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ABSTRACT 

Magnetohydrodynamics (MHD) boundary layer flow past a wedge with the influence of thermal radiation, heat generation 
and chemical reaction has been analysed in the present study. This model used for the momentum, temperature and 

concentration fields. The principal governing equations is based on the velocity ( )wu x  in a nanofluid and with a parallel 

free stream velocity ( )eu x and surface temperature and concentration. The governing nonlinear boundary layer 

equations for momentum, thermal energy and concentration are transformed to a system of nonlinear ordinary coupled 
differential equations by using suitable similarity transformation with fitting boundary conditions. The transmuted model is 
shown to be controlled by a number of thermo-physical parameters, viz. the magnetic parameter, buoyancy parameter, 
radiation conduction parameter, heat generation parameter, Porosity parameter, Dufour number, Prandtl number, Lewis 
number, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter and pressure gradient 
parameter. Numerical elucidations are obtained with the legendary Nactsheim-Swigert shooting technique together with 
Runge–Kutta six order iteration schemes. 
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INTRODUCTION  

 It is now well accepted fact that the terms magnetohydrodynamics (MHD), thermal radiation and heat generation 
extensively appear in various engineering processes. MHD is significant in the control of boundary layer flow and 
metallurgical processes. Again the thermal radiation and heat generation possessions may arise in high temperature 
ingredients processing operations. Ingredients may be intelligently designed therefore with judicious implementation of 
radiative heating to produce the desired characteristics. This recurrently occurs in agriculture, engineering, plasma studies 
and petroleum industries. 

Nomenclature 

, ,a c m  Positive Constants     0B   magnetic induction 

C  nanoparticle  concentration   
pC  specific heat capacity  

wC        nanoparticle  concentration at wedge C     ambient nanoparticle  concentration   

      as y tends to infinity 

D        coefficient of mass diffusivity  

BD       Brownian diffusion coefficient                TD  thermophoresis diffusion coefficient 

g   acceleration due to gravity                  Gr    Grashof number  

mG      Modified  Grashof number                               rk        rate of chemical reaction  

𝐾𝑐  chemical reaction parameter               eL       Lews number 

𝐾𝑐∗ dimensional reaction coefficient                k  thermal conductivity   

tN  thermophoresis parameter                bN       Brownian motion parameter 

M    magnetic parameter   P  fluid pressure 

Pr Prandtl number                wq        heat flux 

eR  local Reynolds number                S  Source parameter  

Q  heat source parameter                      0Q  heat generation constant 

𝑇          fluid temperature   

T   ambient temperature as y tends to infinity 

wT        temperature at the wedge surface 

,u v  velocity component along x  and y  direction respectively 

( , )x y   Cartesian Co-ordinates measured along wedge 

Greek symbol: 

   thermal diffusivity               ( )f    dimensionless velocity 

         pressure gradient parameter     c      co-efficent of massl expanasion             

 T  
co-efficent of thermal expansion              constant moving parameter 

 
p

c   effective heatt capacity of the nanofluid      

 
f

c  heat capacity of the fluid 

   similarity variable      dimensionless temperature  
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   dimensionless concentration    density of fluid  

   dynamic viscosity      kinematic viscosity 

  vortex viscosity      charge density 

T  thermal convective  parameter  M   mass convective  parameter 

   angular velocity          Chemical reaction parameter 

( , )x y  stream function    

Subscripts: 

w  quantities at the wall 

   quantities at the free stream 

Numerous flow complications under different aspects  have been considered by the several scholars . The problem of 
natural convection along a vertical isothermal or uniform flux plate is a classical problem. However, Copiello and Fabbri [1] 
studied the effect of viscous dissipation on the heat transfer in sinusoidal profile finned dissipaters. Ghiya and  Kavitha[2] 
discussed about  forced flow of a Newtonian fluid due to a vertical stretching sheet with viscous dissipation. The effect of 
radiation on convective heat transfer problems have been examined by a number of researchers using principally 
algebraic approximations for the radiative transfer simulation. Khan et al [3,4] studied about  Heat Generation, Thermal 
Radiation and Chemical Reaction Effects on MHD Mixed Convection Flow over an Unsteady Stretching Permeable 
Surface and  MHD Boundary Layer Radiative, Heat Generating and Chemical Reacting Flow Past a Wedge Moving in a 
Nanofluid. 

