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Abstract: In this paper, the existence and uniqueness of solution of the linear two dimensional Volterra integral

equation of the second kind with Continuous Kernel are discussed and proved.RungeKutta method(R. KM)and Block by
block method (B by BM) are used to solve this type of two dimensional Volterra integral equation of the second kind.
Numerical examples are considered to illustrate the effectiveness of the proposed methods and the error is estimated.
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1.INTRODUCTION:

Two- dimensional integral equations provide an important tool for modeling many problems in engineering and science [1].
There are many well-written texts on the theory and applications of integral equations in different sciences. From 1960to
the present day, many new numerical methods have been developed for the solution of many types of integral equations,
such as the Toeplitz matrix method, the product Nystrom method, the Galerkin method; R. KM and B by BM (see Linz [2],
Baker et al. [3], and Delves and Mohamed [4]). More information for some numerical methods can be found especially in
Delves and Mohamed [4], Atkinson [5, 6] and Golberg [7]. In the reference [8], B by BM was used to solve the integral
equation in one dimensional. In [9], the authors solved the TD-NIE of the second kind using degenerate kernel method.
Guogiang et al., in [10], obtained numerically the solution of two-dimensional nonlinear Volterra integral equation by
collocation and iteration collocation methods. In [11], Guogiang and Jiong analyzed the existence of asymptotic error
expansion of the Nystrom solution for two-dimensional nonlinear Fredholm integral equation of the second kind. In [12],
Abdou obtained, using separation variables method, the solution of the linear F-VIE in one, two and three dimensional.In
[13],El-Kalla and Al-Bugami solved nonlinear two-dimensional Volterra integral equation by using Adomian and Block by
block methods. In this paper, we use R. KM and B by BM to discuss numerically the solution of the LT-DVIE of the second
kind with continuous kernel of the form

mi(x,y)=f (x,y)+/1]‘j.k(x,y,t,s)u(t,s)dtds 1)

where L is a constant defines the kind of the integral equation, U (X, Y ) is an unknown function, will be determined, the
functions f (X,y)and Kk (X,Yy,t,S)are given analytical functions defined, respectively, J =[O0, X]x[0, Y],
E ={(x,y,t,5):0<t <x <a,0<s <y <b}, x and A are constants that have many physical meanings.

2.The existence and unigueness of the solution:
To guarantee the existence of a unique solution of equation (1), we assume the following conditions:

(i) The kernel K (X, Y ,t,S) is continuous function in E satisfies:
|k(X,y,t,S)|SK ,K is a constant

(i) The given function f (X ,Y) is continuous with its derivatives and belongs to J =[0, X] %[0, Y], and its norm is
defined as:

||f (x,y)||=ma>J<|f (X,y)|S|V| V(x,y)eJ , M isaconstant.
X,y e

(iii) the unknown function U (X : y)is satisfies the Lipschits condition with respect to its argument and its normal is

definedin L,[0, X ]xL,[0)Y ] as:

Xy
”U (x,y )” = [J.'”U (x,y )|2 dxdy]"> <C  where C is a constant (2)
00

To prove the existence a unique solution of (1) using Banach fixed point theorem. Rewrite equation (3.1) in the integral
operator form:

T‘u(x,y)=%f (X,y)+Tu(.y) @

Where
A7
Tu(x.y)==[[kx,y.t.s)u.s)dds @
/uOO

Theorem 1:

If the conditions (i), (ii) and (iii) are verified, then equation (1) has auneque solution in the Banach space
C ([0, X] %[0, Y]), the proof of tis theorem depends on the following two lemmas.

Lemma 1:
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Underthe conditions (i)-(iii), the operator T defined by (3), maps the space C ([0, X]x[0, Y]) into itself.

Proof:

In view of the formulas (3) and (4), then using the condition (ii), and applying Couchy-Shwarz inequality, we have

A

— 1
[rueey)|<=if oyl

|24
Using the condition (i) and (iii), the above inequality takes the form:

A

Xy
”|k(x,y,t,s)||u(t,s)|dtds (5)
00

\TF“<X’V>HS|'\A7|+AIIU<X,V)II A ==|KC (©)

Inequality (6) show that, the operator T maps the space C ([0, X]x[0, Y]) into itself.

