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ABSTRACT

Using the theory of Hankel-type convolution, continuous generalized Hankel-type wavelet integral transformation is
defined. The generalized Hankel-type integral wavelet transformation is developed. Using the developed theory of
generalized Hankel-type convolution, the generalized Hankel-type translation is introduced. Properties of the kernel

Dﬂaﬁv(x, y,z) are developed in the study. Using the properties of kernel, the generalized Hankel-type wavelet

transformation is defined. The existence of the generalized Hankel-type integral wavelet transformation is given by a
theorem. The boundedness and inversion formula for the generalized Hankel-type integral wavelet transformation is
obtained. A basic wavelet which defines continuous generalized Hankel-type integral wavelet transformation, its
admissibility conditions and the wavelet to the function is proved. Examples have been shown to explain the studied
continuous generalized Hankel-type integral wavelet transformation.
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1. INTRODUCTION

Malgonde [1] investigated the following generalized Hankel-type integral transformation

F ()= ( l,uaﬂvf)(t):‘/ﬂ t_HMZVT (xt)” J#[,B(Xt)v} f(x)dx , (1.1)

J,,(X) being the Bessel function of the first kind of order £ > -1/2.

We define Lp (O, oo) 1< p <00, as the space of real measurable function ¢ on (O, oo) for which

p Up
o [Hx‘”“qﬁ(x) d—:} A< p<o

4], =esssup|x~“@(x)| < oo.
0<x<o0

¢

Foreach g e L (O, oo), generalized Hankel-type integral transformation of ¢ is defined by

o0
A

(x)=vB 7 [ (xt)"3,[ A(x) | #O)dt , O<t<on

0

From [1] we know that ¢(X) is bounded and continuous on (O, oo) and ||g$(X)H < ||¢||l
if f (X) is of bounded variation into a neighborhood of the point X = X, >0, 2> —1/2 and the integral
H f (X)| X* ™2 exists, then the inversion formula in [2] is given by

R

limg Y, 22 [ (x,y)" 3,[ B(xy) F (v)dy :%[f (% +0)+ T (x,—0)].

o

it f(x)x** and F, (y) YA arein L, (0,00), for

R0 = (R f ())() =18 77

O 38

()3, () | F (x)dx

and

Fo(®) = (P 9 (X)) (1) =18 77

O ey 8

()3, B(2) | 9(x)ox , for =172,

the following mixed Parseval formula holds for Fl -transformation by [2];

To define the generalized Hankel-type Convolution, we need to introduce generalized Hankel-type translation. Define

D (%:¥:2)

jt weayg {22y (Xt) [ xt :|V,B - 2a+2v ) J” [ﬂ(yt)v}vﬂ {22y (Zt)a ‘]ﬂ [,B(Z'[)V}dt.

1.2)
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Properties of the kernel D, , , (X, Y,2):

Following [3] properties are established:

i) For 0< X,y <ooand 0<t<oo, we have

Tvﬂtﬂv+az—l—2a+2v (Zt)a J,u [ﬁ(zt)v] Dy,a,ﬂ,v (X, Y, Z)dZ =(Vﬂ)2 (Xy)—1—2a+2v (Xt)a J” [ﬂ(xt)q(y’[)“ Jﬂ[,b’(yt)q

0

Proof:

Dy (i2) () [ 2 (a3, [ ) T ()", [0 Tt o3, [ (o) ]]

:]:Vﬂt—yv—az—l—2a+2v [(Vﬂ)z(xy)—l—ZaQV(Xt)a J,, [ﬂ(Xt)vJ(yt)a Jy[ﬂ(yt)vﬂ (Zt)a Jﬂ[ﬂ(zt)ﬂdz

=R | 08) () ()" 3, [ A0 () 9, [ () )
oo (7D (6 ¥ 2)= (0B) ()™ ()3, [ BOR) |(00) 9, [ B(vt)']

Applying the inversion formula of generalized Hankel-type integral transformation to (1.2)

[e]

IV tuvra 5 1-2a+2v (Zt)a \]# [ﬂ(zt)v:| D,u,a,ﬂ,v (X, Y, Z)dZ

= (vB) (xy) 2 (xt)” Jﬂ[ﬁ(xt)v}(yt)“ J#[,B(yt)v]

and hence the result. In particular, taking t =0, gives
D [y ezt (@) 9, A(2) B, (4 yi2)d2=1,
0

ie. forwhich X,y >0,D,, . (X, y,z)belongsto Ly, ,, ,(0,0).

i) 0<X,y,z<0,D,, 5. (%V,2)>0.

iv) D,y g (x, Y, z) =D ., (y, X, z) =D, (z, X, y) =..

The generalized Hankel-type integral translation Ty of g e Lp (0, oo) ,1< p <0, is defined by

9]

Ty¢(x) =¢(X’ y) = J‘¢(Z)Dﬂyaﬁyv (X, Y, Z)dZ,O <X, Y <oo.

