

Additive Lie derivations on the algebras of locally measurable operators

IlkhomJuraev, JaafarGaber

Bukhara State University, Uzbekistan

ijmo64@mail.ru

Université de Technologie de Belfort-Montbéliard UTBM90010 Belfort Cedex, France

gaber@utbm

Abstract

Let M be a von Neumann algebra without central summands of type I. We are studying conditions that an additive map L on the algebra of locally measurable operators has the standard form, that is equal to the sum of an additive derivation and an additive center-valued trace.

Key words: von Neumann algebras, locally measurable operator, derivation, additive derivation, additive Lie derivation, center-valued trace.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol.10, No.4

www.cirjam.com, editorjam@gmail.com

3425 | Page April 20, 2015

INTRODUCTION

The structure of Lie derivations on C*-algebras and on more general Banach algebras has attracted some attention over the past years. Let A be an algebra over the complex number. An additive (linear) operator $D:A\to A$ is called an additive derivation (linear derivation) if D(xy)=D(x)y+xD(y) for all $x,y\in A$ (Leibniz rule). Each element $a\in A$ defines linear associative a derivation D_a on A given as $D_a(x)=ax-xa$, $x\in A$. Such derivations D_a are said to be inner derivations. If the element a implementing the derivation D_a on A, belongs to a larger algebra B, containing A (as a proper ideal as usual) then D_a is called a spatial derivation. An additive (linear) operator $L:A\to A$ is called an additive L ie derivation (linear Lie derivation) if L([x,y])=[L(x),y]+[x,L(y)], for all $x,y\in A$, where [x,y]=xy-yx.

Denote by Z(A) the center of A.

An additive (linear) operator $\tau:A\to Z(A)$ is called an additive centervalued trace (a linear center-valued trace) if $\tau(xy)=\tau(yx)$), $\forall x,y\in A$. The problem of the standard decomposition for a Lie derivation in rings theory was studied in work by W. S. Martindale [9]. W. S. Martindale solved this problem for primitives rings containing nontrivial idempotents and with the characteristic unequal to 2. Following these results obtained for rings, C. Robert Miers in [11] solved the problem of the standard decomposition for the case of von Neumann algebras. In the present work we are studyingconditions that an additive map L on LS(M) has the standard form, that is equal to the sum of an additive derivation and an additive center-valued trace.

Development of the theory of algebras measurable operators S(M) and the algebra of locally measurable operators LS(M) affiliated with von Neumann algebra or AW^* algebras M [6], [10] provided an opportunity to construct and learn new interesting examples of * -algebras unbounded operators.

We us terminology and notations from the von Neumann algebra theory [7] and the theory of locally measurable operators from [10].

Let H be a complex Hilbert space, B(H) be the algebra of all bounded linear operators acting in H, M be a von Neumann algebra in B(H), P(M) be a complete lattice of all orthoprojections in M.

Let H be a Hilbert space, B(H) be the algebra of all bounded linear operators acting in H, M be a von Neumann subalgebra in B(H), P(M) be a complete lattice of all orthoprojections in M.

A linear subspace D on H is said to be *affiliated* withM (denoted as $D\eta M$), if $u(D)\subseteq D$ for every unitary operator u from the commutant $M'=\left\{y\in B(H): xy=yx, \forall x\in M\right\}$ of the algebra M.

A linear operator x on H with the domain D(x) is said to be *affiliated* with M (denoted as $x\eta M$), if and $ux(\xi)=xu(\xi)$ for every unitary operator $u\in M$, and all $\xi\in D(x)$.

A linear subspace D in H is said to be strongly dens in H with respect to the von Neumann algebra M, if

- DηM,
- 2) there exists a sequence of projections $\left\{p_n\right\}_{n=1}^{\infty} \subset P(M)$, such that $p_n \uparrow \mathbf{1}, p_n(H) \subset D$, and $p_n^{\perp} = \mathbf{1} p_n$ is finite in M for all $n \in \mathbb{N}$, where $\mathbf{1}$ is the identity M.

A closed linear operator x, on a H, is said to be *measurable* with respect to the von Neumann algebra M, if $x\eta M$, and D(x) is strongly dens in H. Denote by S(M) the set of all measurable operators affiliated with M (see. [5,11]) and the center of an algebra S(M) by Z(S(M)).

A closed linear operator x in M is said to be locally measurable with respect to the von Neumann algebra M; if $x\eta M$, and there exists a sequence $\{z_n\}_{n=1}^\infty$ of central projections in M such that $z_n \uparrow 1$ and $xz_n \in S(M)$ for all $n \in N$. It is well-known [11] that the set LS(M) of all locally measurable operators with respect to M is a unital *-algebra when equipped with the algebraic operations of strong addition and multiplication and taking the adjoint of an operator. Note that if M is a finite von Neumann algebra then S(M) = LS(M).

3426 | Page April 20, 2015

Denote by Z(LS(M)) the center of LS(M).

Let M be a von Neumann algebra without central summands of type $I_{\scriptscriptstyle 1}$.

 $\text{Let } L: LS(M) \rightarrow LS(M) \quad \text{is an additive map.If} \quad p_i, \ p_j \quad \text{are projectors in} \quad S(M), \quad \text{then} \\ p_i LS(M) p_j = \left\{p_i A p_j : A \in LS(M)\right\}, \ i, j = 1, 2. \quad \text{Set} \quad p_1 = p \quad \text{and} \quad p_2 = 1 - p. \quad \text{Then} \\ LS(M) = \sum_{i=1}^2 \sum_{j=1}^2 p_i LS(M) p_j. \quad \text{Let further } S_{ij} = p_i LS(M) p_j, \ i, j = 1, 2. \quad \text{Recall that } S_{ij} = S_{ik} S_{kj} \text{, for } i, j = 1, 2.$

In this paper is established of the standard form of additive Lie derivation, acting on algebra of LS(M) when M be a von Neumann algebra without central summands of type I

In particular, it follows that the properly infinite von Neumann algebras M., all additive Lie derivations operations on the arbitrarily algebras LS(M), is the linear derivations

RESULTS

Lemma 1. If $x \in S_{ii}$ and xy = 0 for all $y \in S_{ik}$, then x = 0.

