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ABSTRACT 

Here we study the existence of solutions   y   [   ]           [    ]                                    

 ( )   (  ∫  (   )

 

 

      ( )    

As an application we study the existence of solution of a two (nonlocal) point boundary value problem of  arbitrary 
(fractional) orders integrao-differential equation. 
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1 .Introduction 

Let    (   ]   Consider the two (nonlocal) point boundary value problem 
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The existence of solution        [   ]            [   ]                ( )  ( )             

Where      is the coputo derivative of fractional order. 

2 .Functional integral equation 

Let    
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where y is the solution of the functional integral equation 
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Using (2) we can get 
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2.1 .Existence results 

Consider the following tow sequences of assumptions 

( )     [   ]                                                             
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(  )          is continuous in  t   I  for every  s    I  and measurable in 

s I for all t   I such that 
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and 

∫| (   )|

 

 

      

(   )                                                                                                              
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Theorem 2.1: Let the assumptions (i) and (ii) be satisfied. If 
  

 (   )
     then the integral 

Equation (4) has a unique solution y   [   ] 

Proof.Define  the operator F which is associated with the integral equation (4) by 
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The operator F maps C [0, 1] in to it self, for this let y   C[0, 1],        I,    <    and 
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This prove that F : C[0,1]  C[0,1]. 

Now to prove that F is a contraction we have following , let      ,      C[0,1], then 
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Then 

‖   ( )      (  )‖  
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 (   )
       then F is a contraction and by using Banach fixed point theorem [8] there exists a unique 

Solution y C[0,1] of the integral equation  (4) 

Now for the existence of solution of (4) in   [   ] we shall use the second sequence of assumptions and we have the 
following theorem. 

Theorem 2.2: Let the assumptions (  )-(   ) be satisfied   then the integral equation (4) has a unique solution 

       [    ] 

Proof.Define the operator G  associated with the integral equation (4)  by 
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The operator G maps    [   ] in to it  self, for this let  y    [   ], then 
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By integrating we obtain 
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this proves that G:    [0,1]      [0,1], 

Now to prove that G is a contraction we have the following, let      ,      
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       then G is a contraction and by using Banach fixed point theorem [8] there exists a unique 

Solution y    [0,1] of the integral equation  (4). 

2.2 .Boundary value problem 

Now we study the existence of solution of the problem (1) - (2) 

Theorem 2.3: Let the assumptions of Theorem 2.1 be satisfies, then the nonlocal boundary value problem (1) - (2) 

has a unique solution  x C[0,1]. 
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Proof:. From Theorem 2.1, there exists a unique solution y C[0,1] satisfying the integral equation (4), then there exists 

a unique solution x C[0,1]  of the problems (1)-(2)given by (5). 

Theorem 2.4: Let the assumptions of Theorem 2.2 be satisfies, then the nonlocal boundary value problem (1) - (2) 

has a unique solution x  C[0,1]. 

Proof: .From Theorem 2.2, there exists a unique solution y    [0,1] satisfying the integral equation (4), then there 

exists a unique solution x   C[0,1]  of the problems (1)-(2)given by (5). 
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