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Abstract 

In this paper, we discuss the existence of nonoscillatory solutions of first order nonlinear neutral  difference equations of 
the from  

         ( ) ( ) ( ) 0,x n p n x n Q n G x n


       .  

         ( ) ( , ) ( ) 0,
d

s c

x n p n x n Q n s G x n s





       

and 

       ( ) , ( , ) ( ) 0.
b d

s a s c

x n p n s x n s Q n s G x n s



 

  
          

   

We use the Knaster-Tarski fixed point theorem to obtain some sufficient conditions for the existence of nonoscillatory 
solutions of above equations. Examples are provided to illustrate the main results. 
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1. INTRODUCTION  

In this paper, we discuss the existence of nonoscillatory solutions of first order nonlinear neutral difference equations of 
the from  

          0( ) ( ) ( ) 0,x n p n x n Q n G x n n


       N .    (1.1) 

          0( ) ( , ) ( ) 0,
d

s c

x n p n x n Q n s G x n s n





       N    (1.2) 

and 

        0( ) , ( , ) ( ) 0,
b d

s a s c

x n p n s x n s Q n s G x n s n



 

  
           

  N   (1.3) 

where   is the forward difference operator defined by ( ) ( 1) ( )x n x n x n     and 

   0 0 0 0, 1, 2,...n n n n  N  and 0n  is a nonnegative integer subject to the following conditions: 

 1C   is a ratio of odd positive integers; 

 2 , , ,C a b c    and d  are nonnegative integer with a b  and c d ; 

     3 ( ) , ( )C p n Q n  and  ( , )Q n s  are nonnegative real sequences; 

 4 ( )C G x  is a positive continuous real valued function with  ( ) 0xG x  for 0x  . 

Let  max ,   . By a solution of equations (1.1)-(1.3), we mean a real sequence  ( )x n defined and satisfying 

equations (1.1)-(1.3) for all 0n n   . Such a solution is said to be oscillatory if it is neither eventually positive nor 

eventually negative and nonoscillatory otherwise. 

In recent years, there has been much research concerning the oscillation of first order neutral delay difference equations, 
see for example [1-4, 9, 11-13, 16] and the references cited therein. In [2, 5 ,7, 8, 10, 14, 15], the authors investigated the 
existence of nonoscilatory solutions of first order difference equations. Following this trend, we obtain some new sufficient 
conditions for the existence of nonoscillatory solutions of equations (1.1)-(1.3). 

In Section 2, we establish some sufficient conditions for the existence of nonoscillatory  solutions of equations (1.1)-(1.3). 
In Section 3, we present some examples to illustrate the main results. The results established in this paper are discrete 
analogue of that in [6]. 

2. Nonoscillation Theorems  

In this section, we present some sufficient conditions for the existence of bounded nonoscillatory solutions of equations 
(1.1)-(1.3). We begin with the following lemma. 

Lemma 2.1. (Knaster-Tarski Fixed Point Theorem)   

Let B  be a partially ordered Banach space with ordering  . Let M  be a subset of B with the following properties: the 

infimum of M  belongs to M  and every nonempty subset of M  has a supremum which belongs to M . Let 

:T M M  be an increasing mapping, that is, x y   implies Tx Ty  .Then T  has a fixed point in M .  

The proof of Lemma 2.1 can be found in [3]. 

Theorem 2.1. Assume that  0 ( ) 1,p n p G    is nondecreasing and   

   

0

( ) ,
n n

Q n




           (2.1) 

then equation (1.1) has a bounded nonoscillatory solution. 

Proof: Let B  be the set of all bounded real valued sequence with the supremum norm, 
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    sup | | .
n

n
x B

x x


     

Then clearly B  is a Banach space. We can define a partial ordering as follows: for given 1 2 1 2, ,x x B x x   means 

that 1 2( ) ( )x n x n for 
0 0n n N . Define  

    1 2 0: ( ) , ,S x B C x n C n n       

where 1C  and 2C  are positive constants such that 

   1 2(1 ) .C p C    

If  1 1 0( ) , ,x n C n n   then 1x S  and 1 infx S . In addition, if *S S   , then  

    1 2 0* : ( ) , , , .S x B x n C C n n           

Let  2 0 1 2 0( ) sup : , .x n C C n n        Then 2x S   and  2 sup *x S . From the condition (2.1) there 

exists 1 0n n  with  

   1 0 max{ , }n n            (2.2) 

sufficiently large that 

   
2

1

2

[(1 ) ]
( ) , .

