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ABSTRACT 

A direct transcription method transforms an optimal control problem (OCP) into a nonlinear programming problem (NLP). 
The resulting NLP can be solved by any NLP solver, such as the Matlab's optimization toolbox, the fsqp, etc. 

On solving optimization problems using Matlab, the Matlab's optimization toolbox does not obtain an accurate Hessian 
matrix at the optimal solution due to the fact that the Hessian matrix is not being evaluated directly from the optimal 
solution. 

In this paper we compute the condition numbers associated with the optimal control computation, where the classical 
fourth-order Runge-Kutta method is used for the discretization of the state equations. The computations of optimal 
solutions are done for different numbers of switching points and quadrature points per a switching interval.  

A test example showed that the condition numbers of the active constraints, projected Hessian and the whole Lagrangian 
system are more likely to grow with the number of the switching intervals per a delay interval than by the number of the 
quadrature intervals per a switching interval. Also, the three medium scale optimization algorithm of the Matlab’s 
optimization toolbox give almost similar condition numbers when used to solve an optimal control problem. 
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1. INTRODUCTION  

Optimal control problems with time delays in state and control have wide applications in the real-life applications [1]. Some 
of these applications include the control of infectious diseases [2, 3], the continuous stirred tank reactor (CSTR) [4, 5], 
biological populations [6], population harvesting [1], etc. 

We consider a general optimal control problem with a discrete time delay of the form: 
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subject to dynamics governed by the state equations 
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where 
nRRx :,


, 

mRRu :,


and )(t


and )(t


are given piecewise continuous functions. 

The system is subject to continuous state inequality constraints 
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It is subject to equality constraints 
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and subject to terminal conditions: 
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where the functions 
pmmnn RRRRRRI :


and 

qmmnn RRRRRRE :


are differentiable 

with respect to x


 and u


. The function RRn :


and 
ln RRR :


are differentiable with respect to each 

component of x


. 

Direct transcription methods are well-known class for solving optimal control problems. Direct transciption 
methods are also known as discretize then optimize methods, because the problem discretization is a prior stage to the 
optimization process [7]. Methods of discretization such as the Runge-Kutta methods [8], splines [9], collocation methods 
[10], etc; are used for the discretization of the state equations, whereas some numerical quadrature method such as the 
trapezoidal rule or the Simpson's rule is used for the evaluation of the objective function. 

One of the efficient direct transciption methods for solving the optimal control problems, is the control 
parameterization technique [11, 12, 13]. In a CPT, the time domain is partitioned by a number of switching points at which 
the control variables are evaluated, then each switching interval is partitioned by a number of quadrature points at which 
the state variables are evaluated. At each switching interval, the control variable is approximated by a constant or linear 
piece-wise continuous function [11]. 

At the end of the discretization stage, the optimal control problem is transformed into a large or medium scale 
finite dimensional nonlinear programming problem (NLP) [14]. The resulting NLP can be solved by using any nonlinear 
programming software, such as the Matlab's optimization toolbox [15], the SQP [16], the FSQP [17], etc. 

The MATLAB's function fmincon returns the optimal solution x , which contains the state and control variables, 

the value of the objective function fval at the optimal solution x , the exit flag, the gradient vector, the Hessian matrix and 

the Lagrange multipliers. 

The optimization toolbox in MATLAB uses the quasi Newton methods (BFGS, DFP) to solve the nonlinear 

programming problems [15]. If 
0x


 denotes the initial guess for the optimal solution

*x


, the optimization process starts 

with the identity matrix $I$ as an initial guess for the Hessian matrix 
*H . Then the Hessian matrix is updated at each 
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iteration, maintaining its positive-definiteness, to guarantee that, the direction of search p


 is always a descent direction. 

