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Abstract 

Let R be a commutative ring with unity and M is a unitary left R-module . In this paper , we introduce the notion of strongly 
S-coprime modules, where M is called strongly S-coprime briefly (SS-Coprime) if for each r∈R , r

2
M is small in M implies 

rM=0 . We investigate many properties about this concept. Moreover many relations between it and other related 
concepts, are given.     
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1. INTRODUCTION 

Let R be a commutative ring with unity and let M be a unital R-module. Recall that a proper submodule N of M is called 
prime if whenever r ∈ R , x ∈ M , rx ∈ N implies that 𝑥 ∈ 𝑁 𝑜𝑟 𝑟 ∈ [𝑁: 𝑀],[10] . M is called a prime R-module if the zero 
submodule (0) is a prime submodule of M. Equivalently, M is a prime R-module if annRM = annRN for each nonzero 
submodule N of M,[4]. 

S. Yassemi in [13] introduced the notions of second submodule and second module, where a submodule N of M is called 
second if whenever  r∈R-{0}, rN=N or rN=0 . M is called a second module if M is a second submodule of M ; that is 

whenever r∈R-{0}, rM=M or rM=0.  

S. Annine in [2] introduced the notion of coprime module as follows: M is called a coprime R-module if annM=ann
𝑀

𝑁
  for 

each proper submodule N of M. However, it is known that second modules and coprime modules are equivalent.  

Moreover I. E. Wijayant in [15], give the following :  

An R-module M is coprime  if and only if 𝑎𝑛𝑛𝑅M=𝑎𝑛𝑛𝑅
𝑀

𝑁
  for each proper fully invariant summodule N of M. and proved 

that it is equivalent to definition of coprime module (in sense of S. Annine .          

Recall that a proper submodule N of M is called small (denoted by N<<M) if whenever N+K=M, K is a submodule of M, 
then K=M [1]. As a generalization of coprime module. I.M.A.Hadi & R.I.Khalaf in [7] introduce the notion of small coprime 

(briefly, S-coprime) module, where an R-module M is called S-coprime if 𝑎𝑛𝑛𝑅𝑀 = 𝑎𝑛𝑛𝑅
𝑀

𝑁
 for each N<<M. Equivalently, M 

is S-coprime if for each r∈R-{0} , rM<<M implies rM = 0 . 

Tütuncu, Tribak in [12] introduced an studied the notion of T. non cosingular, where an R-module M is called T-
noncosingular if whenever 𝜑 ∈ 𝐸𝑛𝑑𝑀, Im𝜑<<M, implies Im𝜑 = 0 . It is clear that T-noncosingular module is S-coprime and 

the converse is not true in general, as we shall see later.  

In section two of this paper we investigate the notion of strongly S-coprime module (briefly SS-coprime) where an R-
module M is called SS-coprime if for any a,b∈R, abM<<M implies aM=0 or bM=0 , it is clear that SS-coprime module is s-

coprime but the converse is not true. However we see by examples that the concept SS-coprime and T-noncosingular are 
independent. However, if M is T-noncosingular and annM is a prime ideal then M is SS-coprime. Moreover many 
properties of SS-coprime modules and some connections between SS-coprime modules and other related concepts are 
given.  

In section three, the concept of semistrongly S-coprime (briefly, SSS-coprime) is presented, where an R-module is SSS-
coprime if whenever r∈R with r

2
M<<M, then rM=0. It is clear that every SS-coprime is SSS-coprime, but the converse is 

true under certain  condition. Most of properties of SS-coprime modules generalized to SSS-coprime.                                                                                                                                                                                                                                                                                      

2. SS-Coprime Modules 

Definition 2.1 : 

An R-module is called strongly S-coprime (briefly SS-coprime) if for each a,b∈R, abM<<M implies 

aM=0 or bM=0 

Remarks and Examples 2.2: 

1) It is clear that every SS-coprime module is S-coprime, but the converse is not true in general, for example:  

The Z-module Z6 is S-coprime since (o ) is the only small submodule in Z6  and so rZ6<<Z6 implies  rZ6=(o ). But Z6 is 

not SS-coprime, since 2.3Z6=(o ) <<Z6 and 2.Z6≠(o )  , 3.Z6≠(o ) . 