0

The map Yy — T ¢ is continuous from (O,oo) into (O,oo).

Let p,q,r €[1,0) and %=%+

1
——1. The generalized Hankel-type integral convolution of
q

¢pel,(0,00) and y e L (0,0) is defined by (g#y )(x)= I¢(x, y)w (y)dy.

0

In [4] the integral is convergent for almost all X,0 < X < oo and ||¢#l//||r < ||¢5||p ||W||q :
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Moreover, P = oo, then (¢#l//)(x) is defined for all X,0 < X < oo and is continuous.

It ¢,y €L, (0,00), then (¢#l//)/\(t)=¢3(t)l/7(t), 0<t<wm.

In this paper, in terms of the aforesaid generalized Hankel-type translation Ty and dilation Da defined by

D,u,a,ﬂ,v,a¢(x y) ﬂv a ¢(X/a y/a) (13)

is a continuous generalized Hankel-type integral wavelet transformation is defined. Its continuity and boundedness
properties are established. An inversion formula is obtained.

2. CONTINUOUS GENERALIZED HANKEL-TYPE INTEGRAL WAVELET
TRANSFORMATION

Let iy € Lp (O, oo) , 1< p <o be given. For b >0 and a > Odefine the generalized Hankel-type integral wavelet
transformation

V/b,a( ) D#aﬁVaTyl//( ) D,ua,Bval//(b X) a % (b/a X/a)

:a’z(”v’“)’3”ID (b/a,x/a,z)y(z)dz,
0

wa,pv

the integral being convergent by virtue of [8].

Using the wavelet y/, ., define the generalized Hankel-type integral wavelet transformation,

Hl,a,ﬁ,vv# (b' a) :(Hlya,ﬁvvvuvu/ f )(b’ a)

<f (t)ll//b,a (t)>
T f (t)‘//ba( )dt

f(t)w(2)D,.,. 4, (b/at/a,z)dzdt

s a—2(yv—a)—3v

oOt—3
O ey 8

provided the integral is convergent.

The continuity of the generalized Hankel-type integral wavelet follows from the boundedness property of the generalized
Hankel-type translation [5].

Lemmalilet el (0,00),1£ p <oo. Thenfor y > 0,the map ¥y —>T f is continuous from L (0,00) into

L, (0,00) . The function . is defined almost everywhere on [O,oo) , and H‘//b,a (X)Hp < g(2lw-a)av)Up-y ”l//”p .

The existence of the generalized Hankel-type transformation is given by the following theorem.
Theorem 2. Let f e L (0,0) and y e L (0,0) with 1< p,q <o and
11

—+==LH,, ;.. (b,a) :(Hlaﬁvaf )(b,a) be the continuous wavelet transform. Then
P q o B

1) (Hl,a,ﬁ,v,u f )(b, a) is continuous on (O, oo) X (0, oo),

2 (o 1)00.2) )02 e

1
vl =5 -L1s par <o

—a)av)| -
9 [ N0 o] ™ o, 22

5053 |Page September 09, 2015



L& ISSN 2347-1921

Proof.

1) Let (bO , ao) be an arbitrary but fixed point in (0, oo) ><(O, oo).Then by Hélder's inequality,

‘(Hlﬂvﬁ,v,ﬂ f )(b’a)_(Hlaﬂvy f )(bo’ao )‘

ﬁ\f(t)w(z [Dy.p.(b/at/a,z)-D,, . (b /a,t/a,2)]dtdz
00
0

X[

Since by (9) H D (b la,t/a, Z)— D, (bo la,,t/a,, Z)‘ dt <2, by dominated convergence

| (t ‘ ‘D (b/at/a,z)-D

wea,pv wa,pv

1/p
(by/ag,t/ay,2 ‘dtdz}

o t—38

,uaﬁv

1/q
v (z)'|D b/a,t/a,z)—Dﬂlaﬁ’V(bo/ao,t/ao,z)‘dtdz}

ot—s
O ey 8

theorem and continuity of D, , (b la,t/a, Z) in the variables b and a, we have

t!LrE ( 1apv ] f )(b, a)—( 10,858 f )(bo,ao)‘ =0. This proves that H (b, a) is continuous on

a—a,
(O, OO)X(O,oo),
2 [((Fun 2 )02 <1 o, = oo n 1S par<e

3) It can be proved using Holder’s inequality.
3. AN INVERSION FORMULA

In this section, we show that the function f can be recovered from its wavelet transform when the wavelet Y satisfies
admissibility condition.

Theorem 3. Let ¥ € L2 (R ) be a basic wavelet which defines generalized Hankel-type wavelet integral

+

-3v

A

2
transformation. Then, for A\u IW Y W)| dw > 0, we have

II( vapvay | )(0:2) f)(b’a)((Hl,a,ﬁ,v,,u,(y f )(b,a)g)(b a)a 23 dadh

=A (f,g)forall f,gel’(R,).

