

SS-Coprime Modules

Inaam M.A.Hadi Department of Mathematics, College of Education for Pure Science,

University of Baghdad

Abstract

Let R be a commutative ring with unity and M is a unitary left R-module . In this paper , we introduce the notion of strongly S-coprime modules, where M is called strongly S-coprime briefly (SS-Coprime) if for each $r \in R$, r^2M is small in M implies rM=0. We investigate many properties about this concept. Moreover many relations between it and other related concepts, are given.

Keywords: Coprime module; S-Coprime module; SS-Coprime module; τ -noncosingular module.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .11, No. 5

www.cirjam.com, editorjam@gmail.com

1. INTRODUCTION

Let R be a commutative ring with unity and let M be a unital R-module. Recall that a proper submodule N of M is called prime if whenever $r \in R$, $x \in M$, $rx \in N$ implies that $x \in N$ or $r \in [N:M]$,[10] . M is called a prime R-module if the zero submodule (0) is a prime submodule of M. Equivalently, M is a prime R-module if $ann_RM = ann_RN$ for each nonzero submodule N of M,[4].

- S. Yassemi in [13] introduced the notions of second submodule and second module, where a submodule N of M is called second if whenever $r \in R-\{0\}$, rN=N or rN=0. M is called a second module if M is a second submodule of M; that is whenever $r \in R-\{0\}$, rM=M or rM=0.
- S. Annine in [2] introduced the notion of coprime module as follows: M is called a coprime R-module if annM=ann $\frac{M}{N}$ for each proper submodule N of M. However, it is known that second modules and coprime modules are equivalent.

Moreover I. E. Wijayant in [15], give the following:

An R-module M is coprime if and only if $ann_R M = ann_R \frac{M}{N}$ for each proper fully invariant summodule N of M. and proved that it is equivalent to definition of coprime module (in sense of S. Annine .

Recall that a proper submodule N of M is called small (denoted by N<<M) if whenever N+K=M, K is a submodule of M, then K=M [1]. As a generalization of coprime module. I.M.A.Hadi & R.I.Khalaf in [7] introduce the notion of small coprime (briefly, S-coprime) module, where an R-module M is called S-coprime if $ann_R M = ann_R \frac{M}{N}$ for each N<<M. Equivalently, M is S-coprime if for each r∈R-{0}, rM<<M implies rM = 0.

Tütuncu, Tribak in [12] introduced an studied the notion of T. non cosingular, where an R-module M is called T-noncosingular if whenever $\varphi \in EndM$, $Im \varphi << M$, implies $Im \varphi = 0$. It is clear that T-noncosingular module is S-coprime and the converse is not true in general, as we shall see later.

In section two of this paper we investigate the notion of strongly S-coprime module (briefly SS-coprime) where an R-module M is called SS-coprime if for any a,b∈R, abM<<M implies aM=0 or bM=0, it is clear that SS-coprime module is s-coprime but the converse is not true. However we see by examples that the concept SS-coprime and T-noncosingular are independent. However, if M is T-noncosingular and annM is a prime ideal then M is SS-coprime. Moreover many properties of SS-coprime modules and some connections between SS-coprime modules and other related concepts are given.

In section three, the concept of semistrongly S-coprime (briefly, SSS-coprime) is presented, where an R-module is SSS-coprime if whenever $r \in R$ with $r^2M << M$, then rM = 0. It is clear that every SS-coprime is SSS-coprime, but the converse is true under certain condition. Most of properties of SS-coprime modules generalized to SSS-coprime.

2. SS-Coprime Modules

Definition 2.1:

An R-module is called strongly S-coprime (briefly SS-coprime) if for each $a,b \in R$, abM << M implies aM=0 or bM=0

Remarks and Examples 2.2:

- 1) It is clear that every SS-coprime module is S-coprime, but the converse is not true in general, for example:
 - The Z-module Z_6 is S-coprime since (\bar{o}) is the only small submodule in Z_6 and so $rZ_6 << Z_6$ implies $rZ_6 = (\bar{o})$. But Z_6 is not SS-coprime, since $2.3Z_6 = (\bar{o}) << Z_6$ and $2.Z_6 \neq (\bar{o})$.
- 2) Let M be an R-module, then M is SS-coprime if and only if M is S-coprime and annM is a prime ideal

Proof:

It is easy

3) Every T-noncosingular module is S-coprime , but neither S-coprime nor SS-coprime implies T-noncosingular in general.

