equations (PDE) is the method of separation of variables 

(SOV) [4, 5]. Interestingly, it is possible to produce, in a particular and technically straightforward manner using symmetry 

operators [1, 2, 4], nonseparable solutions from  separable solutions obtained from the method of SOV. As well as being 

relatively easy to produce, these nonseparable solutions have immediate application, for example, in the theory of elastic 

vibrations [6, 7], acoustical cavities [7] and electro-magnetic waveguides and cavities [3, 9-11]. In this paper, we expose 

and extend the basic ideas behind this nonseparable solution process, following [1] and [2], as well as providing examples 

of such nonseparable solutions to well-known second-order linear PDE.  

      We begin, in the next section, by examining and extending the elements of the ‘nonseparable methodology’ of 

references [1] and [2]. This is followed, in section 3, by two major examples of the ‘nonseparable methodology’ at work. 

Then, in section 4, we focus on the Helmholtz equation, for which the application of nonseparable solutions to various 

problems has been determined [3, 6, 7, 9-11] and develop various nonseparable solutions for this. Then, in section 5, we 

extend the method further and discuss, in particular, the related methodology of Overfelt [8], who produces nonseparable 

solutions to the Helmholtz equation from separable solutions, in an analogous manner to the present method, using other 

certain well-known symmetry operators [4, 8]. The paper finishes with a short conclusions section, section 6. 

 

2.  Generating Nonseparable Solutions: The Basic Ideas 

We consider two particular approaches to the determination of nonseparable solutions to PDE from corresponding 

separable solutions that we will label the explicit approach [2] and the implicit approach [1]. As we will see, they both 

reduce to the same operational approach to the ‘nonseparable’ problem. In fact, following Chester [2], we consider a more 

general situation, in terms of linear operators, and then apply the more general results we obtain to the case of certain 

second-order linear  PDE and their known variable separable solutions. So, generalizing Chester’s method to an arbitrary 

number of variables/parameters, we begin by supposing that u  is any solution of the linear PDE (later on we assume that  

u  is a variable separable solution, at least to ‘start’ with) 

                                                        ,,,,   nuLa,,aaλuL n 322][)(][ 2211                                                                 (2.1) 

where 1L  and 1L  are arbitrary  linear differential operators and the parameter ),,( 21 naaa   depends only on the other 

parameters .,, 21 naaa   The relation (2.1) is a straightforward generalization of equation (1) of [2]. In equation (2.1) we 

have the explicit form of the problem, with the dependence on the parameters represented explicitly by ).,,( 21 naaa   

We now find, extending Chester’s work [2], that the functions 
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are also solutions of (2.1) when u  is.  That the solutions (2.2) of (2.1) are nonseparable if the solution u  are separable 

should be clear, but is made more obvious in the examples presented below, in subsequent sections.    

      The argument leading to (2.2), extending that of  [2], is elementary. First, differentiate (2.1) with respect to ia  and  

multiply by ja /  to get 

                                          ])/()/([)/(]/[)/( 21 uaauLaauLa iijij                                              (2.3) 

Next, swap-round ia  and ja  in (2.3), leaving 

                                          ])/()/([)/(]/[)/( 21 uaauLaauLa jjiji                                              (2.4) 

Now, on subtracting (2.4) form (2.3), we find that 

                 )]/)(/()/)(/[(1 jiij auaauaL  )]/)(/()/)(/[(2 jiij auaauaL                      (2.5) 

Finally, comparing (2.5) with (2.1), the result (2.2) follows, Naturally, the result (2.2) depends on assuming that the partial 

differentiation process commutes with the linear operators 1L  and ;2L  this will always be assumed in what follows. 
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 It is apparent that we may identify an operator, to within a sign, which, assuming it commutes with 1L  and ,2L  produces 

a new solution from the given solution :u from (2.5) we identify these (restricted) symmetry [4, 8] operators as 

                                                      n,,,j   i
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with the  ji ,  depending only on the parameters .,, 21 naaa   It is equally apparent that we may iterate the action of (2.6) 

and, indeed, form linear combinations of positive integral ‘powers’ of (2.6), leading to more general solutions of (2.1), than 

(2.2), through the application of these ‘combination’ operators to the given solution .u  (In future, we will, mostly, take the 

word ‘symmetry’ as read.) 

      We note at this point, that the results (2.6) generalize those of Chakrabarti [1], who followed a more particular 

approach [1], with the appropriate choice of 1L  and .2L  

      As presented above, the methodology appears quite general and may be applied to equations of any order. However, 

Chester warns that a certain amount of care is needed in its application, to avoid ‘null’ results [2]. On the other hand, the 

methodology determined through (2.1) to (2.6) is open to an iterative approach, leading to an, in principle, infinite 

sequence of alternative solutions being generated from a single original separable solution of (2.1) [7]. Further, as the 

operations involved are linear, it is possible to superimpose individual nonseparable solutions to obtain new nonseparable 

solutions from given ones. We will encounter these possibilities in the examples presented in the following sections. 