A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles. These fluids are engineered colloidal 
suspensions of nanoparticles in a base fluid. The nanoparticles used in nanofluids are typically made of metals, oxides, 
carbides, or carbon nanotubes. Common base fluids include water, ethylene glycol and oil.  In recent years studies on 
nanofluid heat and mass transfer boundary layer laminar flow have attracted considerable attention. Nanotechnology [5-
17] has been broadly used in several industrial applications. Nanofluids demonstrate anomalously high thermal 
conductivity, significant change in properties such as viscosity and specific heat in comparison to the base fluid, features 
which have attracted many researchers to perform in engineering applications. Kim[18] analyzed   the Convective 
Instability and Heat Transfer Characteristics of Nanofluids. Kang et al. [19] experimentally investigated on nanofluids 
include thermal conductivity. Jang and Choi [20] reconnoitered nanofluid thermal conductivity parameter effects.Nield and 
Kuznestov [21] and Kuznestov and Nield [22] considered laminar convective nanofluid boundary layer flow in a porous 
medium, with Brownian motion and thermophoresis particle deposition effects and simple boundary conditions. Khan and 
Pop [23,24] studied boundary layer heat-mass transfer free convection flows also in porous media of a nanofluid past a 
stretched sheet.  M. Wahiduzzaman[25] discussed about  Viscous Dissipation and Radiation Effects on MHD Boundary 
Layer Flow of a Nanofluid Past a Rotating Stretching Sheet. Hamad and Pop [26] reported transient hydro magnetic free 
convection rotating flow of a nanofluid. Md. Shakhaoath Khan et al. [27] analyzed the boundary layer nanofluid flow with 
MHD radiative possessions. Khan and Pop [28] investigates boundary layer heat and mass transfer analysis past a wedge 
moving in a nanofluid.The prime objective of the present attempt is to extend the analysis of Khan and Pop [28]. 

 This study finds the effect of thermal radiation, heat generation and chemical reaction on themagneto hydrodynamic  
convection flow past a wedge moving in a nanofluid. This study also emphasised that Brownian motion and 
thermophoresis are significant mechanisms in nanofluid performance. This study is encouraged by precise application in 
materials processing which combines photopyroelectric thermal radiation and magnetic fields simultaneously to modify 
nanofluid properties. Verification of computations is demonstrated by comparison with previously published literature of   
Shakhaoath    [29]. The present study is applicable to the manufacturing of magnetic nanofluids and chemical engineering 
operations involving electro-conductive nano fluid suspensions.There are relatively few studies [30-37] also focused on the 
MHD, convection, radiative heat transfer, heat generation and nanofluid also addressed application for further research. 

2. METHODS: MATHEMATICAL MODEL   

Here we consider  the two dimensional MHD laminar boundary layer heat and mass transfer flow past an impermeable 
stretching wedge with the influence of thermal radiation, heat generation and chemical reaction and moving with the 

velocity  ( )wu x  in a nanofluid, and the free stream velocity is ( )eu x , where x  is the coordinate measured along the 

surface of the wedge. The pattern of the physical configuration and coordinate system are shown in Figure 1 by following 
Khan and Pop [28]. 

