A q-VARIANT OF STEFFENSEN'S METHOD OF FOURTH-ORDER CONVERGENCE

Ola A. Ashour
Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt oaashour@hotmail.com

Abstract

Starting from q-Taylor formula, we suggest a new q-variant of Steffensen's method of fourth-order convergence for solving non-linear equations.

Keywords: q-Taylor series; Jackson q-difference operator; Steffensen's method; Nonlinear equations.
AMS subject classification 2010: Primary 65D25; Secondary 65E99.

Council for Innovative Research

Peer Review Research Publishing System

 Journal: JOURNAL OF ADVANCES IN MATHEMATICSVol. 10, No. 4
www.cirjam.com , editorjam@gmail.com

1 INTRODUCTION

Finding the zeros of a nonlinear equation, $f(x)=0$, is a classical problem of numerical analysis. Analytic methods for solving such equations rarely exit, and therefore, one can hope to obtain only approximate solutions by relying on iteration methods. For a survey of the most important algorithms, some excellent textbooks are available (see, [4, 8, 10]). The classical Newton's method:

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

Being quadratically convergent, Newton's method is probably the best known and most widely used algorithm. Time to time the method has been derived and modified in a variety of ways. One such method derived from Newton's method by approximating the derivative with non-derivative term of difference quotient is Steffensen's method [9, 11]. The method requires two evaluations of function and is quadratically convergent. The interesting iterative scheme is Steffensen's method that has the following form:

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f^{2}\left(x_{n}\right)}{\left(f\left(x_{n}+f\left(x_{n}\right)\right)-f\left(x_{n}\right)\right)}, \quad n=0,1,2, \ldots . \tag{2}
\end{equation*}
$$

In order to control the approximation of the derivative and the stability of the iteration, a Steffensen's type method has been proposed in [2], this approach is based on a better approximation to the derivative $f^{\prime}\left(x_{n}\right)$ in each iteration. It has the following form:

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\left(f\left(x_{n}+\alpha_{n}\left|f\left(x_{n}\right)\right| f\left(x_{n}\right)\right)-f\left(x_{n}\right)\right) / \alpha_{n}\left|f\left(x_{n}\right)\right| f\left(x_{n}\right)} . \tag{3}
\end{equation*}
$$

After that, the paper [1] has extended the above result on Banach spaces, obtained its local and semi-local convergence theorems, and made its applications on boundary-value problems by multiple shooting methods.

A family of fourth order methods free from any derivative, satisfying the highest convergence order were established in [12, 13].

2 -Calculus

In the following, q is a positive number, $0<q<1$. For $n \in \mathbf{N}=\{0,1, \ldots\}, k \in \mathbf{Z}^{+}=\{1,2, \ldots\}$ and $a, a_{1}, \ldots, a_{k} \in \mathrm{C}$, the q-shifted factorial, the multiple q-shifted factorial and the q-binomial coefficients are defined by

$$
\begin{equation*}
(a ; q)_{0}:=1,(a ; q)_{n}:=\prod_{j=0}^{n-1}\left(1-a q^{j}\right),\left(a_{1}, a_{2}, \ldots, a_{k} ; q\right)_{n}:=\prod_{j=1}^{k}\left(a_{j} ; q\right)_{n} \tag{4}
\end{equation*}
$$

and

$$
\left[\begin{array}{c}
a \tag{5}\\
0
\end{array}\right]_{q}:=1, \text { and }\left[\begin{array}{c}
a \\
n
\end{array}\right]_{q}:=\frac{\left(1-q^{a}\right)\left(1-q^{a-1}\right) \cdots\left(1-q^{a-n+1}\right)}{(q ; q)_{n}},
$$

respectively. The limit, $\lim _{n \rightarrow \infty}(a ; q)_{n}$, is denoted by $(a ; q)_{\infty}$. Moreover $(a ; q)_{n}$ has the representation, cf. [5],

$$
(a ; q)_{n}=\sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \tag{6}\\
k
\end{array}\right]_{q} q^{k(k-1) / 2} a^{k}
$$