The optimization process terminates, when the directional derivative pf T 
  is less than a given tolerance FunTol, and 

the maximum constraint violation is less than another given tolerance ConTol. The default value of both the tolerences 

FunTol and ConTol is 
710

. Associated with the fmincon Matlab's function are three medium scale optimization 

algorithms, namely, the active-set algorithm, the trust-region-reflective algorithm and the SQP algorithm. A fourth algorithm 
that is used with the fmincon function for solving the large-scale nonlinear programming problems is the interior-point 

algorithm. 

Generally, optimal control problems are by nature ill-conditioned problems [18]. That is if a small perturbation to 
the constraints of the problem or to the objective function is occured, then large variations on the parameters (Lagrange 
multipliers and search directions) of the system will follow. Methods for measuring condition numbers associated to 
optimal control computations without time delays were developed by Benyah and Jenenings [19, 20]. 

Matveev [21] showed that a small time delay cannot be neglected in a general optimal control problem, and at the 
same time it results in an ill-posed model. In this paper, we compute the condition numbers that are associated to Matlab's 
medium scale algorithms when solving an optimal control problem with a time delay using the control parameterization 
technique. 

We organize the rest of this paper as follows. In Section 2 we state the optimal control problem under 
consideration and describe the discretization of the problem which transcripts it into a nonlinear programming problem. In 
Section 3 is the description of the ill-conditioning in constrained optimization. In Section 4 are two test examples. In 
Section 5, are the conclusions. 

2. ILL-CONDITIONING IN CONSTRAINED OPTIMIZATION 

We consider an optimization problem of the form:  
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The Lagrangian system is given by:  
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where )(xcT 
  is the Jacobian matrix, evaluated at x


. 

The second-order necessary condition is that 
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be positive semi-definite. 

The second order sufficient condition for ),( ** 


x to be optimum is 
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be positive definite. 

We assume that, 
pnT Rxc  )(


 is of full rank. Then )(xc T 

 has a QR-factorization of the form: 
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where 
pnRQ '

, 
ppRR   and 

)( pnnRZ  . 
'Q  is a basis for the column space of )(xc T 

 , and Z  is a basis 

for the null space of )(xc T 
 . 

At the optimum solution 
*x


, the gradient of the objective function )( ** xff


 is orthogonal to the constraints surface. 

That is, the projection of the gradient vector onto the constraint surface is zero. This can be expressed by 

0)(*  xfZ T 
, which is an equivalent formula for the first order necessary conditions. The equivalent second order 

necessary condition for the optimality of ),( ** 


x is that, 
)()(** pnpnT

RHZZ  be positive semi-definite, and the 

equivalent second order sufficient condition for the optimality of ),( ** 


x is that 
** HZZ

T
be positive definite. 

The vector )(* xfZ T 
 is the projected gradient and the matrix 

** HZZ
T

is the projected Hessian. 

The Newton's methods work to find the couple 
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such that the necessary conditions (9)-(10) of 

optimality are satisfied. Given ),( )()( kkx 
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 at the kth
 iteration, the Karush-Kuhn-Tucker (KKT) can be used to 
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be the QR-factorization of the matrix )( )(kT xc


 . Define a matrix 
)(kQ  by: 
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where 
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can be written as 
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number of the active constraints. Also, solving the linear system 
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and will have a condition number )()( )()()(2)( kkTkk ZHZR  . This gives the condition number of the Lagrange 

multipliers. The two sub-matrices 
)(')()(' kk

Tk
QHQ and 

)()()(' kkk
ZHQ can lessen or worsen the condition number of the 

Lagrange multipliers. This tells that the Lagrange multipliers are most likely to be effected by perturbations than the 
solution vector, see [22]. 

If the accuracy level for the Kuhn-Tucker conditions is chosen to be 0  and for the constraints is chosen to be 

0 , then, in the neighbourhood of the solution, 
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 is expected to change as much as 
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This shows three scenarios for the KKT system, going from bad to worse to worst [22]: 

(1) 
TkR )(

is well conditioned and 
)()()( kkTk ZHZ  is ill conditioned, which is the best case. 

(2) 
TkR )(

is ill conditioned but 
)()()( kkTk ZHZ is well conditioned. 

