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Abstract 

Let M  be a von Neumann algebra without central summands of type I . We are studying conditions that an additive map 

L  on the algebra of locally measurable operators has the standard form, that is equal to the sum of an additive derivation 
and an additive center-valued trace. 
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INTRODUCTION 

The structure of Lie derivations on C*-algebras and on more general Banach algebras has attracted some attention over 

the past years. Let A  be an algebra over the complex number. An additive (linear) operator :D A A  is called an 

additive derivation (linear derivation) if ( ) ( ) ( )D xy D x y xD y   for all ,x y A  (Leibniz rule). Each element a A

. defines linear associative a derivation aD  on A  given as ( )aD x ax xa  , x A . Such derivations aD are said to 

be inner derivations. If the element a implementing the derivation aD on A , belongs to a larger algebra B , containing 

A  (as a proper ideal as usual) then aD is called a spatial derivation. An additive (linear) operator :L A A  is called an 

additive Lie derivation (linear Lie derivation)if ([ , ]) [ ( ), ] [ , ( )]L x y L x y x L y   , for all ,x y A ,  where 

[ , ]x y xy yx  . 

Denote by ( )Z A  the center of A . 

An additive (linear) operator : ( )A Z A   is called an additive centervalued trace (a linear center-valued trace) if 

( ) ( )xy yx  ), ,x y A  . The problem of the standard decomposition for a Lie derivation in rings theory was 

studied in work by W. S. Martindale [9]. W. S. Martindale solved this problem for primitives rings containing nontrivial 
idempotents and with the characteristic unequal to 2. Following these results obtained for rings, C. Robert Miers in [11] 
solved the problem of the standard decomposition for the case of von Neumann algebras. In the present work we are 

studyingconditions that an additive map L  on ( )LS M  has the standard form, that is equal to the sum of an additive 

derivation and an additive center-valued trace. 

Development of the theory of algebras measurable operators ( )S M  and the algebra of locally measurable operators 

( )LS M  affiliated with von Neumann algebra or 
*AW  algebras M [6], [10] provided an opportunity to construct and 

learn new interesting examples of *  -algebras unbounded operators. 

We us terminology and notations from the von Neumann algebra theory [7] and the theory of locally measurable operators 
from [10]. 

Let H be a complex Hilbert space, ( )B H  be the algebra of all bounded linear operators acting in H , M  be a von 

Neumann algebra in ( )B H , ( )P M  be a complete lattice of all orthoprojections in M . 

Let H be a Hilbert space, B(H) be the algebra of all bounded linear operators acting in  H, M be a von Neumann 
subalgebra in B(H), P(M) be a complete lattice of all orthoprojections in M. 

A linear subspace D on H is said to be affiliated  withM (denoted as DηM), if u(D)⊆D for every unitary operator u from the 

commutant  ' ( ) : ,M y B H xy yx x M     of the algebra M. 

A linear operator x on H with the domain D(x) is said to be affiliated  withM (denoted as xηM), if  and ux(ξ)=xu(ξ) for 

every unitary operator u∈M', and all ξ∈D(x). 

A linear subspace D in H is said to be strongly dens in H with respect to the von Neumann algebra M, if 

1) DηM, 

2) there exists a sequence of projections  
=1

( ),n n
p P M


  such that ,np 1 ( ) ,np H D  and 

=n np p 1  is finite in M  for all ,nN  where 1  is the identity .M  

A closed linear operator x, on a H, is said to be measurable with respect to the von Neumann algebra M, if xηM, and D(x) 
is strongly dens in H. Denote by S(M) the set of all measurable operators affiliated with M (see. [5,11]) and the center of 
an algebra S(M) by Z(S(M)). 

A closed linear operator x  in H  is said to be locally measurable with respect to the von Neumann algebra M ; if xηM, 

and there exists a sequence 1{ }n nz 

  of central projections in M  such that 1nz   and ( )nxz S M  for all n N . It 

is well-known [11] that the set ( )LS M  of all locally measurable operators with respect to M  is a unital* -algebra when 

equipped with the algebraic operations of strong addition and multiplication and taking the adjoint of an operator. Note 

that if M  is a finite von Neumann algebra then ( ) ( )S M LS M . 
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Denote by ( ( ))Z LS M  the center of ( )LS M . 