Moreover, the inequality (6) involves that the operator T is bounded where

ruce )l <A, y)] o

The inequalities (6) and (7) define that the operator T_ is bounded.
Lemma 2:

If the conditions (i) and (iii) are satisfied .then the operator T is contractive in the Banach space C ([0, X]x[0,Y]).
Proof:

For the two functions U, (X , Y ) and U, (X, Y )in the space C ([0, X] %[O, Y]) the formula (3) and (4) lead to,

[u, T, )| <[4
u

Xm" (<, ¥ t,8)|luy ,5) U, (¢,5)|dtds

Using the condition (iii) and then applying Cauchy-Shwarz inequality, we have

[Tu, —Tu,)e,y)| <A, t.s)-u, .5)] p

Inequality (8) show that, the operator T is continuous in the space C ([0, X]1x[0, Y] .

Also, T is a contraction operator, under the condition A <1, in the Banach space C ([0, X] %[0, Y]) . Therefore, the
operator T_ has a unique fixed point which is the unique solution of equation (1).

3. Runge-Kutta method:

In this section, the R. KM is used to solve linear two-dimensional Volterra integral equation of the second kind:
Xy
u(x,y)zf(x,y)+/1”k(x,y,t,s)u(t,s)dtds 9)
00
We introduce the intermediate values,
p-1
U, =FK&,+6hy, +9ph)+hZquk (x, +d h,y, +d h,x +ch,y +c.hl
q=0

(10)
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For p=12,..m . using F(0,0)=U, =f (0,0) the equation (10) can be used to determine the sequence of

values U oy,U 1,..,.U o U 10,U g5 sU o0, the value U is taken as an approximation to U(X,, +h,y, +h)
alsoU —=U

>~ n+1,0 -
The function F, (X, Y ) is chosen so that it is an approximation to

Xn ¥Yn

f (x,y)+j jk(x,y,t,s)u(t,s)dtds

While the parameters Hp ,qu .d 0q ,Cq are determined by a Taylor expansion. For example, by setting 9p =d b =C

we obtain a set of formulas were called Pouzet-type.

p

For m =4, a particular set of parameters for a Pouzet-type method is

6, =0, 91=92=%, 0,=6,=1
1
A10:A21:§’ Ap=RAyp=RAy=0 A;=1
1 1
A4o:A43:g’ A41:A42:§
Then, the system (10) becomes,
UnOZFn(XnVyn)
h h, h h h
U,=F&X, += Yy, +=)+=kX, +=,¥,+=X,, ¥, I,
nl n( n 2 yn 2) 2 ( n 2 y 2 y ) 0
h h, h h h h h (11)
U,=FB(x, += Yy, +=)+=kX,+=y,+=. X, = Y, +t=,
n2 n( n 2 yn 2) 2 ( n 2 y 2 2 y 2) 1

UnSZFn(Xn +h'yn +h)+hk(xn +hlyn +h’xn +%’yn +%)Un2

Un4=Fn(Xn +h1yn +h)+%[k(xn +h’yn +h'Xn’yn)Un0

+2k (X, +h,y,+h,x, +%,yn +%)[Un1+un2] (12)
+k (X, +h,y,+h,x,+h,y, +hJ .]

The function U (X, Y ) is unknown function, such that

FL ) = (YD + T 2ROV XY W0+ 2K (60Y XY ) +U ]

i=0
+k(X,y|Xi+1!yi+1)Ui3

(13)
h .
where Fo(X,y)=f (X,¥) . Xiu=Yia=X; +h . Xi0p =Y =X, +E for 0<i <n-1,n=01..N.