The q - Gamma function, [5, 6], is defined by

$$
\begin{equation*}
\Gamma_{q}(z):=\frac{(q ; q)_{\infty}}{\left(q^{z} ; q\right)_{\infty}}(1-q)^{1-z}, \quad z \in \mathrm{C},|q|<1 \tag{7}
\end{equation*}
$$

where we take the principal values of q^{z} and $(1-q)^{1-z}$. In particular

$$
\Gamma_{q}(n+1)=\frac{(q ; q)_{n}}{(1-q)^{n}}, \quad n \in \mathrm{~N} .
$$

Let $\mu \in \mathrm{C}$ be fixed. A set $A \subseteq \mathrm{C}$ is called a μ-geometric set if for $x \in A, \mu x \in A$. Let f be a function defined on a q-geometric set $A \subseteq \mathrm{C}$. The q-difference operator is defined by the formula

$$
\begin{equation*}
D_{q} f(x):=\frac{f(x)-f(q x)}{x-q x}, \quad x \in A-\{0\} . \tag{8}
\end{equation*}
$$

If $0 \in A$, we say that f has q-derivative at zero if the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(x q^{n}\right)-f(0)}{x q^{n}}, x \in A \tag{9}
\end{equation*}
$$

exists and does not depend on x. We then denote this limit by $D_{q} f(0)$. The q-integration of F . H. Jackson [7] is defined for a function f defined on a q-geometric set A to be

$$
\begin{equation*}
\int_{a}^{b} f(t) d_{q} t:=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t, a, b \in A \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{0}^{x} f(t) d_{q} t:=\sum_{n=0}^{\infty} x q^{n}(1-q) f\left(x q^{n}\right), \quad x \in A \tag{11}
\end{equation*}
$$

provided that the series converges. A function f which is defined on a q-geometric set $A, 0 \in A$, is said to be q -regular at zero if

$$
\lim _{n \rightarrow \infty} f\left(x q^{n}\right)=f(0), \quad \text { for every } x \in A
$$

The rule of q-integration by parts is

$$
\begin{equation*}
\int_{0}^{a} g(x) D_{q} f(x) d_{q} x=(f g)(a)-\lim _{n \rightarrow \infty}(f g)\left(a q^{n}\right)-\int_{0}^{a} D_{q} g(x) f(q x) d_{q} x . \tag{12}
\end{equation*}
$$

If f, g are q-regular at zero, the $\lim _{n \rightarrow \infty}(f g)\left(a q^{n}\right)$ on the right hand side of (12) will be replaced by $(f g)(0)$. The two variable polynomial $\varphi_{n}(x, a), x, a \in \mathrm{C}$, are defined to be

$$
\varphi_{0}(x, a):=1, \quad \varphi_{n}(x, a):=\left\{\begin{array}{cc}
x^{n}(a / x ; q)_{n}, & x \neq 0, \tag{13}\\
(-1)^{n} q^{\frac{n(n-1)}{2}} a^{n}, & x=0
\end{array}\right.
$$

In [3], Annaby and Mansour gave q-Taylor series in the following forms

$$
\begin{gather*}
f(x)=\sum_{k=0}^{n-1} \frac{D_{q}^{k} f(a)}{\Gamma_{q}(k+1)} \varphi_{k}(x, a)+\frac{1}{\Gamma_{q}(n)} \int_{a}^{x} \varphi_{n-1}(x, q t) D_{q}^{n} f(t) d_{q} t . \tag{14}\\
f(x)=\sum_{k=0}^{n-1}(-1)^{k} q^{-\frac{k(k-1)}{2}} \frac{D_{q}^{k} f\left(a q^{-k}\right)}{\Gamma_{q}(k+1)} \varphi_{k}(a, x) \tag{15}\\
3 c m+\frac{1}{\Gamma_{q}(n)} \int_{a q^{-n+1}}^{x} \varphi_{n-1}(x, q t) D_{q}^{n} f(t) d_{q} t
\end{gather*}
$$