Proof:

Let M be a T-noncosingular R-module . Let $r \in R-\{0\}$, rM << M. Define $\varphi: M \longrightarrow M$ by $\varphi(m)=rm$, $\forall m \in M$. Then $Im \varphi=rM << M$ and since M is T-noncosingular , rM=0. Thus M is S-coprime

Now consider the following example:

Let M be the Z module $Z_{2^\infty}\oplus Z_2$. Then M is not T-noncosingular Z-module . However we can show that M is SS-coprime so let abM< $M=Z_{2^\infty}\oplus Z_2$ then ab $Z_{2^\infty}\ll Z_{2^\infty}$ and abZ₂< Z_2 . But Z_{2^∞} is divisible so abZ₂ Z_2 implies ab=0 and hence a=0 or b=0 . Thus aM=0 or bM=0 , that is M is SS-coprime (and hence M is S-coprime)

- 4) T-noncosingular module need not be SS-coprime, for example: Th Z-module Z_6 is not SS-coprime by part (1), but it is T-noncosingular.
- 5) If M is T-noncosingular and ann_RM is a prime ideal, then M is SS-coprime.

Proof:

Let $a,b\in R$, abM<<M. Define f: $M\to M$ byf(m)=abm, $\forall m\in M$. Then Imf=abM<M. But M is T-noncosingular , so abM=(0), that is $ab\in annM$. As annM is a prime ideal, then $a\in annM$ or $b\in annM$; thus aM=(0) or bM=(0) and M is SS-coprime.

- 6) An R-module M is SS-coprime if and only if M is an SS-coprime \overline{R} -module, where $\overline{R} = R/annM$
- 7) Let M, M be two isomorphic R-module. Then M is SS-coprime if and only if M is SS-coprime.
- 8) A ring R is an SS-coprime R-module if and only if R is an integral domain

Proof:

Let R be an integral domain , let $a,b \in R$ with (a)(b)R << R. Then (a)(b)=0 and so (a)=0 or (b)=0. Conversely, if R is SS-coprime R-module , let $a,b \in R$ a.b=0. Then (a)(b) << R and R is SS-coprime , either (a)=0 or (b)=0. Thus a=0 or b=0; that is R is an integral domain.

9) Let R be an SS-coprime, then R is K-nonsingular and the converse is not true in general, where R is K-nonsingular if for each $f \in \mathbb{R}$, $f \neq 0$, kerf $\leq_e \mathbb{R}$ (ker f is not essential in R).

Proof:

R is SS-coprime , so part(8), J(R)=(0) . Thus L(R)=Z(R)=(0). Hence $\ker f \not\leq_e R$.

Also Z₆ as Z₆-module is K-nonsingular, but it is not SS-coprime.

Recall that an R-module M is called a scalar module if for each $f \in EndM$, there exists $r \in R$ such that f(m)=rm, $\forall m \in M$ [11].

Proposition 2.3:

Let M be an R-module. If M is S-coprime and scalar module, then M is T-nonsingular module.

Proof:

Let $f \in EndM$ and Imf << M. Since M is a scalar R-module, there exists $r \in R$ such that f(m) = rm, $\forall m \in M$. Thus f(M) = rM << M and since M is S-coprime f(M) = rM = 0.

Therefore M is T-noncosingular.

Recall that an R-module M is called a multiplication R-module , if for each N \leq M there exists an ideal I of R such that N=IM. Equivalently, M is a multiplication R-module if for each N \leq M, N=[N:M] [3],where[N:M] ={r ϵ R:rM \subseteq N} .

Remark 2.4:

Every multiplication SS-coprime R-module M has (0) as the only small submodule of M

Proof:

Let N<<M . Since M is SS-coprime so M is S-coprime .Hence annM=ann $\frac{M}{N}$ = [N:M].

This implies (0)= (annM)M=[N:M]M=N.

Proposition 2.5:

Let M be an SS-coprime R-module . Then M is a prime module if and only if M is a primary module.

Proof:

 (\Rightarrow) It is clear.

(\Leftarrow) Let r∈R , x∈M and rx=0 . Since M is primary, either x=0 or $r^n \in A$ annM for some n∈Z₊. But M is SS-coprime implies annM is a prime ideal , hence either x=0 or r∈annM. Thus M is a prime module.

The following two results are characterizations of SS-coprime modules.