(3) both 
TkR )(

and 
)()()( kkTk ZHZ  are ill-conditioned which gives the worst case. 

The quantity )( )()()( kkTk ZHZ  defines the condition number of the projected Hessian matrix, and if KKTM is the 

matrix in the left-hand side of equation (17) then )( KKTM  defines the condition number for the whole Lagrangian 

system. 

3. DESCRIPTION OF THE DIRECT TRANSCRPTION METHOD 

In this section, we present the discretization method of the optimal control problem, which results in an nonlinear 
programming problem. 

3.1 Discretization of the Optimal Control Problem 

In this section, we describe the evaluation of the objective function, discretization of the state equations using a general 
Runge-Kutta method and the evaluations of the equality and inequality constraints. The whole technique is referred to as 
the control parameterization method. This method is used in [20, 21, 22]. 

We will assume that Ktt f  0  for some positive integer K . Then, 
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For the discretization of the control variables, each delay interval ))1(,[ 00   ktkt is divided into S equally 

spaced switching points },,1,0:{ Sjs j  , the distance between any two successive switching points js  and 1js  

is Sssh jjc /1   . Then, KSNc  is the number of all the switching points in the closed interval ],[ 0 ftt  

and ccj Njhjts ,,1,0,0  .  
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The optimal control problem (1)-(6) takes the form 

 











S

i

N

Si

Sii

f
Uv

c

vvtxtxtLtttxtxtLtx
0

1

1

00 ),),(),(,())(),(),(),(,())((min


      

subject to the dynamics 










 



0

0

),,),(),(,(

)),(,),(),(,(
)(

tsvvtxtxtf

tstvtxtxtf
tx

i

Sii

i

i




         

Subject to the initial condition and the preconditions 

],,[),()(

],,[),()(

,)(

00

00

0

0

tttttu

tttttx

xtx

















 

subject to the equality constraints 








 



0

0

,0),),(),(,(

,0))(,),(),(,(

tsvvtxtxtE

tstvtxtxtE

i

Sii

i

i





 

subject to the continuous state inequality constraints 








 



0

0

,0),),(),(,(

,0))(,),(),(,(

tsvvtxtxtI

tstvtxtxtI

i

Sii

i

i





 

and subject to terminal conditions:  
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For the discretization of the state variables, each switching interval ),[ 1ii ss is divided into Q  quadrature sub-intervals, 

where Q  is a fixed positive integer. The time interval ],[ 0 ftt is divided into QNN c  subintervals. Let 
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Ntth f /)( 0 , then the time it is given by hitti  0 . Now at time it the state variable jx  is approximated by 

the value Ninjx i

j ,...,0,,...,1;  . It is clear that ./)/()(/)( 00 QhQNttNtth ccff   

For the discretization of the delayed optimal control problem, we have to find approximations to the delayed state variables 

)( tx


 at the mesh points },,0;{ Niti  . Let 
i

jx denote the approximation of )( ij tx  for all nj ,1  and 

Ni ,1 . If it , then )()(   ii ttx


. But, if it , one can see that 

hDhQShS c  ,  

where QSD  ; and therefore, Di

Diii xtxhDtxtx 

 


)()()(  . 

The delayed state variables )( itx


is finally approximated as: 
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

   

To evaluate the control variable )(tu


and the delayed control variable )( tu


at },,0;{ Nitt i  , It is 

clear that 1 kik sts  for some positive integer k . The index k is given by the relation    Qihtk ci //  , 

then it follows that, 
k

i vtu


)( . 