( )s n

p C
Q s n n

G C

 



 
        (2.3) 

For x S , we define  

  

1/

1

1 0 1

( ) ( ) ( ) ( ( )) ,
( )( )

( )( ), .

s n

p n x n Q s G x s n n
Tx n

Tx n n n n



  




  
         


 


 

For 1n n  and x S ,  by making use of (2.3), we obtain  

  

 

1/

2 2

1/

2
2 2

2

1/

2 2

2

( )( ) ( ) ( )

[(1 ) ]
( )

( )

[(1 ) ]

,

s n

Tx n pC G C Q s

p C
pC G C

G C

pC p C

C






 














 
   

 

  
   

 

  





 

and 

  1( )( ) .Tx n C    

HenceTx S  for every x S . Let 1 2,x x S  with 1 2x x  . Since G  is nondecreasing, 1 2Tx Tx , that is, T  is an 

increasing mapping. Then by the Knaster-Tarski fixed point theorem, there exists a positive x S  such that Tx x . 

Thus  ( )x n  is a bounded nonoscilatory solution of equation (1.1), which completes the proof. 

Theorem 2.2. Assume that  01 ( ) ,p p n p G     is nondecreasing and  (2.1) holds, then equation (1.1) 

has a bounded nonoscillatory solution. 
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Proof: Let B  be a Banach space as defined in Theorem 2.1. We can define a partial ordering as follows: for given 

1 2 1 2, ,x x B x x   means that 1 2( ) ( )x n x n for 
0 0n n N . Define  

    3 4 0: ( ) , ,S x B C x n C n n       

where 3C  and 4C  are positive constants such that 

   0 3 4( 1) (1 ) .p C p C     

If  1 3 0( ) , ,x n C n n   then 
1x S  and 

1 infx S . In addition, if *S S   , then  

    3 4 0* : ( ) , , , .S x B x n C C n n           

Let  2 0 3 4 0( ) sup : , .x n C C n n        Then 2x S   and  2 sup *x S . From the condition (2.1) there 

exists 1 0n n  with  

   1 0n n             (2.4) 

sufficiently large that 

   
0 3

1

3

[( 1) ]
( ) , .

( )s n

p C
Q s n n

G C

 



 
        (2.5) 

For x S , we define  

  

1/

1

1 0 1

1
( ) ( ) ( ( )) ,

( )( ) ( )

( )( ), .

s n

x n Q s G x s n n
Tx n p n

Tx n n n n







  




 

   
       

     


 


 

For 1n n  and x S ,  by making use of (2.5), we obtain  

       
1/

4 4 4 4 4

1 1 1
( )( ) (1 ) ,Tx n C C C p C C

p p p


         

  
 

and 

   

 

1/

3 3

1/

0 3
3 3

3

1/

3 0 3

3 0 3 3

3

1
( )( ) ( ) ( )

( )

[( 1) ]1
( )

( ) ( )

1
[( 1) ]

( )

1

( )

,

s n

Tx n C G C Q s
p n

p C
C G C

p n G C

C p C
p n

C p C C
p n

C








 




  









 






 

  
    

    

   
    

    

     
  

  






  

ThusTx S  for every x S . Let 1 2,x x S  with 1 2x x  . Since G  is nondecreasing, 1 2Tx Tx , that is, T  is an 

increasing mapping. Then by the Knaster-Tarski fixed point theorem, there exists a positive x S  such that Tx x . 

Thus  ( )x n  is a bounded nonoscilatory solution of equation (1.1), which completes the proof. 
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Theorem 2.3. Assume that  0 ( ) 1,p n p G    is nondecreasing and   

   

0

( , ) ,
d

n n s c

Q n s


 

          (2.6) 

then equation (1.2) has a bounded nonoscillatory solution. 

Proof: Let B  be a Banach space as defined in Theorem 2.1. We can define a partial ordering as follows: for given 

1 2 1 2, ,x x B x x   means that 1 2( ) ( )x n x n for 0 0n n N . Define  

    5 6 0: ( ) , ,S x B C x n C n n       

where 5C  and 6C  are positive constants such that 

   5 6( 1) .C p C    

If  1 5 0( ) , ,x n C n n   then 1x S  and 1 infx S . In addition, if *S S   , then  

    5 6 0* : ( ) , , , .S x B x n C C n n           

Let  2 0 5 6 0( ) sup : , .x n C C n n        Then 2x S   and  2 sup *x S . From the condition (2.6) there 

exists 1 0n n  with  

   1 0 max{ , }n n d          

sufficiently large that 

   
6

1

6

[(1 ) ]
( , ) , .

( )

d

s n i c

p C
Q s i n n

G C

 

 

 
        

For x S , we define  

  

1/

1

1 0 1

( ) ( ) ( , ) ( ( )) ,
( )( )

( )( ), .

d

s n i c

p n x n Q s i G x s i n n
Tx n

Tx n n n n



 


 

  
         


 


 

The remaining part of the proof is similar to that of Theorem 2.1, and hence the details are omitted. 