Proposition 2.6:

Let M be an R-module. Then M is SS-coprime module if and only if for each ideals I,J of R IJM<<M implies IM=0 or JM=0

Proof:

 (\Longrightarrow)

Let I,J be ideals of R and IJM<<M. Suppose $JM\neq(0)$. Hence there exists $b\in J$, $b\neq 0$ such that $bM\neq 0$. It follows that for each $a\in I$, $abM\leq IJM<<M$. So that abM<<M But M is SS-coprime and $bM\neq(0)$, so that aM=0 for each $a\in I$. Thus IM=(0).

(⇐) It is clear.

Proposition 2.7:

An R-module M is SS-coprime if and only if for each a,b∈R, abM<<M implies [aM:M]=annM or [bM:M]=annM.

Proof:

It is easy so is omitted

Remark 2.8:

The homomorphic image of SS-coprime is not necessarily SS-coprime, for example:

The Z-module Z is SS-coprime. Let $\pi: Z \to Z/6> \simeq Z_6$ be the natural epimorphism $\pi(Z)=Z_6$ which is not SS-coprime.

Proposition 2.9:

Let M be an SS-coprime R-module. Let N<<M . Then $\frac{M}{N}$ is an SS-coprime R-module.

Proof:

Let $a,b\in R$ and $a.b(\frac{M}{N})<<\frac{M}{N}$. Then $\frac{abM+N}{N}\ll\frac{M}{N}$ and since N<<M , we get abM+N<<M , and since N<<M , then abM<<M . But M is SS-coprime, so either aM=0 or bM=0 . It follows that $a\frac{M}{N}=(0)$ or $b\frac{M}{N}=(0)$. Thus $\frac{M}{N}$ is SS-coprime .

Corollary 2.10:

Let f:M→M be an epimorphism with kerf<<M. If M is an SS-coprime R-module, then M is SS-coprime.

Corollary 2.11:

Let M be an R-module with projective cover f: $P \rightarrow M$. If P is an SS-coprime R-module , then M is SS-coprime.

Corollary 2.12:

Let be a ring. Then the following statements are equivalent

- 1) Every projective R-module is SS-coprime
- 2) Every R-module M having a projective cover is SS-coprime .

Proof:

 $(1) \Rightarrow (2)$

It is following directly by Corollary 2.11.

(2) \Rightarrow (1) Let M be a projective R-module . Since there exists the identity mapping $i: M \to M$ and kerf=0<<M , then M has a projective cover . Hence by (2) , M is SS-coprime.

Proposition 2.13:

Let M be an R-module. Let N<M such that [N:M] =annM. If $\frac{M}{N}$ is an SS-coprime R-module, then M is SS-coprime.

Proof:

Let $a,b\in R$ and a.bM<<M. It follows that $\frac{abM+N}{N}\ll \frac{M}{N}$, that is $ab(\frac{M}{N})<<\frac{M}{N}$. But $\frac{M}{N}$ is SS-coprime, so either $a\frac{M}{N}=(0)$ or $b\frac{M}{N}=(0)$. This implies either $aM\subseteq N$ or $bM\subseteq N$, so either $a\in [N:M]=annM$ or $b\in [N:M]=annM$. Thus aM=(0) or bM=(0).

Remark 2.14:

- 1) A direct summand of SS-coprime module may not be SS-coprime , for example: consider the Z-module $M=Z\oplus Z_6$. It is easy to see that M is SS-coprime , but by Remark and Example 2.2(1) , Z_6 is not SS-coprime .
- 2) The direct sum of SS-coprime modules need not be SS-coprime module , for example: each of the Z-module Z_2 and Z_3 is SS-coprime , but $M=Z_2\oplus Z_3\cong Z_6$ is not SS-coprime.

Proposition 2.15:

Let M_1 and M_2 be R-modules and ann M_1 =ann M_2 . Then M= $M_1 \oplus M_2$ is SS-coprime. Particularly, $M \oplus M$ is SS-coprime if M is SS-coprime.

Proof:

Let $a,b\in R$ and $ab(M_1\oplus M_2)<< M_1\oplus M_2$. Then $abM_1<< M_1$ and $abM_2<< M_2$. As $M_1\&$ M_2 are SS-coprime , then (either $aM_1=0$ or $bM_1=0$) and (either $aM_2=0$ or $bM_2=0$). But $annM_1=annM_2$, hence aM=0 or bM=0. Thus M is SS-coprime .