 

https://en.wikipedia.org/wiki/Nanometer
https://en.wikipedia.org/wiki/Nanoparticle
https://en.wikipedia.org/wiki/Colloid
https://en.wikipedia.org/wiki/Colloid
https://en.wikipedia.org/wiki/Colloid
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Carbon_nanotube
https://en.wikipedia.org/wiki/Ethylene_glycol
https://en.wikipedia.org/wiki/Ethylene_glycol
https://en.wikipedia.org/wiki/Ethylene_glycol
https://en.wikipedia.org/wiki/Ethylene_glycol
http://www.scirp.org/journal/AuthorInformation.aspx?AuthorID=184728&searchCode=M.++Wahiduzzaman&searchField=authors&page=1


ISSN 2347-1921                                                           

5097 | P a g e                                                   S e p t e m b e r  1 6 ,  2 0 1 5  
 

 

Fig.1 Physical configuration of a wedge 

Here ( )wu x >0 corresponds to a stretching wedge surface velocity and   ( )wu x  < 0 corresponds to a contracting wedge 

surface velocity, respectively. Instantaneously at time t > 0, temperature of the plate and species concentration are raised 

to   ( )wT T  and   ( )wC C  respectively, which are thereafter maintained constant, where wT , wC  are temperature 

and species concentration at the wall and T , C  are temperature and species concentration far away from the plate 

respectively. A strong magnetic field  0(0, ,0)B B  is applied in the y-direction. Under the above assumptions and 

usual boundary layer approximation, the MHD Mixed convective nanofluid flow governed by the following equations ([21] 
and [22]); 

0
u v

x y

 
 

 
           (1) 
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( )T
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



   
    
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With the boundary conditions 

( ) ( ), 0, , , 0

( ), ,

w e w w

w

u u x u x v T T C C at y

u u x T T C C as y



 

       


         (5)  

 In equation (2) the 3rd term on the right hand side is the convection due to thermal expansion and gravitational 
acceleration, the 4th term on the right hand side is the convection due to mass expansion and gravitational acceleration 

and the 5th term generated by the magnetic field strength because a strong magnetic field 0(0, ,0)B B is applied in the 

y-direction. Again in equation (3) the 2nd term on the right hand side is the effect of heat generation on temperature flow 
and thermophoresis diffusion term due to nanofluid flow, 3rd term on the right hand side expressed the radiative [30] heat 
transfer flow, and is the rate of chemical reaction on the net mass flows, the last term indicates the Brownian motion due 
to nanofluid heat and mass transfer flow. 

In order to conquers a similarity solution to equations (1) to (4) with the boundary conditions (5) the following similarity 
transformations, dimensionless variables are adopted in the rest of the analysis;    
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 

 
 

1 2
, , ( )

2 1

( ) ,

e e

w

w

m u u xv T T
y f

xv m T T

C C
and u v

C C y x

     

 
  









    
             
  

     
   

    (6) 

For the similarity solution of equations (1) to (4) with considering the value (from the properties of wedge,([28]) 

( ) , ( ) , (0 1)m m

e wu x ax u x cx m    . Therefore, the constant moving parameter λ is defined as λ = c/a, whereas 

λ < 0 relates to a stretching wedge, λ > 0 relates to a contracting wedge, and λ = 0 corresponds to a fixed wedge, 
respectively. 

From the above transformations the non-dimensional, nonlinear, coupled ordinary differential equations are 
obtained as; 

2( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) 0T Mf f f f M Kp f                               (7) 
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           

 
    (8) 
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e

b

N
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              

  
       (9) 

The transformed boundary conditions are as follows; 

'

'
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where the notation primes denote differentiation with   respect to η and the parameters are defined as: 
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3. NUMERICAL (SHOOTING QUADRATURE) SIMULATIONS  

The non-dimensional, nonlinear, coupled ordinary differential equations (7) to (9) with boundary condition (10) are solved 
numerically using standard initially value solver the shooting method. For the purpose of this method, the Nactsheim-
Swigert shooting iteration technique together with Runge–Kutta six order iteration scheme is taken which determines the 
temperature and concentration as a function of the coordinate η.  