When N =1, the equation (12) becomes,
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h
Uy, = F1(X2rY2)+E[k (X20 Y20 X1 Y g + 2K (Xz'YZ’X1+1/2:Y1+1/2)[U11 +U ]

+K (X5, Y5, X5, Y ) sl

Such that F,(X,,Y,)=f (X,,Y,), and
Uy, =f (x,y1)

h
U, =f (Xm/z’ Y1+J/2) +Ek (Xl”/2’ Yz X Y1y

h
U, =f (X1+J/2’ y1+1/2)+5k (XM/Z'yl+1/2’xl+]/2'y1+1/2)ull

U =f (X, y,)+hk (XzaY21X1+1/2:y1+1/2)U12

We can written equation (12) as:

h
U n4 — I:n (X n+1? yn+l)+E[k (Xn+l’ yn+11Xn ’ yn)U no0 +2k (Xn+1’ yn+l’Xn+]/2’ yn+]/2) (15)

[U nl +U n2]+ k (X n+1? yn+l’X n+1? yn+1)U n3]
For1<n <N -1, and
)

no =U n-1,4

h
Unl T Fn(xn+1/2’yn+l/2)+5k(Xn+1/2’yn+1/2’xn’yn)UnO
(16)

h
U n2 — I:n (X n+1/2° yn+1/2) +Ek (Xn+:l/2’ yn+l/2'X n+1/2? yn+J/2)U nl
U n3 — Fn (Xn+l’ yn+1) +hk (X n+1? yn+l’Xn+]/2’ yn+]/2)U n2
Since the function U na =U n4(X . y) is the approximate solution at (X n Y ) for equation (9).

4. Block by block method:

We suppose that the following linear two —dimensional Volterra integral equation:

m(x,y)=f (x,y)+ﬂﬁk(x,y,t,s)u(t,s)dtds (17)

has a unique solution . the idea behind B by BM is quite general, but is most easily understood by considering a specific
case.

Use the Simpson's rule as a numerical integration formula, we get,
AT
u, lu(x,,y,)=Ff (x,, y2)+—”k (X, Y, t,s)u(t,s)dtds (18)
H3%
Approximating the integrals by Simpson's rule, if we knew U, (X, Y ), then we could compute U, (X, Y ) by

hA
u, u(x,,y,)=F (X,,y,)+—I[K(X,,Y,.t5,So)uy +4K (X,,Y,,t;,S,)u;
3u (19)
+K (X5, Y ,:t5,8,)u,]
where U, =F (X,,Y,) -

Now, we have
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A%
u, Ju(xy,y,)=Ff (X,y,) +—”k (X,,y,,t,s)u(t,s)dtds (20)
Ho%
to evaluate the integrals on the right sides, we introduce another point X]/2 = — and the corresponding value u]/2 and

use the Simpson's rulewith step size h/2 , then

hA
Up=F (X, y) + [k (X1, Y1, X0, Y oo +4K (X1, Y 1. X4, Y 12 Uy
6u (21)

+K (X3, Y1, X5, YU ]
where u]/2 have unknown values, that can be estimated by Lagrange interpolation points X, Y5, X1, Y1, X5, Y, .

Therefore we obtain,

o =30 +3u 21, (22)
Y2 8 0 4 1 8 2
Substituting from (3.25) into (3.24) we obtain:
hA 3 3 1
u, =f (xl,yl)+a[k (X1 Y1 Xg, YUy +4K (xl,yl,xﬂz,yl/z)[guo+Zul—§uz] 3
+K (X, Y X, Y u,d

In  equation (3.20) for X €[0,a] and Yy €[0,b], we dividke O=X,<X,;<..<X, =4a,
O0=y,<Y,<..<Y, =bbe a partition of [0,a], [0,b] with the step size h, such that, x;, =ih, y, =ih for
i,j=021..,N.