Proposition 2.16:

Let $M=M_1\oplus M_2$. if M is an SS-coprime R-module such that $annM_1$ and $annM_2$ are noncomparable prime ideals , then M_1 and M_2 are SS-coprime modules.

Proof:

Since M is SS-coprime , then M is S-coprime by Remarks and Examples 2.2(2). Hence by [7, Theorem 19] , M_1 and M_2 are S-coprime modules . But ann M_1 and ann M_2 are prime ideals of R , so by Remarks and Examples 2.2(2), M_1 and M_2 are SS-coprime modules.

Recall that an R-module M is called small prime if annM=annN for each $(0) \neq N << M$. Equivalently M is a small prime R-module if (0) is a small prime submodule , where a proper submodule N of M is called a small prime submodule if whenever reR, xeM and (x)<< M, rxeN implies xeN or re[N:M] [8].

It is clear that every prime module is a small prime module , and if M is a small prime module, then annM is a prime ideal [8]

Theorem 2.17:

Let M be an R-module such that every submodule N of M is relatively divisible (i.e. $rM \cap N = rN$, $\forall r \in R$). If M is small prime, then M is SS-coprime.

Proof:

We claim that M is S-coprime . So I shall prove that annM=[N:M] for each N<<M.

Suppose that there is a small submodule N of M and $r \in R, r \neq 0$ such that $r \in [N:M]$ and $rM \neq (0)$. As M is small prime, we get $rN \neq (0)$. By hypothesis, N is relatively divisible, hence $rM \cap rN = r^2N$ and so $rN = r^2N$. This implies that, for any $n \in N$, $rn = r^2n_1$ for some $n_1 \in N$, and hence $r(n-rn_1)=0$. But $n-rn_1 \in N << M$, so that $(n-rn_1) << M$. On the other hand, M is small prime, so annM=ann(n-rn_1). Hence $r \in A$, which is a contradiction. Thus annM = ann(N:M), $\forall N << M$, i.e. M is S-coprime. Beside this, M is small prime implies annM is a prime, so by Remark and Example 2.2(2), M is SS-coprime.

Recall that an R-module M is called F-regular if IM∩N=IN for each N≤M and each ideal I of R [5].

Corollary 2.18:

Let M be an F-regular R-module .If M is small prime, then M is SS-coprime.

Corollary 2.19:

Let M be amodule over a regular ring R (i.e. R is regular in sense of VonNeuamann)

Then the following statements are equivalent:

- 1) M is a small prime R-module
- 2) M is an SS-coprime R-module
- 3) M is a prime R-module

Proof:

 $(1) \Rightarrow (2)$

Since R is regular ring, R/ann(x) is a regular ring for each $x \in M$. Hence M is F-regular[14]. Thus the result follows by Corollary 2.18.

 $(2) \Longrightarrow (3)$

Since M is SS-coprime, then annM is a prime ideal by Remarks and Examples 2.2(2), so that \bar{R} =R/annM is an integral domain. But R is regular ring implies \bar{R} is regular ring, it is follows that \bar{R} is a field, hence M is a prime \bar{R} -module which implies that M is a prime R-module.

 $(3) \Rightarrow (1)$

It is clear.

Remark 2.20:

Let M be a divisible module over an integral domain R. Then M is a faithful SS-coprime.

Proof:

Let $a,b \in R$ and abM << M. If $ab \neq 0$, then abM = M, so M << M which is a contradiction. Thus ab = 0 and hence a = 0 or b = 0. So that aM = 0 or bM = 0; that is M is SS-coprime.

Also, if r∈annM, then rM=0. Since M is divisible, then r=0. Thus M is faithful.

Proposition 2.21:

Let M be a faithful R-module. Consider the following statements:

- 1) M is SS-coprime
- 2) R is SS-coprime
- 3) R is an integral domain

Then $(1) \Rightarrow (3) \Leftrightarrow (2)$ and $(3) \Rightarrow (1)$ if M is finitely generated multiplication R-module.

Proof:

$$(1) \Rightarrow (3)$$

Let $a,b \in R$ such that ab=0. Then (ab) << R. So , abM=(0) << M. But M is SS-coprime , so either aM=0 or bM=0. Since M is faithful , then a=0 or b=0.

$$(3) \Rightarrow (1)$$

Let $a,b \in R$ and abM << M. Since M is finitely generated faithful multiplication module, then (ab) << R. But R is an integral domain, so (ab) = (0) and hence either a = 0 or b = 0. Thus either aM = (0) or bM = (0)

$$(3) \Leftrightarrow (2)$$

See Remarks and Examples 2.2(8)

Let M be an R-module, we say that M is small retractable if Hom(M,N)≠0 for each N<<M.