The boundary conditions equation (10) associated with the ordinary nonlinear differential equations of the boundary layer 
type is of the two-point asymptotic class. Two point boundary conditions have values of the independent variable specified 
at two different values of the independent variable. Specification of an asymptotic boundary condition implies the value of 
velocity approaches to unity and the value of temperature approaches to zero as the outer specified value of the 
independent variable is approached. The method of numerically integrating two-point asymptotic boundary value problem 
of the boundary layer type, the initial value method, requires that the problem be recast as an initial value problem. Thus it 
is necessary to set up as many boundary conditions at the surface as they are at infinity. The governing differential 
equations are then integrated with these assumed surface boundary conditions. If the required outer boundary condition is 
satisfied, a solution has been achieved. However, this is not generally the case. Hence a method must be devised to 
logically estimate the new surface boundary conditions for the next trial integration. 

Asymptotic boundary value problems such as those governing the boundary layer equations are further complicated by 
the fact that the outer boundary condition is specified at infinity. In the trial integration infinity is numerically approximated 
by some large value of the independent variable. There is no a priori general method of estimating this value. Selection of 
too small a maximum value for the independent variable may not allow the solution to asymptotically converge to the 
required accuracy. Selecting a large value may result in divergence of the trial integration or in slow convergence of 
surface boundary conditions required satisfying the asymptotic outer boundary condition. Selecting too large a value of the 
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independent variable is expensive in terms of computer time. Nachtsheim-Swigert developed an iteration method, which 
overcomes these difficulties. Extension of the iteration shell to above equation system of differential equations (10) is 
straightforward, there are three asymptotic boundary condition and hence three unknown surface conditions 

'' ' '(0), (0) (0)f and  . 

4. RESULTS AND DISCUSSION 

  In order to get the physical insight to the system of ordinary differential equation (7)-(9)  along boundary condition(10) are 

solved numerically by means of 4
th

 order R-K followed by shooting technique. The step size  0.05   is used while 

obtaining the solution. The effects of pertinent physical parameter in the flow field are analyzed and discussed with the 
help of velocity, temperature, concentration profiles and tables. 

Fig-2 reveals the effect of thermal Grashof Number ( T ) on the velocity profiles for different values of 
pk and Du . The 

thermal Grashof Number signifies the relative effects of the thermal buoyancy force to the viscous hydrodynamic force in 

the boundary layer. T o  ,is the positive values of T  represents the cooling of the space. The present result is well 

agree with the result of Md Shakhaoath [29] by withdrawing the porous matrix 
pk  and Dufour Number Du . It is also 

observed the velocity profile increases with the increases of ,T pk and Du . It is remarked that the profile has a pick 

near the plate and then decreases smoothly to the free steam velocity. 

 Fig-3 displays the effect of solutal Grashof Number ( )m  on the velocity profile for the both presence/absence of 
pk and

Du . The solutal Grashof Number m defines the ratio of species buoyancy force to the viscous hydrodynamic force. It is 

observed that the velocity profile enhances with the increasing value of m for both increasing in Du and the presence 

of porous matrix. The result is the good agreement with that of Shakhaoath [29] for the absence of pk  ( 0)pk  and Du  

( 0)Du  . Hence it is clear to note that both the buoyancy force have the same behavior on the velocity profile in the 

presence/absence of homogeneous/non-homogeneous Chemical reaction. 

The effect of magnetic parameter for different values of porous matrix (
pk ) and Dufour Number ( Du ) is shown in Fig-4. 

It is seen the increase velocity of M leads to increase in velocity distribution. This is due to the fact of that applied 
transverse magnetic field produces a Lorenz force which beneficial to increase in profile of all points. 