Then we can construct B by BM, by setting X =X, 1, Y =Y .4 t0get,

Xom Yam

A
u2m+l=f (X2m+11y2m+1)+;[I J. k(X2m+l’y2m+1’t’S)u (t,S)dtdS

0 0
(24)

Xom+1 Yom+
+ [ [ KOGna Yonat,S)u(t,s)dtds]
Xom Yom

Now, integration over [0,X,. ]x[0,¥,,] can be accomplished by Simpson's rule and the integral over

[X o s X om s X LY o+ Y 2m 1] is computed by using a quadratic interpolation, so if

Uy 0 U(XO’yo) =f (Xo1yo)
We have,

2m

A
Uy =F (X o1 y2m+1)+_[zw K (X gmaar Y omens X0 Y

i=0

h
+€[k (X 2m+1? y2m+1’X2m ’ y2m )u2m

3 3 1
+4k (X 2m+11 y2m+1’x2m+1/2’ y2m+l/2)[§u2m +Zuzmu _§u2m+2]

+ k (X 2m+1? y2m+1’X2m+l’ y2m+1)u2m+1]]

(25)
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Also, in a similar manner we have

u2m+2 =f (X2m+2’ y2m+2)+;[

A
Uomiz =f (X2m+21y2m+2)+_ Zwik(X2m+2’y2m+2’Xi ’yi)'li

H o

where {Ni}Z%{l,4,2,...,2,4,1}, 1=01....,2m andX 55,1, =Xp, +% also Y o1/

Xom+2 Yom+2

0 0

2m+2

5. Numerical Experiments and Discussions:

Example 1:

Consider the linear two-dimensional Volterra integral equation:

Xy
u(x,y)=xy —O.125x5y3+”xyszu (t,s)dtds
00

where the exact solutionis U(X,y) =Xy and 0<X,y <1, here A =1, g=1.In table (5.1)-(5.3) we present the
exact solution, the approximate numerical solutions and their corresponding errors for some points, we suppose that

N =20,50,80.

In tables (5.1)-(5.6):

R.K

u"" — approximate solution of R. KM, E RK 5 the error of R. KM, U - approximate solution of B by BM and

E 8 — the error of B by BM.

ISSN 2347-1921

k (X 2m+2? y2m+2’t ,S)u (t ,S)dtdS]

(26)

(27)
LI
2m 2 :

(28)

Case 1: N =20,
X y Exact sol. u R« ERK ut®e B8
0 0 0 0 0 0 0
0.1 | 0.1 | 0.010000000 | 0.0100000188 | 1 880%x 10® 0.0100000195 | 1 g59% 108
0.2 | 0.2 [ 0.040000000 | 0.0400022404 | 5 540agx 10 | O .0400022467 | 5 24673 107
0.3 | 0.3 | 0.090000000 | 0.0900355494 | 3 55494x% 10° 0.0900355702 | 3 55702x% 107°
0.4 [ 0.4 |0.160000000 | 0.1602460300 | 5 46030x 104 | 0 -1602460742 | 5 46074% 10
0.5 |05 [ 0.250000000 | 0.2510777921 | q g7779x 10° | O -2510778341 | 1 97783 107
0.6 | 0.6 | 0.360000000 | 0.3635284441 | 3 50844% 103 0.3635282581 | 3 5ogo5x% 1073
0.7 [ 0.7 | 0.490000000 | 0.4994353363 | g 43533x 10° | 0 -4994339204 | g 43392 107
0.8 | 0.8 | 0.640000000 | 0.6617454824 | 5 17454x% 1072 0.6617393619 | 5 17393x 1072
0.9 [ 0.9 [ 0.810000000 | 0.8547527831 | 4 47507%x 102 | 0-8547316022 | 4 47316x 107
1.0 [ 1.0 | 1.000000000 | 1.084359749 | g 43597x 102 | 1.084295562 | g 42955x 107

Table(5.1)

