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ABSTRACT 

In this paper we prove some common fixed point theorems for two and four self-mappings using rational type 
contraction and some newly notified definitions in partially ordered metric space. In this way we generalized, modify, and 
extend some recent results due to Chandok and Dinu [14], Shantanwi and Postolache[29] and many others [1, 2, 4, 5, 21, 
29, 30], thus generalizing results of Cabrea, Harjani and Sadarangani [12] as well as Dass and Gupta [15]  in the context 
of partial order metric setting.  
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1. Introduction 

Turinici [31, 32] investigated fixed point theorem for monotone mappings on metrizable uniform spaces and quasi 
ordered metric spaces. Afterwards, Ran and Reuring [26] extended the Banach contraction principle to partially ordered 
metric space with some application to matrix equations. Further, Nieto and Rodriguez-Lopez [22, 23] generalized the 
theorem for increasing mapping not requiring the necessity of continuity and gave application to existence and uniqueness 
of a lower solution to first order ordinary differential equation. Thereafter, Nieto and Rodriguez-Lopez’s theorems were 
generalized by many researchers [3, 6, 13, 17, 24, 33, 34]. 

Sessa [27] introduced the concept of weak commutative condition of mappings which are generalization of 
commutative maps [20] in metric space.  Jungck [18] generalized this idea of weak commutative mappings by introducing 
compatible mappings. Further, Jungck [19] introduced the concept of weakly compatible mappings and proved some 
common fixed point results for these mappings. 

In recent years many researchers have generalized the existence of fixed point and common fixed point 
theorems for generalized weak contractions in partial ordered metric space [7-11, 21, 25]. Most recently Shatanawi and 
Postolache [28] proved common fixed point theorems for dominating and weak annihilator mappings in ordered metric 
space for  four self mappings, meanwhile Cabrera, Harjani and Sadarangani generalized the Dass and Gupta’s theorem in 
the partial ordered metric space. Very recently Alam et al. [5] identified some more natural definitions  in view of Turinici 
[33, 34] on ordered metric setting.  

Our aim in this paper is to modify some recent common fixed point theorems for self-mappings using some newly 
identified ordered metric definitions, and rational type contraction. 

2. Preliminaries 

Definition 1. (a) A non empty set  together with partial order relation  (reflexive, anti-symmetric and transitive) is 

said to be an ordered set or partially ordered set. We say  is comparable to  if either  or  and denoted as 

 symbolically. 

(b) A set  is said to be totally ordered or linearly ordered if every pair of elements of  are comparable. 

(c) Triplet  is said to be an ordered metric space or partially ordered metric space if  is a metric endowed with 

partial ordering in a nonempty set.   

Definition 2. (a) Let  be a nonempty set and  be self-maps on . Then  is said to be coincidence point 

of  and  if . Also if   is a coincidence point of  such that , then  is a point of coincidence 

of  and . 

(b) If  be a coincidence point of  and   such that , then  is said to be common fixed point of 

 and . 

Definition 3. Let  and  be pair of self mappings defined on an ordered set . We say that  is -

nondecreasing (resp. -nonincreasing) if for any ,  ⇒  (resp.  ). In all,  is called 

-monotone if  is either -nondecreasing or -nonincreasing. 

Notice that under the restriction , the identity mapping on , the notions of -nondecreasing, -nonincreasing and 

-monotone mappings reduce to nondecreasing, nonincreasing and monotone mappings respectively.  

Definition 4. Let  be an ordered set and   then the followings hold : 

(a) The pair (A, B) is called commuting if , 

(b) weakly commuting if , 

(c) compatible if  whenever , such that   for 

some . 

(d)  weakly compatible if they commute at their coincidence point i.e. if , then .  

Example 1. Let  and   with usual distance in , then the pair  is compatible but 

not commuting and even weakly commuting. 
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(e) Mapping   is said to be weak annihilator of  if  for all  and dominating if  for all .  

