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Abstract

This paper is devoted to the Neumann boundary stabilization of a non-homogeneous n-dimensional

wave equation subject to static or dynamic boundary conditions. Using a linear feedback law involving only an internal
term, we prove the well-posedness of the considered systems and provide a simple method to obtain an asymptotic
convergence result for the solutions. The method consists of proposing a new energy norm, and applying the semigroup
theory and LaSalle's principle. Finally, the method presented in this work is also applied to several distributed parameter
systems such as the Petrovsky system, coupled wave-wave equations and elastic system.
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1 Introduction

Let  be a bounded open connected set in R" having a smooth boundary I' =0C2 of class C2. Consider the
following wave equation:

Y (X, Y) — Ay(x, t) +a(x)y,(x,t) =0. in Qx (0,0) (1.1)

with either static Neumann boundary conditions and initial conditions

0,Y¥(x,t) =0, onT x (0,)
{y(x,O) Y00, V(.0 =2, (x)  in®, o
or dynamical boundary conditions and initial conditions
m(X)y, (x,t)+0,y(x,t)=0 on I'x (0, 00)
y(x,0) =y, (x), Y,(x,0)=2,(x) in Q (1.3)
Y- (x,0) = Wy (x) inQ

0

Where A= Za (8;0;), Op= Zauvlﬁj,ﬁ ——, v =(v,...,v,) isthe unit normal of I pointing towards
= — OX
i,j=1 i,j=1 k

the exterior of {2 and a eC (Q) with & ; =a;;, Vi, j=1,....,n and satisfying, for

jit

a, >0, Zaingigj Zaozgiz, V(&g ) el
i=1

ij=1
Moreover, there exist two positive constants ao and mo for which

ael”(Q);a(x)=>a,, aexeQ. (1.4)
m(x) e L*(I'):m(x) =m,, aexel. (1.5)
The main results for this article are:

1 2
1) For any initial data (yo, Zo) eH (Q) x L (Q), the solution of the closed loop system (1.1) - (1.2) and (1.5)

saiisty (Y(t), ¥, (t)) = (x.0) in H 1(9) x L2 (€2) as T =00 where

:( i adxj_l( [(ay, + zo)dxj. (1.6)

)
2) For any initial data (Y, Zy, W,) € H*(Q) x L*(€Q) x L*(T") , the solution of the closed loop system (L.1) - (1.3)
and (1.5)-(1.6) satisfy (Y(t), Yi (t), Yi |r (t)) —)(;{, 0, 0) in Hl(Q) x L (Q) X L2 (F) as T =00, where

:(iadle(j(ayo +20)de. .

Q

2 The Wave Equation with Static Boundary Conditions

2.1 Preliminaries and well-posedness of the problem
In this subsection we study the existence and uniqueness of the solutions of the closed loop

system (1.1)- (1.2) and (1.4). Let us consider the state space
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Y =HYQ)xL%(Q)
equipped with the inner product
((y,2),(¥,2)), =I(Z ,;0,y0,;Y+ zzj dx+g[.[(z +ay) dxj“(f +ay) dx}, (2.1) (3.2
Q\i.j=l Q Q

where & > O is a constant to be determined. This inner product is inspired from the approach of [13] introduced for the
boundary feedback case. The first result is stated in the following proposition.

Proposition 2.1. The state space Y= Hl(Q)X L2 (Q) ‘endowed with the inner product (2.1) is a Hilbert space
provided that & is small enough.

Proof. It is sufficient to show that the norm ” . ”Y induced by the inner product (2.1) is equivalent to the usual one

” . ||H1(Q)XL2 @ ; that is, proving the existence of two positive constants K and K such that

K Dl oy ior <N DL < KNG Do iy @2
On one hand,
2
I(y.2) il(g)xLz(Q) = .[[leaivia‘ yajyjdx+J'zzdx +5U(z+ay)dxj
Q\ .= Q Q

Applying Hoélder's inequality and Young's inequality, we get
1 n
I, Dl o) <5 | 25p[a; 00| (@:)* +(2,)? )+ [ 2°ax
Qi j=1 X€Q Q

+gvol(Q)I(|z|+|a||y|)2dx.
Q
Let @, =maxsup|a; ()| . and using the fact that 2[a]|y||z|<al], (y* +2°) , we get
Ll xeQ
il
ICy. Z)||2H1(Q)><L2(Q) 3531 (”QVYF dx+ nz[|Vy|2 dxj+£zzdx
+gvoI(Q)'f(z2 +||a||fo y: +||a], y* +a], z*)dx
Q

= naJ|Vy|2 dx+evol(Q)|al (|all. +1)I yZdx
@ Q

+(1+ evol(Q)(|a|, +1))J. 2% dx.

Let &, = & Vol (€2) ||<’:1||0O (||61||0o +1) and B, =1+ é‘VOl(Q)(”?:t”OO +1) andK =max{na,, &, S} - Then

”(y’ Z)”nzr =K ”(y’ Z)”ZHl(Q)xLZ (@) (23)

On the other hand, using the coercivity of (&)

oy 20, 203, J@y) oxs iZZdXJrE[uZdXJZ+uayde2+2(£zdx}[£aydx]],
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Zg[izdx)uaydxj2—{5uaydxj2 %[izdxﬂ VS0,

Then

Iy, z)||]2r > 050£|Vy|2 dx+£zzdx+g(1—5)(£ ay dxj +g(1—%)uzde .