      We consider, now, the second or implicit approach to the problem of procuring nonseparable solutions to PDE from 

their corresponding separable solutions. 

      Suppose we have our relation, with L  a linear operator, in the form     

                                                                                    0][ uL                                                                                         (2.7) 

so that u  is any solution of the linear PDE (2.7) and we assume the problem  depends implicitly on several parameters. 

That is, developing a variation of Chakrabarti’s argument [1], we assume the existence of a parameter   which is 

represented, now, through an implicit relation involving various other parameters, .,, 21 naaa   That is, we may write 

                                                                            0),,( 21 naaa                                                                                 (2.8) 

and assume that we may, in principle, solve (2.8) for ja  in terms of ia  ( ji  ) or vice versa. We will now show that, as 

before where   was given explicitly, if u  is a solution of (2.7), then so are 
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First, we suppose that we may solve (2.8) for ja  in terms of .ia  If we differentiate (2.7) with respect to ia  with (2.8) in 

mind, then we find that 
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or 
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Secondly, we suppose that we may solve (2.8) for ia  in terms of .ja  ( ji  ) Then, when we repeat the above argument 

with a replacing b and vice versa, we find that  
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Finally, multiplying (2.11) by ja /  and (2.12) by ,/ ia   we get, in both cases 

                                                        0)]/)(/()/)(/[(  jiij auaauaL                                                     (2.13) 

and the proposition (2.9) has been proven. As before, we may now define the operators (2.6) and we have recovered the 

previous (explicit) formalism. 

      However, there is more to this case. Indeed, if u  is a solution of (2.7), then basic differentiation shows that the 

functions 

                                                                         n,,,   i
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i

i ,321,v 



                                                                      (2.14) 

are also solutions of (2.7), with corresponding (symmetry) operators ./ ia  Of course, various combinations of the 

operators ia /  are possible, as in the previous cases. With this, we leave the theoretical development of the method 

and move on to its application. We return to the consideration of further developments of the method in section 5, where 

we consider PDE with non-constant coefficients and the connection with other (corresponding) types of symmetry 

operators. 

3. Examples of Nonseparable Solutions of Standard PDE 

In the following, we restrict ourselves to a single application of one of the D''  operators. Naturally, as mentioned already, 

in any example, we may iterate the use of any D''  operator, or form various other combinations to produce new solutions. 

Also, we adopt a simpler more concrete, if more extensive, notation. 

     For our first example for this section, we consider the wave equation in three dimensions [5] 
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with separable solution ( , ,   and   are constants) 

                                                 )sin()sin()sin()sin(),,,(   dtczbyaxtzyxu                                           (3.2) 
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with corresponding operators 
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and with dcba ,, ,,    depending only on the parameters ,a  ,b  c  or .d  

      So, for example, from (3.3) and (3.5), if (3.2) is a solution of (3.1), then so is 

                                                               


















b

u
a

a

u
btzyx baa,b ,2),,,( v                                                                 (3.6) 

or, on setting ,2/1, ba  we get a nonseparable solution of (3.1) of the form 

                 )sin()sin()]cos()sin()sin()cos([),,,(   dtczbyaxaybyaxbxtzyxa,bv                 (3.7) 

which may be checked by differentiation and substitution. 

      We look, now, at an example in which we have an implicit relation among the parameters of the form of equations (2.7) 

and (2.8). So, as an example of the ‘implicit situation’, we examine Laplace’s equation in three dimensions [5] 
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with separable solution 
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as .1ˆ2
i  From (2.9) and (3.10), we see that we may expect a nonseparable solution to (3.8) of the form, for example, 

of 
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On setting ,2/1
,


ba
  we find that (3.11) yields a nonseparable solution to (3.8) of the form 
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which may be checked, as usual, by differentiation and substitution. 

4.  Nonseparable Solutions of the Helmholtz Equation 

In this section we are involved in somewhat further detail when we examine two forms of the Helmholtz equation, one in 

cartesian co-ordinates and one in polar co-ordinates. As well as providing further nonseparable solution examples, we 

also consider some unsolved problems left over from the original development of the method [1, 7] and show how they 

can be resolved. Note that various ad hoc expressions [6, 7] are here derived from the basic methodology 

      First, we suppose we are dealing with the Helmholtz equation in three variables [5, 7] and in cartesian co-ordinates, 

that is, we consider 
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with separable solution [1, 7] ( ,   and   are constants) 
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                                                             )sin()sin()sin(),,(   czbyaxzyxu                                                    

(4.2) 

provided that 
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or, setting 2/1,,,  cbcaba   
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      We can obtain further nonseparable solutions to (4.1) in two ways. First, by linearly combining the operators of (4.4) 

and operating on (4.2) with the resultant operator combination and, secondly, by introducing other variable separable 

solutions of (4.1) and combining the results of operating on these other variable separable solutions of (4.1) with the 

operators (4.4). 