3 A q-Steffensen-secant method

In the following we set $e_{n}=x_{n}-a, e_{n}^{*}=y_{n}-a, z_{n}=x_{n}+q f\left(x_{n}\right), y_{n}=x_{n}-f\left(x_{n}\right) / f\left[x_{n}, z_{n}\right]$, where $f[a, b]=\frac{f(a)-f(b)}{a-b}$,

$$
\begin{gather*}
A=\frac{D_{q} f(a)}{\Gamma_{q}(2)}+\frac{a(1-q) D_{q}^{2} f(a)}{\Gamma_{q}(3)}+\frac{a^{2}(1-q)^{2}(1+q) D_{q}^{3} f(a)}{\Gamma_{q}(4)}, \tag{16}\\
B=\frac{D_{q}^{2} f(a)}{\Gamma_{q}(3)}+\frac{a(1-q)(2+q) D_{q}^{3} f(a)}{\Gamma_{q}(4)}, \tag{17}
\end{gather*}
$$

and

$$
\begin{equation*}
C=\frac{D_{q}^{3} f(a)}{\Gamma_{q}(4)} . \tag{18}
\end{equation*}
$$

Now, we state and prove our q-Steffensen-secant Theorem with fourth order convergence.
Theorem 3.1 Let $f: \mathrm{D} \rightarrow \mathrm{R}$ be a real-valued function with a root $a \in \mathrm{D}, \mathrm{D} \subset \mathrm{R}$, and let x_{0} be closed enough to a. If $D_{q}^{k}(x), k=1,2,3$ exist, and $D_{q}(a) \neq 0$, then

$$
\begin{equation*}
x_{n+1}=y_{n}-\frac{f\left[x_{n}, y_{n}\right]-f\left[z_{n}, y_{n}\right]+f\left[z_{n}, x_{n}\right]}{f^{2}\left[x_{n}, y_{n}\right]} f\left(y_{n}\right), n \in \mathrm{~N}, \tag{19}
\end{equation*}
$$

is fourth-order convergent, and satisfies the following error equation

$$
\begin{equation*}
e_{n+1}=A^{-1} B(1+q A)\left[A^{-1} C(1+q A)-A^{-2} B\left(3+2 q A+2 q^{2} A^{2}\right)\right] e_{n}^{4}+O\left(e_{n}^{5}\right), n \in \mathrm{~N} . \tag{20}
\end{equation*}
$$

Proof: Using the Taylor expansion in (14), we have

$$
\begin{gather*}
f\left(x_{n}\right)= \\
\frac{D_{q} f(a)}{\Gamma_{q}(2)}\left(x_{n}-a\right)+\frac{D_{q}^{2} f(a)}{\Gamma_{q}(3)}\left(x_{n}-a\right)\left(x_{n}-q a\right)+ \tag{21}\\
\frac{D_{q}^{3} f(a)}{\Gamma_{q}(4)}\left(x_{n}-a\right)\left(x_{n}-q a\right)\left(x_{n}-q^{2} a\right)+\frac{1}{\Gamma_{q}(4)} \int_{a}^{x_{n}} \varphi_{3}(a, q t) D_{q}^{4} f(t) d_{q} t .
\end{gather*}
$$

Rearranging the above equation again gives:

$$
\begin{gather*}
f\left(x_{n}\right)=A e_{n}+B e_{n}^{2}+C e_{n}^{3}+O\left(e_{n}^{4}\right) \tag{22}\\
f\left(z_{n}\right)=f\left(x_{n}+q f\left(x_{n}\right)\right)= \\
\frac{1}{\Gamma_{q}(4)} \int_{a}^{x_{n}+q f\left(x_{n}\right)} \varphi_{3}(a, q t) D_{q}^{4} f(t) d_{q} t+\frac{D_{q} f(a)}{\Gamma_{q}(2)}\left(x_{n}-a+q f\left(x_{n}\right)\right) \\
+\frac{D_{q}^{2} f(a)}{\Gamma_{q}(3)}\left(x_{n}-a+q f\left(x_{n}\right)\right)\left(x_{n}-q a+q f\left(x_{n}\right)\right)+ \\
\frac{D_{q}^{3} f(a)}{\Gamma_{q}(4)}\left(x_{n}-a+q f\left(x_{n}\right)\right)\left(x_{n}-q a+q f\left(x_{n}\right)\right)\left(x_{n}-q^{2} a+q f\left(x_{n}\right)\right)
\end{gather*}
$$