Using generalized Poincare’'s inequality [3], we can prove that there exists a positive constant C, such that

2
Iyz dx<c, @|Vy|2+[jaydx} ] vy e HY(Q) (2.4)
Q Q Q

which implies that

2
U ay dxj zij' y2dx —J'|Vy|2 dx . 2.5)
Q CO Q Q

Now, for 0 < & <1

I(y, 2)| =(e% —5(1—5))E|;|Vy|2 dx + 8(1(; o) gj; y? dx+[1+g(1—%]vol(9)jz[ 2°dx.

2
We choose € > 0and 0 < & <1such that the coefficients of _[|Vy| dx, I yZdX and I z22dX are positive; that is
) Q )

(04
a, —&(—35) >0, which implies that & < —2—.

1

(é—ljvol(Q) -

Because 0 <0 <1 and ¢, >0, it is sufficient to choose & > 0 such that

1+ g(l—%)vol(Q) >0, then & <

.| 1l
& <min| -, —~ _
B (—1JVO|(Q)
o
On the other hand, C, >0, so £(1-9) >0.
Co
Finally,
2 2
.2 = KD e

where K =min {ao —(1-96), ‘9(1(:_ 9) ,1+g(1—%jvol(g)}.

0

From (2.3) and (2.6) we get
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KOs Dl etz o <N DI < KV Dl etz -

Therefore, the state space Y = H 1(Q) x L* (Q) endowed with the inner product (2.1) is a Hilbert space.

We turn now to the formulation of the closed-loop system (1.1)- (1.2) and (1.4) in an abstract formin Y . Let Z(t) =Y, (t)
and D(t) = (y(t),z(t)). Then, the closed loop system (1.1)-(1.2) and (1.4) can be written as

{(Dt t)+Td(t)=0

2.7)
@(0) = D, = (y(0),2(0)) = (Yo, o)
where T is an unbounded linear operator defined by:
T(y, Z) = (_21 _Ay + aZ), V(y1 Z) € D(T) (2.8)

and

D(T) = (y 2) e HY(Q)x L*(Q) :T(y,2) e H'(Q)x L*(Q) and 8, y = OonF}
{( y,2) e H{(Q) x L2(Q):(~z,-Ay + az) e H (Q)xLZ(Q)}
ando,y=0onT
{( y,2) e H (Q)xLZ(Q):—ZGHl(Q),—Ay+aZGLZ(Q)}
ando,y=0onT
={(y,2) e H*(Q)xH'(Q), 8,y =0onT}.

By using variational formulation and Lax-Milgram theorem [3], we conclude that T is a maximal monotone operator.

2.2 Stabilization of the problem
In this subsection, we prove a stability result which is similar to the one obtained in [13]
for the boundary feedback case.

Definition 2.2. The @ -limit set is
(o, ,) € Y:EI{tn}increasing sequence of positive numbers;
a)(yoa o) =3 ;
mH(y(tn), 2(t,)) - (@, @,)| =0

Theorem 2.2. For any initial data @, = (Y,,Z,) € Y, the solution O(t) = (y(t), Z(t)) >(x,0)inY as t >0,

where y = Uadxj U(ay0 + zo)dxj ; that is, !i_)rg”(y(t), (1)) - (x, 0)||fr =0.

Q

Proof. Applying LaSalle’s principle [24], we have:
i) @(Yy,2,) =P, V(Yy.Z,) € Y and it is compact set.

i) @(Y,,Z,) is invariant under the semi-group S(t).

iii) Let (Y(t), z(t)) = S(t)(Y,. Z,) be a solution of (2.7), then !Lrg(y(t), 2(t)) € w(y,, ,) -

3398 |Page April 16, 2015



ISSN 2347-1921

iv) @(Y,,2,) = D(T)

V) t—)”S(t)a)”i is a constant function for any (@, ®,) € @(Y,, Z,) -

We want to prove that (Y(t), Z(t)) = (,0) , as t goesto .

From (iii), it is sufficient to prove that @(Y,, Z,) contains only elements of the form (¥, 0) .

Let @, € (Y, Z,) . we prove that @ = (¥, 0) we have

d 2 d d
a(”S(t)a)O”Y) = O:><a(8(t)a)o), S(t)a)0>Y = 0:<a a(t), 6{)(t)>Y =0, where o(t) = (y(t), z(t)) is the
solution of (2.7) corresponding to @, .

(To(t), (t)), Iazzdx 0.But a(x)>a,>0 thus z=0 0N Q.

Because Y, = Z =0, then y is a constant with respect to t. Then Y, =0 and Ay =0.

Therefore, using Green's formula

—IAyydx_—IaAyyda+_[Za”ajyaydx IZaljajyaydx 0. But,

Qi j=1 Qi j=1

.[ Z a; ,ya ydx > aOIZ 8 y dX where o, > 0, therefore y is a constant with respect to x.
Qi j=1 Q i=l

Finally, Y = y where y is a constant.