      Taking the first of these options, we set 2/1,,  caba    and 2/1, cb  in (4.4) and, assuming (4.2) and (4.3) 

again, we obtain the nonseparable solution 
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or, from (4.5) 

             )sin()sin()cos()(),,(v   czbyaxxcbzyx   
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                                                                                                    )cos()sin()sin()(   czbyaxzba              (4.7) 

another result first presented by Moseley [7]. Of course, the operator implied by (4.6) was constructed to reproduce 

Moseley’s result (4.7) (see also [1]). Written out explicitly and re-arranged, Moseley’s operator (4.6) (again given ad hoc as 

equation (26) of [7]) producing (4.7) is 
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      As mentioned already, it is possible to iterate the above process by defining, for non-negative integers ,n  the operator 
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and produce a sequence of nonseparable solution to (4.1) of the form [7] 

                                            1     )]sin()sin()[sin()(),,(v  nczbyaxzyx
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with ),,(v),,(v1 zyxzyx   of (4.7). Naturally, further generalizations of these three-variable solutions may be obtained 

by invoking, again, the principle of linear superposition as in the two-variable case. 

      There are, of course, further variable separable solutions of (4.1); for example, we may consider [7] 

                                                   )cos()cos()sin(),,(1   czbyaxzyxu                                                       (4.11a) 
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or 

                                                   )cos()sin()cos(),,(2   czbyaxzyxu                                                      (4.11b) 

or    

                                                   )sin()cos()cos(),,(3   czbyaxzyxu                                                       (4.11c) 

 
which are all particular solutions of (4.1), subject to condition (4.3). 

      If we examine, now, the particular construction from (4.4) and (4.11) 
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33 222v                                  (4.12) 

and set ,2/1, ba  2/1, ca  and ,2/1, cb  we find that (4.12) reduces to 

                )]cos()sin()sin()cos()[sin(v   czbycczbybaxx  

                              )]sin()cos()cos()sin()[sin(   czaxaczaxcbyy  

                                               )]cos()sin()sin()cos()[sin(   byaxbbyaxaczz                           (4.13) 

which is just (the ad hoc) relation (31) of Moseley [7]. Chakrabarti [1] produces a different construction of (4.13). 

      Parenthetically, Moseley has produced a further nonseparable solution to (4.1) which he could not derive 

systematically, that is, equation (32) of [7]. In fact, if we take u as in (4.2) and form, using the operators implicit in (4.4) 

(with 1,,,  cbcaba  )   
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then on setting ,1 cba  (4.14) reduces to equation (32) of [7]. 

      The formalism of section 2 is not confined to cartesian co-ordinates. Consider, now, the Helmholtz equation in 

cylindrical co-ordinates with angular symmetry 
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                                                                   (4.15) 

with separable solution [6, 7] ( p  and m  are constants) 

                                                                          )sin()(),( 0 mzprJzru                                                                        (4.16) 

(with )(0 prJ  the parametric Bessel function of order zero) provided that 

                                                                                
222

mpk                                                                                   (4.17) 

In this case, the parameter in the PDE is 
22

),( mpmp   and, from (2.6) and (4.17), if (4.16) is a solution of (4.15), 

then so is )],,( zrup,m[D where 
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mmpp,m ,2D                                                                  (4.18) 

Setting 2/1, mp  [6, 7], we get a nonseparable solution of (4.15) of the form (as )()( 10 prJprJ  ) 

                            )sin()()cos()()]sin()([ 100 mzprmrJmzprpzJmzprJ
p

m
m

pp,m 
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




z)(r,v                        (4.19) 

in agreement with Moseley’s original, but ad hoc, result [6, 7]. 

      The above example shows the superiority of the abstract approach pioneered by Chester [2], as the alternative 

approach of Chakrabarti is limited to PDE with constant coefficients and a particular (exponential) type of variable  
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separable solution. Oddly, the above example appears to be the first application of Chester’s methodology [2] to PDE with 

variable coefficients; of course, the ideas originate with Moseley [6, 7] (who did more work on this than mentioned here [6, 

7]). 

5.  Discussion 

In this section we will discuss two further topics. First, how the method developed here for producing nonseparable 

solutions to PDE from associated separable solutions is related to the similar method of Overfelt [7]. Then, following this, 

we show that the present methodology is sufficiently flexible to encompass further types of ‘nonseparable operators’ and 

their corresponding nonseparable solutions to PDE, leading to new results. 