2) Let M be an R-module, then M is SS-coprime if and only if M is S-coprime and annM is a prime ideal  

Proof :  

It is easy  

3) Every T-noncosingular module is S-coprime , but neither S-coprime nor SS-coprime implies T-noncosingular in 
general. 

Proof : 

Let M be a T-noncosingular R-module . Let r∈R-{0} , rM<<M. Define 𝜑:M⟶M by 𝜑(m)=rm , ∀m ∈ M . Then 

Im𝜑=rM<<M and since M is T-noncosingular , rM=0. Thus M is S-coprime  

Now consider the following example:  

Let M be the Z module 𝑍2∞⨁ 𝑍2 . Then M is not T-noncosingular Z-module . However we can show that M is SS-

coprime so let abM<<M=𝑍2∞⨁ 𝑍2 then ab  𝑍2∞ ≪  𝑍2∞ and abZ2<<Z2 . But 𝑍2∞ is divisible so ab𝑍2∞<<𝑍2∞ implies ab=0 

and hence a=0 or b=0 . Thus aM=0 or bM=0 , that is M is SS-coprime (and hence M is S-coprime)  
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4) T-noncosingular module need not be SS-coprime, for example: Th Z-module Z6 is not SS-

coprime by part (1), but it is T-noncosingular . 

5) If M is T-noncosingular and annRM is a prime ideal, then M is SS-coprime . 

Proof : 

Let  a,b∈R, abM<<M . Define f: M⟶M byf(m)=abm, ∀m ∈ M. Then Imf=abM<<M. But M is T-noncosingular , so 
abM=(0), that is ab∈ annM. As annM is a prime ideal, then  a ∈ annM or  b ∈ annM ; thus aM=(0) or bM=(0) and M is 

SS-coprime.         

6) An R-module M is SS-coprime if and only if M is an SS-coprime R -module, where R = R/annM  

7) Let M , M
ʹ
 be two isomorphic R-module. Then M is SS-coprime if and only if  M

ʹ
 is   SS-coprime .  

8) A ring R is an SS-coprime R-module if and only if R is an integral domain  

Proof : 

Let R be an integral domain , let a,b∈R with (a)(b)R<<R. Then (a)(b)=0 and so (a)=0 or (b)=0 . Conversely, if R is SS-

coprime R-module , let a,b∈R a.b=0 . Then (a)(b)<<R and R is SS-coprime , either (a)=0 or (b)=0. Thus a=0 or b=0; 

that is  R is an integral domain.  

9) Let R be an SS-coprime , then R is K-nonsingular and the converse is not true in general , where R is K-nonsingular if 
for each f∈R, f≠0 , kerf ≰𝑒R(ker f is not essential in R) . 

Proof : 

R is SS-coprime , so part(8), J(R)=(0) . Thus L(R)=Z(R)=(0). Hence kerf≰𝑒R . 

Also  Z6 as Z6-module is K-nonsingular , but it is not SS-coprime . 

       Recall that an R-module M is called a scalar module if for each f∈EndM , there exists  r ∈R such that f(m)=rm   

, ∀m ∈ M [11].  

Proposition 2.3 : 

Let M be an R-module. If M is S-coprime and scalar module , then M is T-nonsingular module.  

Proof : 

Let f∈EndM and  Imf<<M . Since M is a scalar R-module , there exists r ∈R such that f(m)=rm , ∀m ∈ M . Thus 

f(M)=rM<<M and since M is S-coprime  f(M)=rM=0.  

Therefore M is T-noncosingular.  

       Recall that an R-module M is called a multiplication R-module , if for each N≤M there exists an ideal I of R such that 

N=IM. Equivalently, M is a multiplication R-module if for each N≤M, N=[N:M] [3],where[N:M] ={r𝜖R:rM⊆N}  . 

Remark 2.4 : 

       Every multiplication SS-coprime R-module M has (0) as the only small submodule of M  

Proof : 

Let N<<M . Since M is SS-coprime so M is S-coprime .Hence annM=ann 
𝑀

𝑁
 = [N:M]. 