Case 2:N =50,
X y Exact sol. yRK ERK ut®e E BB
0 0 0 0 0 0 0
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0.1 [ 0.1 | 0.010000000 | 0.0100000187 | 1 g75% 10 0.0100000187 | 1 877x 108
0.2 | 0.2 | 0.040000000 | 0.0400022400 | 2 24007x 10°® 0.0400022402 | 5 24026x 10°®
0.3 | 0.3 [ 0.090000000 | 0.0900355476 | 3 55476x 10° | 0-0900355480 | 3 55480 107
0.4 | 0.4 | 0.160000000 | 0.1602460205 | 5 46020x% 10 0.1602460210 | 5 46021x 10
0.5 [ 0.5 [ 0.250000000 | 0.2510777310 | 1 g7773x 102 | 0-2510777242 | 1 97772 107
0.6 | 0.6 | 0.360000000 | 0.3635281038 | 3 50810x% 1073 0.3635280535 | 3 52805x% 107
0.7 | 0.7 | 0.490000000 | 0.4994338048 | g 43380x% 1073 0.4994335491 | g 43354x% 1073
0.8 | 0.8 [ 0.640000000 | 0.6617397087 | 5 17397x 102 | 0-6617387294 | 5 17387x 107
0.9 | 0.9 | 0.810000000 | 0.8547338211 | 4 47338x% 1072 0.8547305011 | 4 47305x% 1072
1.0 [ 1.0 | 1.000000000 | 1.084303663 | g 43036x 102 | 1.084293778 | g 42937x 102
Table(5.2)

Case 3:N =80,
X y Exact sol. yRK ERK uBBe BB
0 0 0 0 0 0 0
0.1 | 0.1 | 0.010000000 | 0.0100000187 | 1 g75% 10® 0.0100000187 | 1 g76x 108
0.2 | 0.2 | 0.040000000 | 0.0400022400 | 2 24009x% 10°® 0.0400022401 | 2 24011x 10°®
0.3 [ 0.3 | 0.090000000 | 0.0900355476 | 3 55476x% 10° 0.0900355476 | 3 55476x% 10°
0.4 | 0.4 | 0.160000000 | 0.1602460199 | 5 46019x% 10 0.1602460197 | 2 46019x% 10
0.5 [ 0.5 | 0.250000000 | 0.2510777255 | 1 07772x 1073 0.2510777224 | 1 907772x 103
0.6 | 0.6 | 0.360000000 | 0.3635280690 | 3 50806x% 1073 0.3635280491 | 3 50804x% 1073
0.7 | 0.7 | 0.490000000 | 0.4994336440 | g 43364x% 1073 0.4994335469 | g 43354x% 107
0.8 [ 0.8 | 0.640000000 | 0.6617390932 | 5 17390x% 1072 0.6617387155 | 5 17387x 102
0.9 | 0.9 | 0.810000000 | 0.8547317752 | 4 47317x 1072 0.8547305073 | 4 47305x% 1072
1.0 | 1.0 | 1.000000000 | 1.084297548 8.42975% 1072 1.084293738 8.42937x 1072

Table(5.3)
Example 2:

Consider the linear two-dimensional Volterra integral equation:

u(x,y)=x sin(y)+%x 2(x ®cos(y) —sin®(y ) —x 3)+]'_y|‘(xt2 +cos(s)u(t,s)dtds (29)

where the exact solutionis U (X ) y) =X sin Yy and 0<X,y <1, here A=1, g=1.Intable (5.4)-(5.6) we present
the exact solution, the approximate numerical solutions and their corresponding errors for some points, we suppose that

N =20,50,80.
Case 1:N =20,
X y Exact sol. yRK ERK ut®e EB8
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0] 00 0 0 0 0
0.1 | 0.1 | 0.009983341 | 0.0102985626 | 3 150009 10 | 0-0102984714 | 3 151297x 10
0.2 [ 0.2 | 0.039733866 | 0.0420948398 | 5 350973 103 | 0-0420947296 | 5 360863% 102
0.3 1 0.3 |0.088656062 | 0.0960620236 | 7 405961x 10 | 0-0960620397 | 7 405977x 10
0.4 1 0.4 | 0.155767336 | 0.1720136585 | 1 624632 102 | 0-1720139211 | 1 624658x 107
0.5 | 0.5 | 0.239712769 | 0.2690460130 | 5 933304x 102 | 0-2690463848 | 5 933361% 102
0.6 | 0.6 | 0.338785484 | 0.3857321589 | 4 694667x 102 | 0-3857318235 | 4 694633x 1072
0.7 [ 0.7 | 0.450952381 | 0.5202947182 | g 934233 102 | 0-5202914295 | 5 933904x 10°2
0.8 | 0.8 | 0.573884872 | 0.6706795493 | g g79467x 102 | 0-6706682790 | g 678340x 102
0.9 [ 0.9 | 0704994218 | 0.8344513514 | 1 294571x 10 | 0-8344218264 | 1 294276x 10
1.0 | 1.0 | 0.841470984 | 1.008420750 | 1 gggag7x 107 | 1.008353013 | 1 668820x 10™

