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ABSTRACT 

 The object of the present paper is to derive certain integral properties of Aleph function and two general class of 
polynomials. During the course of finding, we obtain some particular cases, which are also new and of interest by 

themselves. The -function is a generalization of the familiar H-function and the I-function. The results derived are of 
general character. 
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INTRODUCTION  AND PRELIMINARIES 

Feynman integrals are useful in the study and development of simple and multivariable hypergeometric series which in 
turn are useful in the statistical mechanics. The conventional formulation may fail pertaining to the domain of quantum 
cosmology but Feynman path integrals apply [10, 11]. Feynman path integrals reformulation of quantum mechanics is 
more fundamental than the conventional formulation in term of operators. 

In the study of fractional driftless Fokker-Plank equations with power law diffusion coefficients, there arises naturally a 

special function, which is a special case of the -function i.e. Aleph function. The idea to introduced Aleph-function 
belongs to Südland et al. [3]. The complete definition is given in the following manner in terms of the Mellin-Barnes type 
integrals [4]: 
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 The path  i  is a suitable contour which extends from R,.i  toi    the integers M,N,ui,vi satisfy the inequality 

r.1,2,3,...,i,0,v M1,u N0 iii     The parameters Aj, Bj, Aji, Bji are positive real numbers and aj, bj, aji, bji are complex 

numbers, the poles suppose to be simple, such that the poles of M1,2,3,...,j),Bb( jj   separating from those of 

N.1,2,..., j ),Aa1( jj    All the poles of integrand (1.1) are supposed to easy and empty product are considered as unity. 

The existence conditions for the function (1.1) are given below: 
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The general class of polynomial introduced by Srivastava [6] 
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Where m is an arbitrary positive integer and the coefficient Dn,k (n,k  0) are arbitrary constant, real or complex. 

2. SOME IMPORTANT RESULTS 

In this section we establish the following results 
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Proof. We have 





























































w

xy1

y1
wy

xy1

x1
Swy

xy1

x1
S NM,

r;i,iv,iu

2

'm'

'n'

m'

n'   

'k'
2

'k','n'
'k''m'

k'

k',n'

k',m'

]/m'n'[

0k'

wy
xy1

x1
D

! 'k'

)'n'(
wy

xy1

x1
D

! k'

)n'(











































.dw
xy)(1

y)1(
)(

2

1 NM,

r;i,iv,iu 




















 



                      (2.2) 

Multiply both sides of eq.(2.2) by 
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and integrating it with respect to x and y between 0 and 1 for both the variables and using known result [8, page 145]. After 
simplify we get the required result (2.1). 
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Provided that 'm',m',0)/bR( jj   are arbitrary positive integers and coefficients 0)  'k',k','n',n'(D,D 'k','n'k',n'  are 
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Multiply both sides eq.(2.4) by 
11xy y)F(x  

and integrating with respect to x and y between 0 and  both the variables 

and making a use of a known result [8, p.177]. After simplification, we get desired result(2.3). 
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provided that 'm',m',0)R(,0)R(   are an arbitrary integer and coefficients 0)  'm',m','n',n'(D,D k','n'k',n'  are arbitrary 
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Multiplying both sides of eq.(2.6) by F(xy) 
 yy)1(x)1( 11   and integrating with respect to x and y between 0 and 1 in 

view of result [8, p.243] and by further simplification, we get required result (2.5). 
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Multiplying both sides of eq.(2.8) by 
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and integrating with respect to x and y between 0 and 1 

for both the variables, we get the result (2.8) after simplification. 

3. SPECIAL CASES 

 As Aleph function is the most generalized special function, numerous special cases with useful transcendental 
functions as Bessel functions, hypergeometric function, I function, Fox H-function, generalized hypergeometric pFq function 
and polynomials as Hermite polynomials, Laguerre polynomials and their special cases can be deduced by making suitable 
changes in the parameter. 

(1) The case of Hermite polynomial [7] and [9] and the general class of polynomial introduced by Srivastava [6] and by 
setting 

 









x2

1
Hx x)(S n

n/22

n  

in which case ,)1(D 2,  m k

kn,  we have the following interesting consequences of the results (2.1), (2.3), (2.5) and(2.7). 

(C.1) 

/2n'1

0

1

0

wy
xy)(1

x)1(

y)x)(1(1

xy)1(

xy1

y1
y

xy1

x1












































 



ISSN 2347-1921                                                           

3945 | P a g e                                                        J u l y  2 9 ,  2 0 1 5                                                              

. 




































































 2

''

n

/2'n'

22

2

2

n'

wy
xy1

x1(
2

1
Hyw

xy)1(

x)1(

wy
xy)-(1

x)1(
2

1
H . dydx w

xy1

y1NM,

r;i,iv,iu 











   

  '2k'k'W)1(
! 'k'

)'n'(
1)(

! k'

)n'( '2k'k''k''2k'

/2]'n'[

0'k'

k'2k'

/2]n'[

0k'







 



 

















r;iu,1N)]jiA,jia(i[,N1,)jA,ja(),1;1(

)1;k''k'1(i,r;iv,1M)]jiB,jib(i[,M1,)jB,j(b

1NM,

r;i,1iv,1iu W 


       

  the condition of validity are the same as stated in result (2.1) given in section 2. 
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the condition of the validity are the same as stated in (2.1) given in section 2. 
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the condition of validity are the same as stated in (2.3),given in section 2. 
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Remark 1. For 1... r21   in (1) then it reduces to the I-function [13] as 
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r;1,iv,iu   is defined in known result (3.1). The existence conditions for the integral in eq.(3.1) are the same as given 

in (1.4) – (1.7) with r.1,2,...,  i,1i   

Remark 2. If we set r,1,2,...,i ,11,r i   then eq.(3.1) reduces to the H-function as 
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4.CONCLUSION 

The Aleph-function, presented in this paper, is quite basic in nature. The results discussed here are unified in nature are 
likely to find useful application in several fields such as probability, electrical networks and statistical mechanics.  Therefore, 
on specializing the parameters of the function, we may obtain various other special functions such as Fox’s H-function, 
Meijer’s G-function, Wright’s generalized Bessel function, Wright’s generalized hypergeometric function, generalized 
hypergeometric function, exponential function, binomial function etc. 
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