This implies (0)= (annM)M=[N:M]M=N. 

Proposition 2.5 : 

Let M be an SS-coprime R-module . Then M is a prime module if and only if M is a primary module. 

Proof : 

(⟹) It is clear . 

(⟸) Let  r∈R , x∈M and rx=0 . Since M is primary, either x=0 or  r
n
 ∈annM for some n∈Z+. But M is SS-coprime implies 

annM is a prime ideal , hence either x=0 0r r∈annM. Thus M is a prime module. 

    The following two results are characterizations of SS-coprime modules. 

Proposition 2.6 : 

Let M be an R-module . Then M is SS-coprime module if and only if for each ideals I,J of R IJM<<M implies IM=0 or JM=0  

Proof :           



  ISSN 2347-1921                                                           

5214 | P a g e                                                O c t o b e r  1 0 ,  2 0 1 5  

 

 

(⟹) 

Let I,J be ideals of R and IJM<<M. Suppose JM≠(0) . Hence there exists b∈J, b≠0 such that bM≠0. It follows that for each 
a∈I , abM≤IJM<<M . So that abM <<M But M is   SS-coprime and bM≠(0), so that aM=0 for each a∈I. Thus IM=(0).       

(⟸) It is clear. 

Proposition 2.7 : 

   An R-module M is SS-coprime if and only if  for each a,b∈R , abM<<M implies [aM:M]=annM or [bM:M]=annM. 

Proof : 

It is easy so is omitted  

Remark 2.8 : 

The homomorphic image of SS-coprime is not necessarily SS-coprime , for example: 

The Z-module Z is SS-coprime. Let π: Z ⟶ Z/<6> ≃ Z6 be the natural epimorphism π(Z)=Z6 which is not SS-coprime. 

Proposition 2.9 : 

     Let M be an SS-coprime R-module. Let N<<M . Then  
𝑀

𝑁
 is an SS-coprime R-module. 

Proof : 

Let a,b∈R and a.b(
M

N
) << 

M

N
 . Then  

abM +N

N
 ≪

M

N
 and since N<<M , we get abM+N <<M , and since N<<M , then abM<<M . 

But M is SS-coprime, so either aM=0 or bM=0 . It follows that a 
M

N
 =(0) or  b 

M

N
 =(0) . Thus 

𝑀

𝑁
  is SS-coprime . 

Corollary 2.10 : 

 Let f:M⟶M
'
 be an epimorphism with kerf<<M. If M is an SS-coprime R-module, then M

'
 is SS-coprime.   

Corollary 2.11 : 

Let M be an R-module with projective cover f: P ⟶ M. If P is an SS-coprime R-module , then M is SS-coprime.        

Corollary 2.12 : 

       Let  be a ring . Then the following statements are equivalent  

1) Every projective R-module is SS-coprime  

2) Every R-module M having a projective cover is SS-coprime . 

Proof : 

(1) ⟹ (2) 

It is following directly by Corollary 2.11 . 

(2) ⟹ (1) Let M  be a projective R-module . Since there exists the identity mapping 𝑖: M ⟶ M and kerf=0<<M , then M has 

a projective cover . Hence by (2) , M is SS-coprime. 

Proposition 2.13 : 

Let M be an R-module. Let N<M such that [N:M] =annM. If 
M

N
 is an SS-coprime R-module, then M is SS-coprime.  

Proof : 

Let a,b∈R and a.bM<<M. It follows that 
abM +N

N
 ≪

M

N
, that is ab(

M

N
) << 

M

N
 . But 

M

N
 is            SS-coprime, so either a 

M

N
 =(0) or  

b 
M

N
 =(0) . This implies either aM⊆N or bM⊆N , so either a∈[N:M]=annM  or  b∈[N:M]=annM . Thus aM=(0) or bM=(0). 

Remark 2.14 : 

1) A direct summand of SS-coprime module may not be SS-coprime , for example: consider the Z-module M=Z⨁Z6 . It is 
easy to see that M is SS-coprime , but by Remark and Example 2.2(1) , Z6 is not SS-coprime .  