Example 2. Let  with partial ordering and usual distance with  and   then 

 showing that  is weak annihilator of . 

(f) The pair  is said to be weakly increasing if  and  for all . 

(g) The pair  is said to be partially weakly increasing if   for all . 

Example 3. Let  with partial ordering and usual distance with  and   then 

  and   showing that  and  are weakly increasing mappings while if we choose  

then mappings become partially weakly increasing accordingly as   but .  

Thus we conclude that pair  is weakly increasing if and only if pairs  and  are partially weakly 

increasing. 

Some newly notified ordered metric definitions: 

Definition 5. (see [5] ) Partially ordered metric space   is said to be, 

(a)  -complete if every nondecreasing Cauchy sequence  converges, 

(b)  -complete if every nonincreasing Cauchy sequence    converges, and 

(c)  -complete if every monotone Cauchy sequence  converges.  

Remark 1. In this setting, completeness ⇒ -completeness ⇒ -completeness, as well as -completeness. 

Definitions 6 [5].  A self mapping  in triplet  is called, 

(a) -continuous for each  and for every nondecreasing sequence  conversing to ,  converges 

to , 

(b) -continuous for each  and for every nonincreasing  sequence  conversing to ,  converges 

to , and 

(c) -continuous for each  and for every monotonic sequence  conversing to ,   converges to 

.  

Remark 2. In the above said notions, continuity ⇒ -continuity ⇒ -continuity as well as -continuity. 

Definitions 7 [5]. In an ordered triplet  the pair  is defined as, 

(a) -compatible if for every  nondecreasing sequence   there exists two nondecreasing sequences  

and  converging to   implies that  , 

(b)  -compatible if for every  nonincreasing sequence   there exists two nonincreasing sequences  

and  converging to   implies that  , 

(c)  -compatible if for every monotonic sequence   there exists two monotonic sequences  and  

converging to   implies that . 

Remark 3. Thus for the pairs of maps in ordered settings, commutability ⇒ weak commutability ⇒ compatibility ⇒ -

compatibility ⇒ -compatibility as well as -compatibility ⇒ weak compatibility. 

Definitions 8. To emphasize new order theoretic notions we define the following weaker conditions of mappings. 
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(a) The mapping   is said to be -dominating if for every nondecreasing sequence   converges to   implies 

that . Analogously, we define -dominating and -dominating for nonincreasing and monotone sequences 

respectively. 

(b) Mapping   is said to be -weak annihilator of  if for every nondecreasing sequence  , converges to , 

sequences  and   are also nondecreasing and converge to , implies that . Analogously, we can 

define -weak annihilator and -weak annihilator for nonincreasing  and monotone sequences respectively. 

(c) The pair  is said to be -partially weakly increasing if for every nondecreasing sequence  

converges to , sequences   and   are also nondecreasing and converge to , implies that  . 

Analogously, we define -partially weakly increasing and -partially weakly increasing for nonincreasing and 

monotone sequences respectively. 

3. Main results 

Theorem 1. Let   be partially ordered metric space. Let  and  be self maps on . Suppose that 

the following conditions hold: 

(a)  and , 

(b)  and  are - partially weakly increasing mappings, 

(c) -dominating maps  and  are -weak annihilators of  and  respectively, 

(d) for any comparable elements   ,  holds,  where 

 and ,                                                                                                                                           (1) 

(e)   is -complete, 

(f)  are -compatible,  or  is  -continuous and  are weakly compatible or 

(g)  are -compatible, or  is -continuous and  are weakly compatible and 

If for a nondecreasing sequence  converges to  with   for all  and   implies that 

. Then  and  have unique common fixed point in . 