Then from equation (21) we have, 
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3.2 Transcription of the OCP into A NLP 

Let NjL j ,,0,0  be the value of the integrand part of the objective function at time Njt j ,,0,  . The objective 

function is approximated by the Simpson rule as: 
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For the discretization of the state equations, we use an M-stage Runge-Kutta method. On each subinterval 

1,,0],,[ 1  Nitt ii  , let Mjhctt ji

j

i ,,1,  , where 10 10  Mccc  . Then,  



















0

00

,

),[),(
)(

ttv

tttt
tu

j

i

Sk

j

i

j

ij

i

ci j






       (23) 

And 
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The state equations become: 
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The above equation can be written as: 
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The initial data and conditions can be written as: 
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The equality constraints are given by: 
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And the inequality constraints are given by: 








 



0

0

,0),),(),(,(

,0))(,),(),(,(

tsvvtxtxtI

tstvtxtxtI

i

Sii

i

i





       (29) 

Finally both the control variables 
T

muuu ],,[ 1 

  and the state variables 

T

nxxx ],,[ 1 

 are placed in one vector 

)1()1( cNmNn
RY





. The jth component of the ith state variable 

j

ix is mapped to 

NjnijNiiY ,,0,,,1);)1(( 


 and 
l

ku  is mapped into 

  NlmkQlNkNnnkY c ,,0,,,1);/)1()1()1(( 


 . 

The total length of the vector Y


 is )1()1( cNmNn  . 

The problem described by (22), with the constraints (23)-(29) then becomes: 
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 Yf
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           (30) 

subject to: 

0),,( 


Yh             (31) 

And 

0),,( 


Yg             (32) 

subject to the initial conditions: 

NixNiiY
i

,,1,0))1(( 0 


           (33) 

Subject to equality constraints 

0),,( 


YE             (34) 

and inequality constraints: 

0),,( 


YI             (35) 

The NLP given by (30)-(35) can be solved using the fmincon matlab's function. 
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4. COMPUTING THE CONDITION NUMBERS ASSOCIATED WITH THE 
COMPUTATIONS OF OPTIMAL CONTROL 

In this section, we compute the condition numbers that are associated with the use of Matlab's fmincon function to 
compute the optimal controls. The condition numbers associated with the three medium scale optimization algorithms 
(active-set, trust-region-reflective and the SQP) will be used. 

The Hessian matrix
)(kH , which is given by the optimization routine fmincon, is not exact. It is obtained by updating the 

Hessian matrix in every iteration, and is not computed directly from the solution vector Y


. Hence, the projected Hessian 

matrix 
)()()()(

22

kkTkk ZHZH  given by the optimization toolbox does not has the exact condition number as same as 

the true projected Hessian. If z


 is the computed solution vector at iteration k , the Hessian matrix is to be recomputed at 

z


. Let nI $I$ be the nn identity matrix, and let 
j
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thj  column of the identity matrix nI . Let 0 , be a 

small real number, then using the central differences, the Hessian matrix 
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Given a tolerance ConTol in the constraints violation, it is possible to compute the active constraints. If given a set 
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5. AN ILLUSTRATIVE EXAMPLE 
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]2,0[),()1())(sin()()(
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ttx
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and subject to the continuous inequality constraint 

]2,0[,06.1148)(  tttx  

and subject to the terminal equality constraint 

0854.119)2(22)2(2  xx  

We used the classical fourth-order Runge-Kutta method for the discretization of the state equation. For 1, 2, 4, 8, 16, 32, 
64 and 128 switching points per a delay interval, with 1, 2, 4 and 8 quadrature points per a switching interval, the active 
set method is used to compute the optimal control. The Hessian matrix and gradient vector obtained by the Matlab are 
used to compute the condition numbers associated with the computation of the optimal control. Then, we recomputed the 
Hessian matrix and the gradient vector by the laws from the past section. We obtained the following condition numbers: 
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Table 1. The condition numbers (approximated for 3 decimal places) that are obtained by both our computations 
and the Matlab’s computations with 1, 2, 4, 8, 16, 32, 64 and 128 switching points per delay interval (SPs Per DI) 

and 1, 2, 4 and 8 quadrature points per switching interval (QPs Per SI) 