2) The direct sum of SS-coprime modules need not be SS-coprime module , for example: each of the Z-module Z2and 
Z3 is SS-coprime , but M=Z2⨁Z3 ≅Z6 is not SS-coprime. 

Proposition 2.15 : 
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Let M1 and M2 be R-modules and annM1=annM2 . Then M= M1⨁M2 is SS-coprime. Particularly, M⨁M is SS-coprime if M 

is SS-coprime .  

Proof : 

Let a,b∈R and ab(M1⨁M2)<< M1⨁M2 . Then abM1<< M1 and  abM2<< M2 . As M1& M2 are SS-coprime , then (either 

aM1=0 or bM1=0) and (either aM2=0 or bM2=0) . But annM1=annM2 , hence aM=0 or bM=0. Thus M is SS-coprime .   

Proposition 2.16 : 

Let M= M1⨁M2 . if M is an SS-coprime R-module such that  annM1 and annM2 are noncomparable prime ideals , then M1 

and M2 are SS-coprime modules.  

Proof : 

Since M is SS-coprime , then M is S-coprime by Remarks and Examples 2.2(2). Hence by [7, Theorem 19] , M1 and M2 
are S-coprime modules . But ann M1 and ann M2 are prime ideals of R , so by Remarks and Examples 2.2(2), M1 and M2 
are SS-coprime modules.  

Recall that an R-module M is called small prime if annM=annN for each (0)≠N<<M. Equivalently M is a small prime R-

module if (0) is a small prime submodule , where a proper submodule N of M is called a small prime submodule if 
whenever r∈R, x∈M and (x)<<M, rx∈N implies x∈N or  r∈[N:M] [8].  

 It is clear that every prime module is a small prime module , and if M is a small prime module, then annM is a prime ideal 
[8] 

Theorem 2.17 : 

Let M be an R-module such that every submodule N of M is relatively divisible (i.e. rM∩N=rN , ∀r ∈ R). If M is small prime , 

then M is SS-coprime. 

Proof : 

We claim that M is S-coprime  . So I shall prove that annM=[N:M] for each N<<M.  

Suppose that there is a small submodule N of M and r∈R,r≠0 such that r∈[N:M] and rM≠(0). As M is small prime, we get 

rN≠(0) . By hypothesis , N is relatively divisible, hence rM∩rN=r
2
N and so rN=r

2
N. This implies that , for any n∈N , rn=r

2
n1 

for some n1∈N, and hence r(n-rn1)=0 . But n-rn1∈N<<M , so that  (n-rn1)<<M . On the other hand , M is small prime , so            

annM=ann(n-rn1) . Hence r∈annM, which is a contradiction . Thus annM = ann(N:M), ∀N<<M, i.e. M is S-coprime . Beside 
this , M is small prime implies annM is a prime , so by Remark and Example 2.2(2) , M is SS-coprime.  

Recall that an R-module M is called F-regular if  IM∩N=IN for each N≤M and each ideal I of R [5].                    

Corollary 2.18 : 

      Let M be an F-regular R-module .If M is small prime , then M is SS-coprime. 

Corollary 2.19 : 

 Let M be amodule over a regular ring R (i.e. R is regular in sense of VonNeuamann)  

Then the following statements are equivalent : 

1) M is a small prime R-module  

2) M is an SS-coprime R-module  

3) M is a prime R-module  

Proof :  

(1) ⟹ (2) 

Since R is regular ring , R/ann(x) is a regular ring for each x∈M. Hence M is F-regular[14]. Thus the result follows by 

Corollary 2.18 .  

(2) ⟹ (3) 

Since M is SS-coprime , then annM is a prime ideal by Remarks and Examples 2.2(2) , so that 𝑅 =R/annM is an integral 

domain . But R is regular ring implies 𝑅  is regular ring , it is follows that 𝑅  is a field , hence M is a prime 𝑅 -module  which 
implies that M is a prime R-module . 

(3) ⟹ (1) 

It is clear . 

Remark 2.20 : 
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    Let M be a divisible module over an integral domain R . Then M is a faithful SS-coprime. 