      Overfelt [8] generates nonseparable solutions to the two-dimensional Helmholtz equation [1, 5, 6, 7] 
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u
                                                                           (5.1) 

using a Lie algebra of symmetry operators (Miller [4], chapter 1) different from those used here, but not unconnected, as 

we discuss in a moment. Overfelt discusses Moseley’s work [6] and his original ad hoc operator 

                                                                                
b

a
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b



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


D                                                                                (5.2) 

for producing nonseparable solutions to (4.1) from the separable solution (  and   are constants) 

                                                                    )sin()sin(),(   byaxyxu                                                                  (5.3) 

provided that 

                                                                                   
222

bak                                                                                    (5.4) 

(Note that the operator (5.2) is easily extracted from (5.4) using the results of section 2, merely by realizing that 

.),(
22

baba  ) 

      As Overfelt shows, (5.2) is insufficient to produce nonseparable solutions to (5.1) from the alternative starting 

separable solution           

                                                                       )/sin()sin(),( byaxyxu                                                                          (5.5) 

with 

                                                                                
222

/1 bak                                                                                   (5.6) 

      However, this is not the case with the methodology discussed here. Indeed, the operators used here to derive 

nonseparable solutions from separable solutions are all also symmetry operators [4, 8] and will always lead to further 

solutions of the given equation, but subject to the restriction of   having a particular functional form; also, the D''  

operators do not lead to eigenvalue equations [4], which restricts their use. For example, in this instance the relevant 

operator is (2.6) and we get the (new) specific differential operator 
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as 
22

/1 ba   and ,2/1
3

, bba   when the associated nonseparable solution of (5.1) is 

                     )/cos()sin()/sin()cos()]/sin()[sin( ),(v
3
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                  (5.8) 

Further, as we have seen already, the methodology generalizes to encompass the  use of non-cartesian coordinates, in 

parallel with Overfelt’s approach [8].       
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  The two methods lead to different results, of course. In particular, if we consider the previous problem from Overfelt’s 

point of view, we can obtain a nonseparable solution of (5.1) from (5.5) by applying the operator M of equation (3) of [8]. 

Thus, we get the nonseparable solution of (5.1) (with M  defined implicitly) 

                        )]/sin()[sin()]/sin()[sin(),(vO byax
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                                                                            )/cos()sin()/()/sin()cos( byaxbxbyaxay                                   (5.9) 

 The meeting point of the two approaches hinges on the fact that the separable  solution (5.3) for (5.1) is symmetric to the 

interchange of a  with x  and b  with ,y  so that the operator (5.2) becomes, after the above interchange, the operator 

M of equation (3) of [8]. Similar remarks apply to the separable solutions and their corresponding  D''  operators in all of 

the examples presented here and elsewhere: if a separable solution of a PDE has a parameter-variable interchange 

symmetry, then new symmetry operators can be generated from the associated D''  operators, thus enabling the 

production of other classes of nonseparable solutions to said PDE.  

      All in all, the two methodologies appear complementary, although the method developed here can be a more ‘elastic’ 

approach to the problem. To show this, we will derive another of Moseley’s ad hoc operators [7] from a more general 

symmetry operator.  

      Consider again equation (2.1): multiplying through (2.1) by ,/ ja  differentiating with respect to ja  and scaling the 

result by ),//()/( ji aa    gives 
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Now, if we subtract (5.6) from (2.2), we find that (after cancellation) 
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and we have another (nonseparable) solution of (2.1), with corresponding operator 
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To match this result (5.12) with Moseley’s [7], we consider again equation (4.15), with separable solution (4.16) subject to 

the condition (4.17), when (5.12) takes the particular form, with ,2/1, 
ji  of Moseley’s equation (A3) of [7], that is 
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and we can continue by following Moseley’s calculations [7] and produce further classes of nonseparable solutions to 

(4.15), should we so wish. 

 

6.  Conclusions 

In conclusion, we have presented a systematic method for obtaining non-separable solutions to PDE when corresponding 

separable solutions are available. The method is a refinement and generalization of the work of Chakrabarti [1] and 

Chester [2], which was based on the original work of Moseley [6]. Examples involving important PDE of mathematical 

physics have been presented to support the basic theoretical ideas and the link with a similar approach [8] elucidated. 

Also, several unsolved problems from the literature [6, 7] have been resolved within the compass of the method presented 

here. Finally, although we have not discussed them here, it is apparent that boundary and initial conditions must be 

attended to when solving PDE. As Overfelt remarked [8], this is the nub of many practical problems, but with nonseparable 

solutions it may not be that easy and problems may have to be solved on a case-by-case basis [8]. 
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