Proof: Let  be an arbitrary point of . Construct sequences   and   in  such that                      

,   .                                                                                                             (2)                                                                           

By assumption (b), we have                                                                                                                 

 ,                           ,                                                                                               

                             .                                                                  (3)                                                                                    

Thus for all  we have . Hence by using (d), and putting ,  we get                                    

 ,                                                       (4)                

                      ,                                                        

                                                 , 

  i.e.    ,   
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                          .                                                                                            (5)     

Similarly it can be proved that .                                    (6)                                

Therefore  .  

Put , we have                                                                                                                                                                (7) 

         , for all .                             (8) 

Now for any positive integer  and  with   we have 

            .                             (9) 

Hence we conclude that  is a Cauchy sequence. 

Now suppose   is a subsequence of   then by assumption (e), there exists  such that .                                                                                                                           

Therefore,    

.                                                              (10)                                                                                                                                                                                                                                                

Assume that  is -continuous and in view of assumption (f), we have 

  Also,  .            

Now      .                                 (11)                                                       

Letting  in the above inequality, and using (10), we have 

                                                                                                                           

                                                              , A contradiction.                                                                          (12)                       

Hence   .                                                                                                                                                                          (13) 

Now    and    , so by assumption we have  and (d) becomes                                    

                               .                                                       (14) 

Again letting  in the above inequality and using (10), we have         

                                      , 

                                                                                                                                                                                                                                                                                                                                                                       

This implies that .                                                                                                                                                            (15)          

Since  there exists a point   such that . Suppose that  .  Since 

 implies  . From (d), we obtain  

  

       ,                                                                   (16)                                                                                     

                                                     , 

                                                     , 
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                                             , A contraction.                                                                                        (17)                                                                                                                                                                                                                                 

Therefore we have . Since  and  are weakly compatible,    Thus  is 

a coincidence point of  and . 

Again since  and   , so by assumption we have , and (d) becomes   

                            .                                           (18)               

Letting , and if  then  and hence . 

 If    in the above inequality then using (10), we have    

                                      ,                                                                          (19)  

                                                           or                                                                                                                               

This is a contradiction.  Hence .                                                                                                                                      (20) 

Therefore   , that is  is a common fixed point of   and .  

For uniqueness, let us assume   and  but . Consider (1),    

                ,                                                                  (21)                                                                                                                        

                                                               , A contradiction.                                                                 (22)                      

Which means that . Thus  is a unique common fixed point of  and  . 

Corollary 1.  Let   be partially ordered metric space. Let  and  be self-maps on . Suppose that the 

following conditions hold: 

(a)  and , 

(b)  and  are -partially weakly increasing mappings, 

(c) -dominating map  is -weak annihilators of  and  respectively, 

(d) for any comparable elements   ,  holds, where  

and ,                                                                                                                                                                         

(e)   is -complete, 

(f)  are -compatible,  or  is  -continuous and  are weakly compatible or 

(g)  are -compatible, or  is -continuous and  are weakly compatible.                                                                                                       

If for a nondecreasing sequence  converges to   with   for all  and   implies that . Then 

 and  have unique common fixed point in .  

Corollary 2.  Let   be partially ordered metric space. Let  and  be self-maps on . Suppose that the 

following conditions hold: 

(a)   and , 

(b)   and  are -partially weakly increasing mappings, 

(c)  -dominating maps   and  are  -weak annihilators of , 

(d)  for any comparable elements   ,  holds, where 

 and ,                                                                                                                                                                      
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(e)     is -complete, 

(f)   are -compatible,  or  is  -continuous and  are weakly compatible or 

(g)   are -compatible, or  is -continuous and  are weakly compatible.                                                                                                      

If for a nondecreasing sequence   converges to   with   for all  and   implies that . Then 

 and  have unique common fixed point in .  

Corollary 3.  Let   be partially ordered metric space. Let  and  be self-maps on . Suppose that the following 

conditions hold: 

(a)    

(b)   is -partially weakly increasing mappings, 

(c)  -dominating map  is -weak annihilators of , 

(d)  for any comparable elements   ,  holds, where  

and ,                                                                                                                                                                      

(e)    is -complete, 

(f)   are -compatible, and  or  is  -continuous and  are weakly compatible.                                                                                                       

If for a nondecreasing sequence  converges to  with   for all  and   implies that . Then 

and  have unique common fixed point in . 