Proof : 

Let a,b∈R and abM<<M . If ab≠0 , then abM=M , so M<<M which is a contradiction . Thus ab=0 and hence a=0 or b=0 . 

So that aM=0 or bM=0 ; that is M is SS-coprime. 

Also, if r∈annM, then rM=0. Since M is divisible, then r=0. Thus M is faithful. 

Proposition 2.21 :  

      Let M be a faithful R-module . Consider the following statements : 

1) M is SS-coprime  

2) R is SS-coprime  

3) R is an integral domain 

Then (1) ⟹ (3) ⟺(2) and (3) ⟹ (1) if M is finitely generated multiplication R-module. 

Proof : 

(1) ⟹ (3) 

Let a,b∈R such that ab=0 . Then (ab)<<R . So , abM=(0)<<M. But M is SS-coprime , so either aM=0 or bM=0. Since M is 

faithful , then a=0 0r b=0. 

(3) ⟹ (1) 

Let a,b∈R and abM<<M . Since M is finitely generated faithful multiplication module , then (ab)<<R. But R is an integral 

domain , so (ab)=(0) and hence either a=0 or b=0. Thus either aM=(0) or bM=(0) 

(3) ⟺(2) 

See Remarks and Examples 2.2(8) 

      Let M be an R-module , we say that M is small retractable if Hom(M,N)≠0 for each N<<M . 

Proposition 2.22 :  

      Let M be a small retractable and scalar module . If M is S-coprime , then RadM=(0). 

Proof : 

Suppose there exists m∈RadM , m≠0 . Hence (m)<<M and since M is small retractable, there exists f:M⟶(m), f≠0 , 

hence f ∈ EndM. But M is a scalar R-module , so that there exists r∈R such that f(x)=rx , ∀x∈M . Thus f(M)=rM ⊆(m)<<M 

and as M is S-coprime , we get rM=0. Hence f=0 which is a contradiction , therefore RadM=(0). 

    Hence it is clear that if M is small retractable scalar module and M is SS-coprime then RadM=0 . 

Proposition 2.23 :  

       Let M be an R-module . If Hom(M,N)=0, for each N<<M , then M is S-coprime  

Proof : 

Let a∈R and aM<<M. Define f:M⟶M by f(m)=am , ∀m∈M. Hence f(M)=aM<<M, thus f∈Nom(M,aM) and aM<<M, so by 

hypothesis f=0 . Thus f(M)=aM=0 and M is S-coprime. 

Corollary 2.24 : 

      Let M be an R-module .If Hom(M,N)=0 for each N<<M and annM is a prime ideal . Then M is SS-coprime.  

Proof : 

It follows by Proposition 2.23 and Remarks and Examples 2.2(2) . 

Proposition 2.25 : 

Let M be an R-module .Then M is an SS-coprime E-module if and only if Hom(M,N)=0, ∀ N<<M and annEM is a prime 

ideal in E , where E=End(M).  

Proof : 

(⟹) Let f∈Hom(M,N), N<<M. Then f(M)⊆ N<<M, so f(M)<<M. But M is SS-coprime E-module , hence  M is S-coprime E-

module and so f(M)=0 . Thus Hom(M,N)=0. Moreover , since M is SS-coprime E-module , annEM is a prime ideal in E by 

Remarks and Examples 2.2(2) .  
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(⟸) First we shall prove M is an S-coprime  E-module . Let f∈Hom(M,N), f(M)<<M . Put f(M)= N , hence f∈Hom(M,N)=0. 

Thus f=0 and so M is an S-coprime  E-module. But annE M is a prime ideal so M is SS-coprime E-module by Remarks and 
Examples 2.2(2) . 

     Under the class of multiplication module , we have the following  

Theorem 2.26 : 

Let M be a multiplication R-module . Then M is an SS-coprime if and only if M is an SS-coprime E-module . 