that is

$$
\begin{gathered}
=O\left(e_{n}^{4}\right)+\frac{D_{q} f(a)}{\Gamma_{q}(2)}\left(e_{n}+q f\left(x_{n}\right)\right) \\
+\frac{D_{q}^{2} f(a)}{\Gamma_{q}(3)}\left(e_{n}+q f\left(x_{n}\right)\right)\left(e_{n}+q f\left(x_{n}\right)+a(1-q)\right)+ \\
\frac{D_{q}^{3} f(a)}{\Gamma_{q}(4)}\left(e_{n}+q f\left(x_{n}\right)\right)\left(e_{n}+q f\left(x_{n}\right)+a(1-q)\right)\left(e_{n}+q f\left(x_{n}\right)+a\left(1-q^{2}\right)\right) \\
=A\left(e_{n}+q f\left(x_{n}\right)\right)+B\left(e_{n}+q f\left(x_{n}\right)\right)^{2}+C\left(e_{n}+q f\left(x_{n}\right)\right)^{3}+O\left(e_{n}^{4}\right)
\end{gathered}
$$

Thus,

$$
\begin{gather*}
f\left(z_{n}\right)= \\
A[1+q A] e_{n}+B\left[1+3 q A+q^{2} A^{2}\right] e_{n}^{2}+ \tag{24}\\
{\left[C\left[1+4 q A+3 q^{2} A^{2}+q^{3} A^{3}\right]+2 q B^{2}[1+q A]\right] e_{n}^{3}+O\left(e_{n}^{4}\right)}
\end{gather*}
$$

Moreover,

$$
\begin{align*}
& f\left[z_{n}, x_{n}\right]=\frac{f\left(x_{n}+q f\left(x_{n}\right)\right)-f\left(x_{n}\right)}{q f\left(x_{n}\right)} \tag{25}\\
& =\quad A+B[2+q A] e_{n}+\left[C\left[3+3 q A+q^{2} A^{2}\right]+q B^{2}\right] e_{n}^{2}+O\left(e_{n}^{3}\right) .
\end{align*}
$$

Therefore,

$$
\begin{gather*}
g\left(x_{n}\right):=\frac{f\left(x_{n}\right)}{f\left[z_{n}, x_{n}\right]}= \\
O\left(e_{n}^{4}\right)+e_{n}-A^{-1} B[1+q A] e_{n}^{2}+ \tag{26}\\
{\left[A^{-2} B^{2}[1+q A][2+q A]-q A^{-1} B^{2}-A^{-1} C\left[2+3 q A+q^{2} A^{2}\right]\right] e_{n}^{3} .}
\end{gather*}
$$