Remark 4. Theorem 1 and corollary 1, 2, and 3 remains true if we replace -complete, -compatible pair, -

continuous, -dominating maps, -partially weakly increasing mappings, -weak annihilator by -complete, -

compatible pair,  -continuous, -dominating maps, -partially weakly increasing mappings, -weak annihilating maps 

respectively.     

Remark 5. Theorem 1 and corollary 1, 2, and 3 remains true if we replace -complete, -compatible pair, -continuous, -

dominating maps, -partially weakly increasing mappings, -weak annihilator by complete, compatible pair, continuous, 

dominating maps, partially weakly increasing mappings, weak annihilating maps respectively. 

Now we prove common fixed point theorem by relaxing the definitions of -dominating, -partially weakly increasing, and -

weak annihilating mappings and enrich some recent common fixed point theorems by ordered metrical definitions. 

Theorem 2.  Let   be partially ordered metric space. Let  be self-maps on . Suppose that the following 

conditions hold:  

(a) , 

(b)   is -nondecreasing, 

(c) there exists  such that , 

(d) for any  and comparable  such that      holds, 

where  and ,                                                                                                                                           (23) 

(e)   is -complete, 

(f)  is -compatible pair, 

(g)  is -continuous,  
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(h)  is weakly compatible pair.                                                                                                                                                        

Then  and  have a unique common fixed point in .  

Proof: Let  be an arbitrary point in  such that . Since   we can choose  such that 

 again since   there exists  such that . By induction we can construct a sequence 

{ } in  such that   for every .  Since , and  is -nondecreasing mapping we 

have . Similarly, since  we have . Continuing this process, we obtain 

. Suppose that    for all . If not  then 

 for some, i.e.  implies that   and   have a coincidence point  . Now using assumption 

(h), let then .                                   

Consider,                  

                                                       , 

                                                      , A contradiction.                                                                                              

Hence    implies that  .                                                                                               (24) 

i.e.   is a common fixed point of  and . 

Therefore assuming  , in view of (d) we have  

                        , 

                                                      ,       

                           .                                                                                            (25) 

Using mathematical induction we have 

                        .                                                                                             (26) 

Now we shall prove that  is a Cauchy sequence. For , we have  

                            , 

                                                      ,  

                                                      . where .                                                          (27) 

Thus  is a Cauchy sequence. Also  is -complete, therefore there exists  such that 

. By -continuity of  we have . Since  and the pair is -

compatible, we have 

              .                                                                                                                  (28) 

Using triangular inequality and letting ,  

                                , 

                                                    , 

                                                    . 

Hence   i.e.  is a coincidence point of  and . Again in view of assumption (h), we arrive at equation (24). 

For uniqueness, let us assume that  , and   but .  Consider (23), 
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, 

                                                      , 

                                                      , A contraction.                                                                                        (29) 

Thus  is a unique common fixed point. 

Theorem 3. Theorem 2 remains true if we replace -complete, -compatible pair,  -continuous, by  -complete, -

compatible pair, -continuous, and assumption (c) is replaced by the following (besides retaining rest of the assumptions): 

(cꞌ) there exists  such that . 

Theorem 4. Theorem 2 remains true if we replace -complete, -compatible pair,  -continuous, by  -complete, - 

compatible pair, -continuous, and assumption (c) is replaced by the following (besides retaining rest of the assumptions): 

(cꞌꞌ) there exists  such that . 

Remark 6. Theorem 2 remains true if we replace -complete, -compatible pair, -continuous, by complete, -

compatible pair, continuous, and assumption (c) replaced by either (cꞌ) or (cꞌꞌ) (besides retaining  rest of the assumptions). 
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