Proof : 

(⟹) Let f,g∈EndM, and (f∘g)(M)<<M . Since g(M)≤M and M is multiplication R-module,    

g(M)=IM for some ideal I of R. It follows that (f∘g)(M)= f(g (M))= f(IM) = If(M) . But f(M)≤M, so f(M)=JM, for some ideal J of 

R. Thus (f∘g)(M)=IJM and so IJM<<M. But M is an SS-coprime R-module , hence either IM=0 or JM=0 by Proposition 2.6 . 

Thus either f(M)=0 or g(M)=0 ; that is M is an SS-coprime E-module.  

(⟸)Let abM<<M  where a,b∈R . Define f,g:M⟶M by f(m)=am ,g(m)=bm , ∀m∈M. Then (f∘g)(M)=abM<<M . Since  M is an 

SS-coprime E-module, then either f(M)=0 or g(M)=0 and hence either aM=0 or bM=0. Thus M is an SS-coprime R-module. 

     Recall that an R-module is called hollow module if every proper submodule of M is small[6].  

Proposition 2.27 : 

     Let M be a hollow R-module . Then the following statements are equivalent : 

1) M is S-coprime 

2) M is coprime  

3) M is SS-coprime  

Proof : 

(1)⟺(2) It is clear . 

(1) ⟹ (3) Let abM<<M  where a,b∈R. Then either aM or bM is a proper submodule of M. Hence if aM<M, then aM<<M 

and so aM=0 . Similarly , bM=0 . Thus M is SS-coprime.  

(3) ⟹ (1) It follows by Remarks and Examples 2.2(2). 

Proposition 2.28 : 

      Let I be a nil ideal of a ring R . If M is an S-coprime R-module, then IM=0 . 

Proof : 

Let a ∈I , we claim that  aM<<M . Assume aM+K=M for some submodule K of M . Then for each n ∈Z+ , a
n
M+K =M . But a 

is a nilpotent element , so K=M and aM<<M . Since M is S-coprime , then aM=0 for any a ∈I . Thus IM=(0). 

Proposition 2.29: 

        Let I .J be two ideals of a ring R such that IJ is a nil ideal . If M is an SS-coprime R-module, then IM=0 or JM=0. 

Proof : 

Since M is an SS-coprime R-module, then M is an S-coprime R-module and hence by Proposition 2.28, IJM=0, so that 
IJM<<M . But M is SS-coprime , therefore either IM=0 or JM=0. 

      Recall that a ring R is semilocal if R/J(R) is semisimple.     

Proposition 2.30 : 

      Let R be a semilocal ring and J(R) is nilpotent . Then M is S-coprime if and only if M is semisimple . 

Proof : 

(⟹) If M is S-coprime . Since R is semilocal , 
R

J R 
  is semilocal, hence RadM=J(R)M and 

M

RadM
 is semisimple by [1. 

Corollary 15.18]. But  J(R) is a nil ideal , so by Proposition 2.28, J(R)M=0 . then RadM =0 .  

(⟸) It is clear . 

Note 2.31 : 

 If R is a semilocal ring with J(R) is nilpotent and M is an SS-coprime R-module , then M is semisimple , but the converse 
is not true for example: consider Z6 as Z6-module . The ring Z6 is semilocal , J(Z6)=0 is a nil ideal . Also Z6 as Z6-module is 
semisimple , but it is not SS-coprime .  
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3. Semi Strongly S-Coprime Modules   

In this section we investigate the notion of semi strongly S-coprime modules and present  some of its properties and some 
of relations between this concept and other related concepts . 

Definition 3.1 : 

An R-module is called semi strongly S-coprime (briefly, SSS-coprime ) if for each a∈R, a
2
M<<M implies aM=0 .  

Remarks and Examples 3.2 : 

1) It is clear that every SS-coprime is SSS-coprime , but not conversely , for example : if M is the Z-module Z6 , then 
a

2
Z6<< Z6 implies a

2
Z6=(0) ; that is a

2
∈annzZ6 = Z6 and so a∈6Z . Thus  aZ6=(0) and M is SSS-coprime . But M is not 

SS-coprime .  

2) Every SSS-coprime module is S-coprime  

Proof : 

Let M be an SSS-coprime module , let a∈R with aM≪M . Since a
2
M⊆aM , then  a

2
M≪M . Hence aM=(0) because M 

is SSS-coprime . Thus M is S-coprime . 