Lemma 2. $pL(p)p + (1-p)L(p)(1-p) \in Z(LS(M))$.

Let $\delta: LS(M) \to S(M)$ defined as follows: $\delta(x) = L(x) + sx - xs$ for each $x \in LS(M)$.

We have the following

Lemma 3. $p\delta(1)(1-p) = (1-p)\delta(1)p=0$.

Lemma 4. $L(S_{ij}) \subset S_{ii}$, where $i, j=1,2, i \neq j$.

Lemma 5. There exists a map $f_i: S_{ii} \to Z(LS(M))$ such that $\delta(x_{ii}) \in S_{ii} + f_1(x_{ii})$ all $x_{ii} \in S_{ii}$, i, j = 1, 2.

Now defined the mappings $f:LS(M)\to Z(LS(M))$ and $d:LS(M)\to S(M)$ as follows: $f\left(x\right)=f_1(x_{11})+f_2(x_{22}) \text{ and } d\left(x\right)=\delta\left(x\right)-f(x) \text{ all } x_{11}+x_{12}+x_{21}+x_{22}\in LS(M) \text{ . Then by Lemma 4}$ and 5, we obtain $d(S_{ii})\subseteq S_{ii}, d(S_{ii})\subseteq S_{ii}, d(S_{ii})=\delta(S_{ii}), 1\leq i\neq j\leq 2$

Lemma 6. d and f are additive.

Lemma 7. The mapping d is derivation.

Lemma 8. f([x, y]) = 0 for all $x, y \in LS(M)$, where xy = 0

Now we can formulate the main theorem.

Theorem 1. Let LS(M) be of all locally measurable operators affiliated with a von Neumann algebra M without central summands of type I_1 . Let $L:LS(M) \to LS(M)$ additive mapping. Then L([x,y]) = [L(x),y] + [x,L(y)], for all $x,y \in LS(M)$, where xy = 0, if and only if there exists an additive derivation $\varphi:LS(M) \to LS(M)$ and an additive map $f:LS(M) \to Z(LS(M))$ where f([x,y]) = 0, such that $L(x) = \varphi(x) + f(x)$, $x \in LS(M)$, where Z(LS(M)) center of LS(M).

Now Theorem 1 implies the following

Corollary.Let LS(M) be of all locally measurable operators affiliated with a von Neumann algebra M without central summands of type I_1 . Suppose that $L:LS(M) \to LS(M)$ is an additive map. Then is a Lie derivation if and only if

there exists an additive derivation

 $\varphi: LS(M) \to LS(M)$ and an additive map $f: LS(M) \to Z(LS(M))$, where f([x,y]) = 0, such that $L(x) = \varphi(x) + f(x)$ for all $x \in LS(M)$, where

Z(LS(M)) center of LS(M).

Theorem 2. Let LS(M) be of all locally measurable operators affiliated with a von Neumann algebra M without central summands of type I_1 . Then any additive Lie derivation $L:LS(M)\to LS(M)$ can be represented in the form $L=\varphi+f$, where φ - additive derivation on the algebra LS(M) and f - additive Z(LS(M))-valued trace on the LS(M).

Theorem 3. If M is a type I or III von Neumann algebra, then any additive Lie derivation $L: LS(M) \to LS(M)$ is linear Lie derivation and has the form $L = D_a + f$, where D_a - is inner derivation on the algebra LS(M) and f -is linear Z(LS(M)) -valued trace on the LS(M).

Corollary.Let M be a von Neumann algebra of type I_{∞} . Then any additive Lie derivation $L: LS(M) \to LS(M)$ is linear derivation.

Acknowledgments.

This work was supported by the TARGET II Erasmus Mundus grant. I. M. Juraev gratefully acknowledge the hospitality of the Universite de Technologie de Belfort-Montbeliard.

References

- [1] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Func. Anal., 256 (2009), 2917-2943.
- [2] A. F. Ber, B. de Pagter and F. A. Sukochev, *Derivations in algebras of operator-valued functions*, J. Operator Theory, 66 (2001), 261-300.
- [3] A. F. Ber, V. I. Chilin, F. A. Sukochev, Non trivial derivation on commutative regular algebras, Extracta Math., 21 (2006), 107-147.
- [4] A. F. Ber, Derivations on commutative regular algebras, Siberian Adv. Math., 21 (2011), 161-169.
- [5] A. F. Ber, V. I. Chilin, F. A. Sukochev, *Continious derivations on algebras locally measurable operators are inner,* Proc. London Math. Soc., 109 (2014), 65-89.
- [6] S. K. Berberian, The regular ring of finite AW *-algebra, Ann. Math., 65 (1957), 224-240.
- [7] J. Dixmier, Von Neumann algebras, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1981.
- [8] P. G. Dixon, Unbounded operator algebras, Proc. London. Math. Soc., (1971), 53-59.
- [9] W. S. Martindale 3 rd, Lie derivations of primitive rings, Mich. Math. J., 11 (1964), 183-187.
- [10]] M. A. Muratov and V. I. Chilin, *Algebras of measurable and locally measurable operators*,-Kyiv, Pratsi In-ty matematiki NAN Ukraini. **69** (2007), 390 pp. (Russian).
- [11] C. Robert Miers, Lie derivations of von Neumann algebras, Duke Math. J., 40 (1973), 403-409.

3428 | Page April 20, 2015