Fig-5 presents the variation of radiation parameter  R  for different  
pk  and Du  on velocity profile. From the figure it is 

cleared that the profile has a 2 layer characteristic for the absence of  ( 0)R R    and presence of ( 2)R R 

( 0) ( 0)p pDu Du k k  shown by dotted and bold lines respectively. It is observed   this radiation parameters 

enhances the velocity profile in both the absence/ presence of  
pk  and Du . It is further revealed   that the absence of 

( 0)p pk k   and ( 0)Du Du   is taken as a particular case of the previous author [29], resulting  is a good agreement. 

Fig-6 exhibits the effects of suction parameter ( )  on the velocity profile in both the presence/absence of porous matrix 

keeping the other parameter is fixed. Suction acts   to increase adherence of fluid to the wall which is terns referred the 
flow and hence decrease in the velocity  profile of all points in the boundary layer, where as increase in porous matrix the 
velocity profile increases. Here it is concluded that suction has a retarding effect on the profile.     

Fig-7 represents the effect of the thermal Grashof Number ( )T  of the temperature profile for  different values of  porous  

matrix pk  and Dufour Number Du . The particular case of Shakhaoath [29] is also shown by withdrawing the porous   

matrix ( 0)pk 
 
and Dufour number ( 0)Du  . The present result is in good agreement with the earlier published result. 

It is seen that the absence of both pk  and Du  the thermal boundary layer    becomes maximum. But the profile 

decreases with the increase of value T  . It is also remark that in the presence of with the absence of Du ( 0)Du    

the profile decreases in its boundary layer where as the presence of Du  enhance it. 

 The effect of magnetic parameter in the temperature profile is shown in Fig-8. From the profile it is clear that temperature 
decreases with the increase in magnetic parameter which produce a drag in the form of Larentz force in the presence of 

permeability parameter. Further temperature profile decreases in the presence of ( 1)p pk k  . But reverse effect 

enhanced in the presence of Du . 
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Fig -9 exhibits the effect of radiation parameter on the temperature profile for the different values of
pk  and Du  . It is 

clear to note that in the absence of 0pk  , 0Du   and in the absence of ( 0)R R  the result is good agreement with 

that of Shakhaoath [29]. It is observed that presence of 
pk  decreases the profile of all points in the boundary layer. 

Where in the presence of Du  enhance it. Further, increase in R in the presence of Du also decreases the temperature 

in the boundary layer.  

The dimensionless temperature distribution for different values of thermophoresis parameter Nt  and Brownian motion 

parameter Nb are illustrated in Fig-10. It interesting to note that increasing value of Nt  and Nb increases the 

temperature profile significantly. The thermophoresis force generated by the temperature gradient creates a fast flow from 

the surface. In this way more fluid is heated away from the surface and consequently, as Nt increases, temperature 

increases in the boundary layer. Also both in increase in the Brownian motion parameter the random motion of particle 
increase with result in on enhancement in the temperature profile.  

 Fig-11 reveals the effect of Nt and Nb in the concentration profile. It is remarked that there is a sharp fall in 

concentration near plate, with in the domain 0.5   and this becomes smooth to meet the adequate boundary condition. 

It is seen that increase in Nt   there is a decrease in concentration near the plate, but the increase in remarkable at the 

ambient state where in Nb decreases the concentration profiles. 

  Fig-12 exhibits the effect of chemical reaction parameter for different values of 
pk and Du . It is noted in 0   

represents the exothermic chemical reaction, 0  represents no chemical reaction, 1  is an  endothermic chemical 

reaction. The concentration profile decreases with the increase in 1
st
 order chemical reaction parameter for both 

presence/absence porous matrix 
pk  and Dufour Number  Du respectively. It is also observed that increase in 

pk and 

( )  Du  decrease the concentration profile of all points of the boundary layer. 
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Fig.6 Effect of  and Kp on velocity profile
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Fig.8 Effect of M, Kp and Du on temperature profile
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Fig.10 Effect of Nt and Nb on temperature profile
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Fig.11 Effect of Nt and Nb on concentration profile
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Fig.12 Effect of , Kp and Du on concentration profile
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