Theorem 2.4. Assume that  01 ( ) ,p p n p G     is nondecreasing and (2.6) holds, then equation (1.2) has 

a bounded nonoscillatory solution. 

Proof: Let B  be a Banach space as defined in Theorem 2.1. We can define a partial ordering as follows: for given 

1 2 1 2, ,x x B x x   means that 1 2( ) ( )x n x n for 0 0n n N . Define  

    7 8 0: ( ) , ,S x B C x n C n n       

where 7C  and 8C  are positive constants such that 

   0 7 8( 1) ( 1) .p C p C     

If  1 7 0( ) , ,x n C n n   then 1x S  and 1 infx S . In addition, if *S S   , then  

    7 8 0* : ( ) , , , .S x B x n C C n n           

Let  2 0 7 8 0( ) sup : , .x n C C n n        Then 2x S   and  2 sup *x S . From the condition (2.6) there 

exists 1 0n n  with  
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1 0n n d            

sufficiently large that 

   
0 7

1

7

[( 1) ]
( , ) , .

( )

d

s n i c

p C
Q s i n n

G C

 





  

 
         

For x S , we define  

  

1/

1

1 0 1

1
( ) ( , ) ( ( )) ,

( )( ) ( )

( )( ), .

d

s n i c

x n Q s i G x s i n n
Tx n p n

Tx n n n n







 




  

   
        

     


 

 
 

The remaining part of the proof is similar to that of Theorem 2.2, and hence the details are omitted. 

Theorem 2.5. Assume that  0 ( , ) 1,
b

s a

p n s p G


    is nondecreasing and (2.6) holds, then equation (1.3) has 

a bounded nonoscillatory solution. 

Proof: Let B  be a Banach space as defined in Theorem 2.1. We can define a partial ordering as follows: for given 

1 2 1 2, ,x x B x x   means that 1 2( ) ( )x n x n for 0 0n n N . Define  

    9 10 0: ( ) , ,S x B C x n C n n       

where 9C  and 10C  are positive constants such that 

   9 10(1 ) .C p C    

If  1 9 0( ) , ,x n C n n   then 1x S  and 1 infx S . In addition, if *S S   , then  

    9 10 0* : ( ) , , , .S x B x n C C n n           

Let  2 0 9 10 0( ) sup : , .x n C C n n        Then 2x S   and  2 sup *x S . From the condition (2.6) there 

exists 1 0n n  with  

   1 0 max{ , }n n b d          

sufficiently large that 

   
10

1

10

[(1 ) ]
( , ) , .

( )

d

s n i c

p C
Q s i n n

G C

 

 

 
        

For x S , we define  

  

1/

1

1 0 1

( , ) ( ) ( , ) ( ( )) ,
( )( )

( )( ), .

b d

s a s n i c

p n s x n s Q s i G x s i n n
Tx n

Tx n n n n






  

  
         


 

 
 

The remaining part of the proof is similar to that of Theorem 2.1, and hence the details are omitted. 

 

3. Examples 

In this section, we present some examples to illustrate the main results. 

Example 3.1. Consider the difference equation  
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3

2 8

1 7
( ) ( 1) ( 2) 0, 0.

4 2 n
x n x n x n n



  
           

     (3.1) 

Here 
2 8

1 7
( ) , ( ) , 3

4 2 n
p n Q n 


   ,  and 1, 2   . By taking ( )G x x , we see that  

1

( )
n

Q n




  . 

Further it is easy to verify that all other conditions of Theorem 2.1 are satisfied. Therefore the equation (3.1) has a 

bounded nonoscillatory solution. In fact,   
1

2n
x n

 
  
 

 is one such solution of equation (3.1). 

Example 3.2. Consider the difference equation  

  

3 2

1

1 1
( ) ( 3) ( ) 0, 0.

2 s

x n x n x n s n
n s

  
            

     (3.2) 

Here 
1 1

( ) , ( , ) , 3
2

p n Q n s
n s

  


,  and 1, 2c d  . By taking ( )G x x , we see that all other conditions 

of Theorem 2.3 are satisfied and hence every solution of equation (3.2) has a bounded nonoscillatory.  

Example 3.3. Consider the difference equation  

  

2 3

2
1 2

1 1
( ) ( ) ( ) 0, 0.

2( 1) ( )s s

x n x n s x n s n
n s n s 

 
       

   
     (3.3) 

Here 
2

1 1
( ) , ( , ) , 1, 1, 2,

2( 1) ( )
p n Q n s a b

n s n s
    

  
,  and 2, 3c d  . By taking ( )G x x , we 

see that all other conditions of Theorem 2.5 are satisfied and hence every solution of equation (3.3) has a bounded 
nonoscillatory.  
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