Table(5.4)

Case 2: N =50,
X y Exact sol. uRK E RK use E®®
0 0 |0 0 0 0 0
0.1 | 0.1 | 0.009983341 | 0.0102985675 | 3 152059x% 10% | 0.0102985585 | 3 152168x% 10
0.2 1 0.2 | 0.039733866 | 0.0420948904 | 5 361024x 10° | 0.0420948957 | 5 361029x 107
0.3 1 0.3 | 0.088656062 | 0.0960622119 | 7 406149x 10° | 0-0960622480 | 7 406185% 10
0.4 104 |0.155767336 | 0.1720140502 | 1 go4671x 102 | 0-1720141263 | 1 624678x 10
0.5 | 0.5 | 0.239712769 | 0.2690464557 | 5 933368x 102 | 0-2690465658 | 5 933379% 1072
0.6 | 0.6 | 0.338785484 | 0.3857319293 | 4 694644x 102 | 0-3857319264 | 4 694644% 1072
0.7 | 0.7 | 0.450952381 | 0.5202918897 | g 933950% 102 | 0-5202914557 | g 933907x 1072
0.8 | 0.8 | 0.573884872 | 0.6706698505 | g 678497x 102 | 0-6706681747 | 9 678330% 10
0.9 | 0.9 |0.704994218 | 0.8344260926 | 1 294318x 10 | 0.8344216258 | 1 294274x 10
1.0 | 1.0 | 0.841470984 | 1.008363084 | 1 geg920x 107 | 1.008352641 | 1 g68816% 10

Table(5.5)
Case 3: N =80,
X y Exact sol. uRx E RK ut® EB®E
0] 0 |0 0 0 0 0

0.1 | 0.1 | 0.009983341 | 0.0102985680 | 3 152063% 104 | 0-0102985679 | 3 150262x 10

0.2 1 0.2 | 0.039733866 | 0.0420948963 | 3 361030x 10 | 00420948994 | 5 361033% 10

0.3 1 0.3 | 0.088656062 | 0.0960622346 | 7 406172x 10° | 0-0960622486 | 7 406186x 107

0.4 | 0.4 | 0.155767336 | 0.1720140993 | 1 go4676x 102 | 0-1720141308 | 1 624679x 1072

0.5 1 0.5 | 0239712769 | 0.2690465172 | 5 933374x 102 | 0-2690465585 | 2 933378x 107
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0.6 | 0.338785484 | 0.3857319254 | 4 5o4644x 102 | 0-3857319289 | 4 694644x 1072
0.7 | 0.7 | 0.450952381 | 0.5202916079 | g 933922x 102 | 0-5202914398 | 5 933905% 1072
0.8 | 0.8 | 0.573884872 | 0.6706688137 | g g78394x 102 | 0-6706681726 | g 578329% 102
0.9 | 0.9 | 0.704994218 | 0.8344233212 | 1 oga291x 10t | 0-8344215878 | 1 294273x 107!
1.0 | 1.0 | 0.841470984 | 1.008356670 1.668856x 101 | 1.008352634 1.668816x 10

ISSN 2347-1921

Table(5.6)
6. The Conclusion:

From the previous discussions we conclude the following:
1) As X and Y is increasing in [0,1]><[0,l], the errors due to block by block method and Runge-Kutta method
are also increasing.
2) As N is increasing, the errors are decreasing.

3) The errors due to the block by block method less than the errors due to the Runge-Kutta method.(i.e. block by
block method better than Runge-Kutta method for solving linear Two-Dimensional Volterra integral equation with
continuous kernel).
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