Let M  be a von Neumann algebra without central summands of type 
1I . 

Let : ( ) ( )L LS M LS M  is an additive map.If ,ip jp  are projectors in ( ),S M  then 

 ( ) = : ( ) ,i j i jp LS M p p Ap A LS M , =1,2.i j  Set 
1 =p p  and 

2 =1 .p p  Then 

2 2

=1 =1

( ) = ( ) .i j

i j

LS M p LS M p  Let further = ( ) ,ij i jS p LS M p , =1,2.i j  Recall that =ij ik kjS S S , for , =1,2i j . 

In this paper is established of the standard form of additive  Lie derivation, acting on algebra of LS(M) when M  be a von 

Neumann algebra without central summands of type I . 

In particular, it follows that the properly infinite von Neumann algebras M., all additive  Lie derivations operations on the 
arbitrarily algebras LS(M), is the linear derivations 

RESULTS  

Lemma 1. If ijx S and 0xy  for all jky S , then 0x  . 

Lemma 2.          pL p p  1-p L p 1-p   Z LS M .   

Let : ( ) ( )LS M S M  defined as follows:      L  x x sx xs     for each ( )x LS M . 

We have the following 

Lemma 3.       p 1 1-p 1-p 1 p=0  . 

Lemma 4. ( )ij ijL S S , where      I, j=1,2,  
i j

. 

Lemma 5. There exists a map : ( ( ))i iif S Z LS M such that 1( ) ( )ii ii iix S f x   all ii iix S ,  

, 1,2i j  .  

Now defined the mappings : ( ) ( ( ))f LS M Z LS M and : ( ) ( )d LS M S M as follows: 

  1 11 2 22( ) ( )f x f x f x  and    d = ( )x x f x  all 11 12 21 22 ( )x x x x LS M    . Then by Lemma 4 

and 5, we obtain ( ) , ( )ij ij ii iid S S d S S  , ( ) ( )ij ijd S S , 1 2i j    

Lemma 6. d and f  are additive. 

Lemma 7. The mapping d  is derivation. 

Lemma 8. ([ , ]) 0f x y  for all , ( )x y LS M ,where 0xy   

Now we can formulate the main theorem. 

Theorem 1.  Let ( )LS M  be of all locally measurable operators affiliated with a von Neumann algebra M

without central summands of type 1I . Let : ( ) ( )L LS M LS M additive mapping. Then

([ , ]) [ ( ), ] [ , ( )]L x y L x y x L y  , for all  , ( )x y LS M ,where 0xy  , if and only if there exists an addi-

tive derivation : ( ) ( )LS M LS M  and  an additive map : ( ) ( ( ))f LS M Z LS M where ([ , ]) 0f x y  , 

such that ( ) ( ) ( )L x x f x  , ( )x LS M , where ( ( ))Z LS M center of ( )LS M . 

Now Theorem 1 implies the following 

Corollary.Let ( )LS M be of all locally measurable operators affiliated with a von Neumann algebra M without central 

summands of type 1I . Suppose that : ( ) ( )L LS M LS M is an additive map. Then is a Lie derivation if and only if 
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there exists an additive derivation 

: ( ) ( )LS M LS M  and an additive map : ( ) ( ( ))f LS M Z LS M , where ([ , ]) 0f x y  , such that 

( ) ( ) ( )L x x f x  for all ( )x LS M , where  

( ( ))Z LS M center of ( )LS M . 

Theorem 2. Let ( )LS M be of all locally measurable operators affiliated with a von Neumann algebra M without 

central summands of type
1I . Then any additive Lie derivation : ( ) ( )L LS M LS M can be represented in the form

L  f  , where  - additive derivation on the algebra ( )LS M and f - additive ( ( ))Z LS M -valued trace on the

( )LS M . 

Theorem 3. If M  is a type I or III  von Neumann algebra, then any additive Lie derivation : ( ) ( )L LS M LS M  

is linear Lie derivation and has the form aL D  f , where aD - is inner derivation on the algebra ( )LS M and f -is 

linear ( ( ))Z LS M -valued trace on the ( )LS M . 

Corollary.Let M  be a von Neumann algebra of type I . Then any additive Lie derivation : ( ) ( )L LS M LS M is 

linear derivation. 
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