SPs 
Per 
DI 

QPs 
Per 
SI 

Condition numbers given by our computations Condition numbers given by Matlab 

Active 
Constraints 

Projected 
Hessian 

System 
Parameters 

Lagrangean 
System 

Active 
Constraints 

Projected 
Hessian 

System 
Parameters 

Lagrangean 
System 

1 1 5.484E+00 1.800E+00 9.871E+00 2.416E+01 5.484E+00 5.437E+00 2.982E+01 9.091E+01 

1 2 1.592E+01 1.651E+00 2.629E+01 1.150E+02 1.592E+01 2.456E+00 3.909E+01 7.492E+01 

1 4 3.023E+01 6.993E+00 2.114E+02 6.850E+02 3.023E+01 1.153E+00 3.486E+01 1.065E+02 

1 8 5.916E+01 1.904E+01 1.127E+03 4.911E+03 5.916E+01 1.543E+00 9.127E+01 1.561E+02 

2 1 1.260E+01 1.817E+00 2.289E+01 1.326E+02 1.260E+01 4.093E+00 5.156E+01 4.010E+02 

2 2 4.113E+01 3.519E+00 1.447E+02 1.446E+03 4.113E+01 1.842E+00 7.578E+01 2.054E+02 

2 4 6.390E+01 1.323E+01 8.452E+02 6.027E+03 6.390E+01 2.917E+00 1.864E+02 2.710E+02 

2 8 1.199E+02 3.508E+01 4.206E+03 4.023E+04 1.199E+02 1.403E+00 1.682E+02 1.159E+05 

4 1 1.622E+01 1.947E+00 3.158E+01 1.502E+03 1.622E+01 1.849E+01 2.999E+02 2.534E+02 

4 2 3.754E+01 8.045E+00 3.020E+02 2.014E+03 3.754E+01 1.319E+01 4.950E+02 6.099E+02 

4 4 3.338E+01 2.684E+01 8.960E+02 3.153E+03 3.338E+01 8.351E+02 2.787E+04 8.649E+04 

4 8 3.672E+01 6.830E+01 2.508E+03 7.547E+03 3.672E+01 1.545E+02 5.672E+03 2.520E+03 

8 1 4.172E+01 1.805E+00 7.529E+01 1.787E+04 4.172E+01 2.549E+01 1.063E+03 1.089E+03 

8 2 8.874E+01 1.631E+01 1.447E+03 2.186E+04 8.874E+01 5.695E+01 5.054E+03 9.901E+03 

8 4 7.132E+01 5.287E+01 3.771E+03 2.811E+04 7.132E+01 5.364E+02 3.826E+04 1.908E+05 

8 8 7.582E+01 1.331E+02 1.009E+04 6.325E+04 7.582E+01 4.137E+02 3.137E+04 2.323E+04 

16 1 9.186E+01 1.803E+00 1.656E+02 2.583E+05 9.186E+01 4.671E+01 4.291E+03 6.857E+03 

16 2 1.862E+02 3.305E+01 6.153E+03 1.905E+05 1.862E+02 6.943E+01 1.293E+04 3.877E+04 

16 4 1.451E+02 1.062E+02 1.541E+04 2.310E+05 1.451E+02 1.079E+02 1.565E+04 1.449E+04 

16 8 1.529E+02 2.669E+02 4.080E+04 5.117E+05 1.529E+02 7.976E+01 1.219E+04 7.174E+04 

32 1 1.882E+02 1.866E+00 3.512E+02 4.097E+06 1.882E+02 1.178E+02 2.216E+04 4.409E+04 

32 2 3.813E+02 6.628E+01 2.528E+04 1.594E+06 3.813E+02 1.644E+03 6.269E+05 5.118E+07 

32 4 2.917E+02 2.114E+02 6.167E+04 1.862E+06 2.917E+02 2.507E+02 7.315E+04 3.754E+05 

32 8 3.065E+02 5.299E+02 1.624E+05 4.107E+06 3.065E+02 1.207E+02 3.699E+04 1.223E+06 

64 1 3.789E+02 1.951E+00 7.393E+02 6.708E+07 3.789E+02 1.523E+03 5.771E+05 3.185E+06 

64 2 7.627E+02 1.332E+02 1.016E+05 1.272E+07 7.627E+02 1.159E+02 8.837E+04 1.781E+06 

64 4 5.842E+02 4.231E+02 2.472E+05 1.492E+07 5.842E+02 5.619E+02 3.283E+05 5.912E+06 

64 8 6.134E+02 1.060E+03 6.504E+05 3.287E+07 6.134E+02 8.825E+02 5.413E+05 3.027E+06 

128 1 7.587E+02 2.207E+00 1.674E+03 1.200E+09 7.587E+02 7.628E+03 5.787E+06 9.207E+08 

128 2 1.525E+03 2.665E+02 4.065E+05 1.017E+08 1.525E+03 4.440E+02 6.773E+05 3.556E+06 

128 4 1.169E+03 8.478E+02 9.909E+05 1.193E+08 1.169E+03 5.996E+03 7.008E+06 9.817E+07 

128 8 1.227E+03 2.125E+03 2.608E+06 2.630E+08 1.227E+03 5.396E+03 6.621E+06 1.043E+08 

 

We also plotted the condition numbers of the Lagrangean System by fixing the number of switching points per delay 
interval one time, and by fixing the number of quadrature points per switching interval another time; for both our 
computations and the Matlab computations.  