Consequently,

$$
\begin{gather*}
f\left(y_{n}\right)=f\left(x_{n}-g\left(x_{n}\right)\right)= \\
\frac{D_{q} f(a)}{\Gamma_{q}(2)}\left(x_{n}-a-g\left(x_{n}\right)\right)+\frac{D_{q}^{2} f(a)}{\Gamma_{q}(3)}\left(x_{n}-a-g\left(x_{n}\right)\right)\left(x_{n}-q a-g\left(x_{n}\right)\right) \\
+\frac{D_{q}^{3} f(a)}{\Gamma_{q}(4)}\left(x_{n}-a-g\left(x_{n}\right)\right)\left(x_{n}-q a-g\left(x_{n}\right)\right)\left(x_{n}-q^{2} a-g\left(x_{n}\right)\right) \\
+\frac{1}{\Gamma_{q}(4)} \int_{a}^{x_{n}-g\left(x_{n}\right)} \varphi_{3}(a, q t) D_{q}^{4} f(t) d_{q} t \\
=O\left(e_{n}^{4}\right)+\frac{D_{q} f(a)}{\Gamma_{q}(2)}\left(e_{n}-g\left(x_{n}\right)\right)+ \tag{27}\\
\frac{D_{q}^{2} f(a)}{\Gamma_{q}(3)}\left(e_{n}-g\left(x_{n}\right)\right)\left(e_{n}+q f\left(x_{n}\right)+a(1-q)\right)+ \\
\frac{D_{q}^{3} f(a)}{\Gamma_{q}(4)}\left(e_{n}-g\left(x_{n}\right)\right)\left(e_{n}-g\left(x_{n}\right)+a(1-q)\right)\left(e_{n}-g\left(x_{n}\right)+a\left(1-q^{2}\right)\right) \\
=A\left(e_{n}-g\left(x_{n}\right)\right)+B\left(e_{n}-g\left(x_{n}\right)\right)^{2}+C\left(e_{n}-g\left(x_{n}\right)\right)^{3}+O\left(e_{n}^{4}\right) .
\end{gather*}
$$

This means

$$
\begin{gather*}
f\left(y_{n}\right)=O\left(e_{n}^{4}\right)+B[1+q A] e_{n}^{2}- \\
{\left[A^{-1} B^{2}[1+q A][2+q A]-q B^{2}-C\left[2+3 q A+q^{2} A^{2}\right]\right] e_{n}^{3},} \tag{28}
\end{gather*}
$$

and

$$
\begin{gather*}
e_{n}^{*}=O\left(e_{n}^{4}\right)+A^{-1} B[1+q A] e_{n}^{2}- \\
{\left[A^{-2} B^{2}[1+q A][2+q A]-q A^{-1} B^{2}-A^{-1} C\left[2+3 q A+q^{2} A^{2}\right]\right] e_{n}^{3} .} \tag{29}
\end{gather*}
$$

On the other hand

$$
\begin{array}{ll}
f\left[x_{n}, y_{n}\right]= & \frac{f\left(x_{n}\right)-f\left(y_{n}\right)}{g\left(x_{n}\right)} \tag{30}\\
= & A+B e_{n}+\left[C+A^{-1} B^{2}[1+q A]\right] e_{n}^{2}+O\left(e_{n}^{3}\right) .
\end{array}
$$

Hence

$$
\begin{gather*}
f^{2}\left[x_{n}, y_{n}\right]=O\left(e_{n}^{4}\right)+ \\
A^{2}+2 A B e_{n}+\left[2 A C+B^{2}[3+2 q A]\right] e_{n}^{2}+\left[2 B C+2 A^{-1} B^{3}[1+q A]\right] e_{n}^{3} . \tag{31}
\end{gather*}
$$

But

$$
\begin{gather*}
f\left[z_{n}, y_{n}\right]=\frac{f\left(z_{n}\right)-f\left(y_{n}\right)}{q f\left(x_{n}\right)+g\left(x_{n}\right)}= \tag{32}\\
A+B(1+q A) e_{n}+\left[C(1+q A)^{2}+A^{-1} B^{2}\left(1+4 q A+2 q A^{2}\right)\right] e_{n}^{2}+O\left(e_{n}^{3}\right) .
\end{gather*}
$$

So that

$$
\begin{gather*}
H\left(x_{n}\right)=\frac{f\left[y_{n}, x_{n}\right]-f\left[z_{n}, y_{n}\right]+f\left[z_{n}, x_{n}\right]}{f^{2}\left[y_{n}, x_{n}\right]}= \\
A^{-1}+\left[A^{-2} C(1+q A)-A^{-3} B\left(3+2 q A+2 q^{2} A^{2}\right)\right] e_{n}^{2}+ \tag{33}\\
{\left[-2 A^{-3} B C(2+q A)+A^{-4} B^{2}\left(5+3 q A+4 q^{2} A^{2}\right)\right] e_{n}^{3}+O\left(e_{n}^{4}\right) .}
\end{gather*}
$$