Proposition 2.22:

Let M be a small retractable and scalar module. If M is S-coprime, then RadM=(0).

Proof:

Suppose there exists $m \in RadM$, $m \neq 0$. Hence (m) << M and since M is small retractable, there exists $f: M \longrightarrow (m)$, $f \neq 0$, hence $f \in EndM$. But M is a scalar R-module, so that there exists $f: M \longrightarrow (m)$, $f \neq 0$, and as M is S-coprime, we get $f: M \longrightarrow (m)$ which is a contradiction, therefore $f: M \longrightarrow (m)$ and $f: M \longrightarrow (m)$.

Hence it is clear that if M is small retractable scalar module and M is SS-coprime then RadM=0.

Proposition 2.23:

Let M be an R-module . If Hom(M,N)=0, for each N<<M , then M is S-coprime

Proof:

Let $a \in R$ and aM << M. Define $f:M \longrightarrow M$ by f(m)=am, $\forall m \in M$. Hence f(M)=aM << M, thus $f \in Nom(M,aM)$ and aM << M, so by hypothesis f=0. Thus f(M)=aM=0 and M is S-coprime.

Corollary 2.24:

Let M be an R-module .If Hom(M,N)=0 for each N<<M and annM is a prime ideal . Then M is SS-coprime.

Proof:

It follows by Proposition 2.23 and Remarks and Examples 2.2(2) .

Proposition 2.25:

Let M be an R-module .Then M is an SS-coprime E-module if and only if Hom(M,N)=0, $\forall N << M$ and $ann_E M$ is a prime ideal in E , where E=End(M).

Proof:

(⇒) Let $f \in Hom(M,N)$, N<<M. Then $f(M) \subseteq N$ <<M, so f(M)<<M. But M is SS-coprime E-module , hence M is S-coprime E-module and so f(M)=0 . Thus Hom(M,N)=0. Moreover , since M is SS-coprime E-module , ann_EM is a prime ideal in E by Remarks and Examples 2.2(2) .

 (\Leftarrow) First we shall prove M is an S-coprime E-module . Let $f \in Hom(M,N)$, f(M) << M. Put f(M) = N, hence $f \in Hom(M,N) = 0$. Thus f = 0 and so M is an S-coprime E-module. But $ann_E M$ is a prime ideal so M is SS-coprime E-module by Remarks and Examples 2.2(2).

Under the class of multiplication module, we have the following

Theorem 2.26:

Let M be a multiplication R-module . Then M is an SS-coprime if and only if M is an SS-coprime E-module .

Proof:

(⇒) Let f,g∈EndM, and $(f \circ g)(M) << M$. Since $g(M) \le M$ and M is multiplication R-module,

g(M)=IM for some ideal I of R. It follows that $(f \circ g)(M)=f(g(M))=f(IM)=If(M)$. But $f(M) \leq M$, so f(M)=JM, for some ideal J of R. Thus $(f \circ g)(M)=IJM$ and so IJM << M. But M is an SS-coprime R-module, hence either IM=0 or JM=0 by Proposition 2.6. Thus either f(M)=0 or g(M)=0; that is M is an SS-coprime E-module.

 (\Leftarrow) Let abM<<M where a,b \in R . Define f,g:M \rightarrow M by f(m)=am ,g(m)=bm , \forall m \in M. Then (f \circ g)(M)=abM<<M . Since M is an SS-coprime E-module, then either f(M)=0 or g(M)=0 and hence either aM=0 or bM=0. Thus M is an SS-coprime R-module.

Recall that an R-module is called hollow module if every proper submodule of M is small[6].

Proposition 2.27:

Let M be a hollow R-module . Then the following statements are equivalent :

- 1) M is S-coprime
- 2) M is coprime
- 3) M is SS-coprime

Proof:

- $(1) \Leftrightarrow (2)$ It is clear.
- (1) \Rightarrow (3) Let abM<<M where a,b \in R. Then either aM or bM is a proper submodule of M. Hence if aM<M, then aM<<M and so aM=0 . Similarly , bM=0 . Thus M is SS-coprime.
- $(3) \Rightarrow (1)$ It follows by Remarks and Examples 2.2(2).