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Figure 1. Condition numbers of the Lagrangean system, obtained by fixing the number of switching intervals per 
delay interval from the Hessian matrix and gradient vector obtained from Matlab computations. 

 

Figure 2. Condition numbers of the Lagrangean system, obtained by fixing the number of quadrature points per a 
switching interval from the Hessian matrix and gradient vector obtained from Matlab computations. 
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Figure 3. Condition numbers of the Lagrangean system, obtained by fixing the number of switching intervals per 
delay interval from the Hessian matrix and gradient vector obtained by our computations. 

 

 

 

Figure 4. Condition numbers of the Lagrangean system, obtained by fixing the number of quadrature points per a 
switching interval from the Hessian matrix and gradient vector obtained by our computations. 
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6. CONCLUSION 

The main purpose from this paper was to measure the condition numbers associated to the solution of a constrained 
optimization problem that is resulted from the discretization of an optimal control problem using a Runge-Kutta method. 
Because the Hessian matrices obtained from the Matlab's optimization toolbox are not accurate, we re-evaluated the 
Hessian matrices directly from the optimal solution of the optimization problem. These computations have been made for 
different numbers of switching points and quadrature points per a switching interval. 

From figures 1 and 2, we see that the condition numbers resulting from the Hessian matrix and gradient vector obtained 
by the Matlab’s fmincon do not show how the selection of the number of switching point per delay interval (quadrature 

points per switching interval) can affect those condition numbers as seen in Table 1 and figures 1 and 2. 

We found that, as the number of switching intervals per a delay interval increases, the condition numbers of the active 
constraints, projected Hessian and the whole Lagrangian system increase as seen in Table 1 and Figure 3. Also, as the 
number of quadrature intervals per a switching interval increases, the condition numbers of the active constraints, 
projected Hessian and the whole Lagrangian system increase as seen in Table 1 and Figure 4.  

Figure 3 shows that when fixing the number of quadrature points per a switching interval to one, then the condition 
numbers of the Lagrangian system jump high as the number of the switching points per delay interval increases. 
Therefore, choosing 2, 4 and 8 quadrature points per a switching interval might be much stable. On the other hand, Figure 
4 shows that when fixing the number of quadrature points per a switching interval to either one or two, the condition 
numbers of the Lagrangian system jump high as the number of quadrature points per a switching interval increases. 
Therefore, choosing 4, 8, 16 or 32 switching points per a delay interval might be much stable. 

Finally, the three medium scale Matlab’s optimization algorithms give almost similar results when are used to compute the 
condition numbers associated with the optimal control computations. 
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