If we multiply $H\left(x_{n}\right)$ by $f\left(y_{n}\right)$ we get

$$
\begin{gather*}
H\left(x_{n}\right) f\left(y_{n}\right)=H\left(x_{n}\right) f\left[y_{n}, a\right] e_{n}^{*}= \\
{\left[1+\left[A^{-1} C(1+q A)-A^{-2} B\left(3+2 q A+2 q^{2} A^{2}\right)\right] e_{n}^{2}+\right.} \tag{34}\\
\left.\left[-2 A^{-2} B C(2+q A)+A^{-3} B^{2}\left(5+3 q A+4 q^{2} A^{2}\right)\right] e_{n}^{3}+O\left(e_{n}^{4}\right)\right] e_{n}^{*} .
\end{gather*}
$$

Taking in consideration that x_{n+1} is nothing but $y_{n}-H\left(x_{n}\right) f\left(y_{n}\right)$ we get

$$
\begin{array}{ll}
x_{n+1}= & y_{n}-H\left(x_{n}\right) f\left(y_{n}\right) \\
= & x_{n}-\left[1+\left[A^{-1} C(1+q A)-A^{-2} B\left(3+2 q A+2 q^{2} A^{2}\right)\right] e_{n}^{2}+\right. \tag{35}\\
& \left.\left[-2 A^{-2} B C(2+q A)+A^{-3} B^{2}\left(5+3 q A+4 q^{2} A^{2}\right)\right] e_{n}^{3}+O\left(e_{n}^{4}\right)\right] e_{n}^{*} .
\end{array}
$$

Thus

$$
\begin{gather*}
e_{n+1}=\left[A^{-1} C(1+q A)-A^{-2} B\left(3+2 q A+2 q^{2} A^{2}\right)+O\left(e_{n}\right)\right] e_{n}^{2} e_{n}^{*} \\
=A^{-1} B[1+q A]\left[A^{-1} C(1+q A)-A^{-2} B\left(3+2 q A+2 q^{2} A^{2}\right)\right] e_{n}^{4}+O\left(e_{n}^{5}\right) \tag{36}
\end{gather*}
$$

This completes the proof.

References

[1] V. Alarcón, S. Amat, S. Busquier, and D.J López. On a Steffensen's type method in Banach spaces with applications on boundary-value problems, Appl. Math. Comput, 216:234--250, 2008.
[2] S. Amat, S. Busquier. On a Steffensen's type method and its behavior for semismooth equations, Appl. Math. Comput, 177:819-823, 2006.
[3] M.H. Annaby and Z.S. Mansour. q-Taylor and interpolation series for Jackson q-difference operators. J. Math. Anal. Appl, 344:472-483, 2008.
[4] J.E. Dennis, R.B. Schnable. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall. Englewood Cliffs, NJ, 1983.
[5] G. Gasper and M. Rahman. Basic Hypergeometric Series, Cambridge university Press, second edition,2004.
[6] F.H. Jackson, A generalization of the function $\Gamma(n)$ and x^{n}, Proc. Roy. Soc. London ,74:64-72, 1904.
[7] F.H. Jackson, On q-definite integrals, Quart. J. Pure and Appl. Math.41:193-203, 1910.
[8] P. Jarratt, A Review of Methods for Solving Nonlinear Algebraic Equations, Gordon and Breach, Science Publishers, London, 1970.
[9] L.W. Johnson, R.D. Riess, Numerical Analysis, Addison-Wesley, Reading, MA, 1977.
[10] A.M. Ostrowski, Solution of Equations in Euclidean and Banach Space, Academic Press, New York, third edition, 1973.
[11] I.F. Steffensen, Remarks on iteration, Skand. Aktuarietidskr, 16:64-72, 1933.
[12] Q. Zheng, J. Wanchao, P. Zhao, and L. Zhang A Steffensen-like method and higher-order variants, Appl. Math. Comput,209:206-210, 2009.
[13] Q. Zheng, J. Wanchao, P. Zhao, and L. Zhang variants of Steffensen-secant method and applications, Quart. J. Pure and Appl. Math.,216:3486-3496, 2010.