Proposition 2.28:

Let I be a nil ideal of a ring R . If M is an S-coprime R-module, then IM=0

Proof:

Let a \in I, we claim that aM<<M . Assume aM+K=M for some submodule K of M . Then for each n \in Z₊ , aⁿM+K =M . But a is a nilpotent element , so K=M and aM<<M . Since M is S-coprime , then aM=0 for any a \in I . Thus IM=(0).

Proposition 2.29:

Let I .J be two ideals of a ring R such that IJ is a nil ideal . If M is an SS-coprime R-module, then IM=0 or JM=0.

Proof:

Since M is an SS-coprime R-module, then M is an S-coprime R-module and hence by Proposition 2.28, IJM=0, so that IJM<<M . But M is SS-coprime , therefore either IM=0 or JM=0.

Recall that a ring R is semilocal if R/J(R) is semisimple.

Proposition 2.30:

Let R be a semilocal ring and J(R) is nilpotent . Then M is S-coprime if and only if M is semisimple .

Proof:

 (\Rightarrow) If M is S-coprime . Since R is semilocal , $\frac{R}{J(R)}$ is semilocal, hence RadM=J(R)M and $\frac{M}{RadM}$ is semisimple by [1. Corollary 15.18]. But J(R) is a nil ideal , so by Proposition 2.28, J(R)M=0 . then RadM =0 .

 (\Leftarrow) It is clear.

Note 2.31:

If R is a semilocal ring with J(R) is nilpotent and M is an SS-coprime R-module , then M is semisimple , but the converse is not true for example: consider Z_6 as Z_6 -module . The ring Z_6 is semilocal , $J(Z_6)$ =0 is a nil ideal . Also Z_6 as Z_6 -module is semisimple , but it is not SS-coprime .

3. Semi Strongly S-Coprime Modules

In this section we investigate the notion of semi strongly S-coprime modules and present some of its properties and some of relations between this concept and other related concepts .

Definition 3.1:

An R-module is called semi strongly S-coprime (briefly, SSS-coprime) if for each a∈R, a²M<<M implies aM=0.

Remarks and Examples 3.2:

- 1) It is clear that every SS-coprime is SSS-coprime , but not conversely , for example : if M is the Z-module Z_6 , then $a^2Z_6 << Z_6$ implies $a^2Z_6 = (0)$; that is $a^2 \in ann_z Z_6 = Z_6$ and so $a \in 6Z$. Thus $aZ_6 = (0)$ and M is SSS-coprime . But M is not SS-coprime .
- 2) Every SSS-coprime module is S-coprime

Proof:

Let M be an SSS-coprime module , let $a \in R$ with $aM \ll M$. Since $a^2M \subseteq aM$, then $a^2M \ll M$. Hence aM = (0) because M is SSS-coprime . Thus M is S-coprime .

- 3) It is easy to see that : an R-module M is S-coprime and ann_RM is a semiprime ideal of R if and only if M is SSS-coprime.
- 4) Let M be a module over a chained ring R . Then M is SS-coprime if and only if M is SSS-coprime .
- 5) If M and M' are isomorphic R-module. Then M is SSS-coprime if and only if M' is SSS-coprime.
- 6) The image of SSS-coprime need not be SSS-coprime . As example to show this : The Z-module Z is SSS-coprime , let $\pi: Z \to Z/<4> \simeq Z_4$ be the natural epimorphism , then $\pi(Z)=Z_4$ is not SSS-coprime .
- 7) For any ring $R \neq 0$. If R is SSS-coprime, then L(R)=J(R)=(0).

Proof:

Suppose there exists $a \in J(R)$, $a \ne 0$. Then $a^2R \ll R$. Since R is SSS-coprime, then aR=(0) (i.e. a=0) which is a contradiction. Thus J(R)=(0), hence L(R)=(0).

Proposition 3.3:

The direct sum of two SSS-coprime modules is SSS-coprime .

Proof:

Let $M=M_1\oplus M_2$, where M_1 and M_2 are SSS-coprime R-module . If $r\in R$ such that $r^2M\ll M$, then $r^2M_1\ll M_1$ and $r^2M_2\ll M_2$. By SSS-coprimeness of M_1 and M_2 , r $M_1=(0)$ and r $M_2=(0)$. Thus rM=(0) and M is SSS-coprime.