Proof. The representation for (Hl,a,ﬁ,v,u,u/ f )(b, a) , can be expressed as

(Hl,a,ﬁ,v.y,y/ f )(b’ a)

= [[1()w(2)D, ., (b/at/az)dzdt
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:a—Z(yv—a)—3v]9T f (x/12)7 (7] {V,B (SJ‘HMV (%bj“ Jﬂ{ﬂ(_

{vﬂ 2772 (zax)" J,, [ﬂ(zax)q}

_ gt I (x/a)—){ (bj_l_zwzv(xf:)fJﬂ[ﬂ(%ij}}dx

I (au) {V,B b2 (bu)” J”[ﬂ(bu)v}}du
()i () A o)

Parseval identity yields

Now multiplying by a ( "da and integrating, we get
_”-(Hlaﬂ #V/f)(b a)(Hlyaﬁ /u//f)(b a)db T o da
00

ISSN 2347-1921

] e

Notice that admissibility condition requires that l/?(O) 0.1f l// is continuous, it follows that Il// dX 0. This

justifies the wavelet to the function.
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Now consider

0

y/(g,;j w (X, y) by putting E—X and ——y Then y(x,y)= j (z)D,. . (b/at/a,z)dz.

0

Since
o s 7 L0
gy (XY, Z) =& :
’ By (ye) 3, Bye) JvB 2 (22) 3, ] p(2¢) ae

0
Substituting the expression becomes

VB X2 (XE) Jﬂ[ﬁ X&) }
v(xy)=[w(2)| Jer vy == (ye) 3, [ B(ye) | }|az
VB 7 (26)" 3, | B(26) |de

. V_ﬁ yl2aray (Xég)a Jﬂ[ﬂ(xf)v}
_ 2 772 Z Y d
! U ‘B S jé {Vﬂ Y (yE) 3, By )Vﬁ 5

:Ig—yv—a {Vﬂ X—l—2a+2v(X§)a J#[ﬁ(xf)qvﬂ y—1—2a+2v(y§)a J,,[ﬂ(yf) J}( 1.3 l//)(f)dof

Substitute iy =X and L y.
a a

e o &) o o (7 (o A

(i g F)(B:8)

VT{T P ()]
GNCRLC

i 72(/“/7&)73‘/00 E ~1-2a+2v b_f a [ b_f)v
| !Vﬂ (aj (aj J"_ﬂ(a

x & ( Fl,y,a,ﬂ,vy/)(g) dg

e (B

By substituting é = X;d& = adx, the continuous generalized Hankel-type integral wavelet transform can be written
a

(Flvﬂyaﬂ )(gjx‘f# ( Luap, ‘/’)(é)d‘f-

as
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e A (bf)a%[ﬂ(bfjv}(w ﬁ (B )0

0

e s

} o v a(FL#’a’ﬂ’VV,)(ax)adX
_ g k)3 g uv-ar(1-2v+2a) 1/2+1J' Ve bx Jﬂ [ﬁ J Lt x) x*#"*a(Flvﬂyaﬁyvt//)(aX)dX

= g e Mijlvﬂ b2 (bx)” J,, [,B(bx) }( v ) () X (P, 7) (@)

0

_ a—3gv+3a—5v+g]gvﬂ b7172a+2‘, (bx)a J# |:ﬂ(bx v:|( Flyﬂ’a”g,,, f )(X) X v ( Fl,ﬂ,a,ﬁ,vl//)(ax) dx.
0

a

)

_V,B 22y (Xf)a ‘]# :ﬂ Xf)v:|

D,u,a,ﬂ,v (X, Y, Z) _ ng—pv—a VB y—1—2a+2v (yg) :|
f Vp 7R (Zf)a J# i

[
|
ey
<
O
N—"
<

il l -1-2a+2v L a l v
D,., (blat/az) jg v,B( j (ag 1q ﬂ( 5}

& =ax;dé = adx.
VIB (Ej~12a+2v (E ax]a J/u |:ﬂ(9 ax)v:l
a a a
0 B t -1-2a+2v “ )
0,0 (01.112,2) = (@) 1P (gj (073, A ]

vB T (zax)" J, [ﬂ(zax)v}adx

Vﬂ (gj—l—Zoﬁ—Zv Y \]lu |:ﬁ j|

D,.s.(b/at/az) :_[ B (ljlzw ajﬂ[ﬂ }

VB 772 (zax “J#[ﬂ zax }adx

o
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4. CONCLUSION

The applications of generalized Hankel-type integral wavelet transformation can be applied in signal processing, computer
vision, seismology, turbulence, computer graphics, image processing, digital communication, approximation theory,
numerical analysis and statistics.
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