3) It is easy to see that : an R-module M is S-coprime and annRM is a semiprime ideal of R if and only if M is SSS-
coprime .  

4) Let M be a module over a chained ring R . Then M is SS-coprime if and only if M is        SSS-coprime . 

5) If M and M′ are isomorphic R-module. Then M is SSS-coprime if and only if M′ is    SSS-coprime.     

6) The image of SSS-coprime need not be SSS-coprime . As example to show this : The Z-module Z is SSS-coprime , 
let 𝜋: Z⟶Z/<4> ≃ Z4 be the natural epimorphism , then 𝜋(Z)=Z4 is not SSS-coprime .   

7) For any ring R≠0 . If R is SSS-coprime , then L(R)=J(R)=(0) . 

Proof : 

Suppose there exists a∈J(R) , a ≠0 . Then a
2
R≪R. Since R is SSS-coprime , then aR=(0) (i.e. a=0) which is a 

contradiction . Thus J(R)=(0), hence L(R)=(0). 

Proposition 3.3 : 

     The direct sum of two SSS-coprime modules is SSS-coprime . 

Proof : 

Let M= M1⨁M2 , where M1 and M2 are SSS-coprime R-module . If r∈R such that r
2
M≪M , then r

2
M1≪M1 and r

2
M2≪M2 . By 

SSS-coprimeness of  M1 and M2 , r M1=(0) and r M2=(0) . Thus rM=(0) and M is SSS-coprime. 

Remark 3.4 : 

A direct summand of SSS-coprime module may be not SSS-coprime , for example : If M is the Z-module  Z⨁Z4 , then M is 

SSS-coprime , but Z4 is not a SSS-coprime Z-module. 

The following result is a characterization of SSS-coprime module . 

Proposition 3.3 : 

       Let M be an R-module. Then the following statements are equivalent > 

1) M is SSS-coprime module 

2) For any ideal I of R , I
2
M≪M implies IM=(0)  

3) For any ideal I of R and n ∈Z+ , I
n
M≪M implies IM=(0).  

Proof :  

It is easy , so is omitted . 

     The following results are analogous to results  about SS-coprime modules .  

Proposition 3.4 : 

    Let N<<M. If  M is SSS-coprime R-module. Then  
𝑀

𝑁
 is an SS-coprime R-module. 

Proof : 

It is similar to proof of Proposition 2.9 . 
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Corollary 3.7 : 

      Let f:M⟶M
'
 be an epimorphism with kerf<<M. if M

'
 is an SSS-coprime R-module, then M is SSS-coprime.   

Corollary 3.8 : 

      Let M be an R-module with projective cover f: P ⟶ M. If P is an SSS-coprime              R-module , then M is SSS-

coprime.  

Proposition 3.9 : 

       Let M be an R-module. Let N<M such that [N:M] =annM. If 
M

N
 is an SSS-coprime R-module, then M is SSS-coprime.  

Proof : 

It is similar to the proof of Proposition 2.13 

Theorem 3.10 : 

       Let M be a multiplication R-module . Then M is an SSS-coprime if and only if M is an SSS-coprime E-module , where 
E=End(M) 

Proof : 

It is similar to the proof of Proposition 2.26 

Remark 3.11 : 

        Since every SSS-coprime is S-coprime by Remark and Example 3.2(2) . If R is a semilocal ring with J(R) is a 
nilpotent , then every SSS-coprime is semisimple 

       Next we have  

 Proposition 3.12 : 

Let M be a finitely generated faithful multiplication R-module . Then M is SSS-coprime if and only if R is SSS-coprime . 

Proof : 

(⟹)Let (a
2
)<<R . Since M is faithful finitely generated multiplication , then a

2
M<<M, hence aM=0 . But M is faithful so a=0 

(i.e. (a)=(0)). 

(⟸) Let a∈R and a
2
M<<M . Since M is faithful finitely generated multiplication , [a

2
M:RM]<<R , hence (a

2
)<<R . So (a)=(0). 

Thus aM=(0). 
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