Remark 3.4:

A direct summand of SSS-coprime module may be not SSS-coprime , for example : If M is the Z-module $Z \oplus Z_4$, then M is SSS-coprime , but Z_4 is not a SSS-coprime Z-module.

The following result is a characterization of SSS-coprime module

Proposition 3.3:

Let M be an R-module. Then the following statements are equivalent >

- 1) M is SSS-coprime module
- 2) For any ideal I of R, $I^2M \ll M$ implies IM=(0)
- 3) For any ideal I of R and $n \in Z_+$, $I^nM \ll M$ implies IM = (0).

Proof:

It is easy, so is omitted.

The following results are analogous to results about SS-coprime modules .

Proposition 3.4:

Let N<<M. If M is SSS-coprime R-module. Then $\frac{M}{N}$ is an SS-coprime R-module.

Proof:

It is similar to proof of Proposition 2.9.

Corollary 3.7:

Let f:M→M be an epimorphism with kerf<<M. if M is an SSS-coprime R-module, then M is SSS-coprime.

Corollary 3.8:

Let M be an R-module with projective cover f: $P \rightarrow M$. If P is an SSS-coprime R-module , then M is SSS-coprime.

Proposition 3.9:

Let M be an R-module. Let N<M such that [N:M] =annM. If $\frac{M}{N}$ is an SSS-coprime R-module, then M is SSS-coprime.

Proof:

It is similar to the proof of Proposition 2.13

Theorem 3.10:

Let M be a multiplication R-module . Then M is an SSS-coprime if and only if M is an SSS-coprime E-module , where E=End(M)

Proof:

It is similar to the proof of Proposition 2.26

Remark 3.11:

Since every SSS-coprime is S-coprime by Remark and Example 3.2(2). If R is a semilocal ring with J(R) is a nilpotent, then every SSS-coprime is semisimple

Next we have

Proposition 3.12:

Let M be a finitely generated faithful multiplication R-module . Then M is SSS-coprime if and only if R is SSS-coprime .

Proof:

 (\Rightarrow) Let (a^2) <<R . Since M is faithful finitely generated multiplication , then a^2 M<<M, hence aM=0 . But M is faithful so a=0 (i.e. (a)=(0)).

(\Leftarrow) Let a \in R and a²M<<M . Since M is faithful finitely generated multiplication , [a²M:_RM]<<R , hence (a²)<<R . So (a)=(0). Thus aM=(0).

References

- [1] F. W. Anderson and K. Fuller, Ring and Categories Springer- Verlag, 1974.
- [2] S. Annine, Associated and attached prime over non Commutative Rings, Ph. D. thesis, University of Berkeley (2002)
- [3] A. Barnad, Multiplication Modules, J Algebra Vol.71(1981), 174-178
- [4] G. Desal, W.K. Nicholson, Endo primitive Rings, J Algebra, Vol 70 (1981), 548-560.
- [5] D.J. Field house, Pure Theories, Math. Ann. Vol. 184, (1969), 1-18.
- [6] P.F. Fleury, Hollow Modules and Local Endo Primitive Rings, Pac. J. Math, Vol 53 (1974), 379-385.
- [7] M.A.H. I.M.A.Hadi and R.I.Kahalf, S-coprime Modules, J. of Basrah Researches (Science) Vol. 37, No. 4. D (2011), 78-86.
- [8] L.S. Mahmood, Small Prime Modules and Small Prime submodules, J. of Vol. 15 No.4 (2012),191-199.
- [9] C.S. Roman, Baer and Quasi Baer Modules, Ph.D. thesis, The Ohio State University, (2004).
- [10] S.A. Saymach, On prime submodules, Univ, Tucumare Ser. A. 29 (1979),121-136.
- [11] B. N. Shihab, "Scalar Reflexive Modules", Ph. D. Thesis, University of Baghdad, 2004.
- [12] DK, TuTuncu, Tribak R., On T-nonsingular Modules, Bull. Aust. Math. Soc, 80(2009), 426-471.
- [13] S.M. Yassemi, The dual notion of Prime Submodules , Arch. Math. (Bron), Vol. 37,(2001), 273-278.
- [14] S.M. Yassen, On F-regular Modules , Ms. C. Thesis . Univ. of Baghdad, 1996.
- [15] I. E. Wijayanti, Coprime Modules and Comodules, Ph. D. Thesis, Heirich-Hein Universitat, Dusseldorf, 2006.