Hence the @— limit set contains only elements of the form (,0), where y is a constant, and we find
lim(y (), 2()) = (2. 0).

Now, we have to find the expression of ¥ . Because

Y (X, 1) = Ay (X, t) +a(x) y,(x,t)=0 in Q% (0,0)and 0,y =00n I, then

(J.(yt(x t) +a(x)y(x,t) dX] J.Ade I@ y =0, therefore

Q

J.( y, (x,t) +a(x) y(x,t) Jdxis a constant function.

Thus,
I(yt (x,t) +a(x)y(x,t) )dx = I(yt (x,0)+a(x)y(x,0))dx = _[(zo +ay,)dx, Vte(0,)

By passing to the limit where t goes to o, and using the fact that

lim(y(t), 2(t)) = (7,0) , we get [(0+a(x)2))dx = (2, +ay, ) dx., this implies that

-1
;(J.adx:J.(zo+ayo)dx,so ;(z(jadxj I(zo+ay0)dx. [
Q Q Q

Q

3 The Wave Equation With Dynamic Boundary Conditions
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3.1 Preliminaries and well-posedness of the problem

In this subsection we study the existence and uniqueness of the solutions of the closed-loop system (1.1)- (1.3) and (1.4)-
(1.5). Let us consider the state space

Y, =H' (Q)x L*(Q)x L*(I),

equipped with the inner product

(Y, 2, W), (3,2, ), =I(Zai,-aiya,-y+zZde+ [mwivdo
Q\ij=l r
(3.1)

+yU(z+ay)dx+jmwdaj(j(nay)dmjmmaj,

Q Q
Where 2 > 0 is a constant to be determined. This inner product is inspired from the

approach of [13] introduced for the boundary feedback case. The first result is stated in the following proposition.

Proposition 3.1. The state space Yy =H" () x L*(€2) x L*("), endowed with the inner product (3.1) is a Hilbert
space provided that ¢ is small enough.

Proof. It is sufficient to show that the norm || / ”r induced by the inner product (3.1) is equivalent to the usual one
d

|| ) || : that is, we prove the existence of two positive constants K and K such that
HY(Q)xL? (Q)xL2(T)

K ”(y’ Z, W)||2HI(Q)><L2 (Q)xL2(I) S”(y’ Z, W)”wzrd < K ”(y’ Z, W)||I2-|1(Q)><L2(Q)><Lz(l") ; 3.2)

On one hand,

2
||(y,z,w)||f(d =I[Z aijaiyaijdX+jZZdX+ImW2dG +ﬂ[j(z+ay)dx+jmwdaj
Q r Q r

a\ij=1

Applying Holder'sinequality and Young'sinequality, we get

Iy, z)||id S%Ji nggg‘a” x)|((@y)* +(ajy)2)dx+£zzdx+||m||w.£ w’do

i, j=1
2
+4,U[J.deO'J
r

+4y[£zdxj2 +4yuayde

Let , = maxsup‘aij (x)‘ , we have
Ll xeQ

2

ICy. z, W)”id < na1J‘|Vy|2 dx +I22dx+ Im|. Iwz do
Q Q T
+4uvol (Q)j 2%dx + 4ﬂ||a||i vol (Q)J. y2dx + 4,u||m||i vol (F)jwzd o.
Q Q r

Therefore,
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Iy, z,w)||jd <na, j Vy[* dx+4a)’ vol () j y2dx + (L+ 4 12vol () j 22dx
Q Q Q

+(|m|, +4x|m|’ vol(T)) j wido
I

Let &, = 4uvol(Q)|al’ . B, =1+4uvol(Q), w, =|m|, +4x|m|] vol(T') and K =max {na,, &,, B, v, .

Consequently,

”(y’ Z, W)”id <K ”(y’ Z, W)||i|1(g)x|_2(g)x|_2(r) ) (3-3)

On the other hand, we have

2
ICy. z,w)||; ZaOZI(Oiy)ZdX+I22dX+ moJ.WZdO'““ﬂU(Z +ay)dx+Jdeaj
Q r Q r

i=l

2
Z%J‘|Vy|2 dx + J z%dx +mojwzda +,u[j aydx]
Q Q r Q

+,u(gj;zdx+Jr‘mwdaT +2,u(£aydx](£zdx+lmwdo}

(3.9)
Because

2 2
1
Zy[ aydxj[ zdx + dean—/,z 6[ aydxj +—[ zdx + mwdaJ , (3.5)
ol [ Javoe w5 [e]
forany O > 0. Then, (3.4) and (3.5) imply that

2
Iy, Z’W)”;, > 0{0'|-|Vy|2 dx +Izzdx +mojw2da+y(1—5)[j aydx}
Q r

o o
: 2
+y(1——](jzdx+_[mwdaj .
oN\% T
Therefore, for 0< 0 <1(so 1-0 >0 and l—l <0)

y(l—%)[z[zdmlmwdaf > Zy(l—%j[izdsz +2ﬂ(1—§ju mwolaj2

> Zy(l—%jvol (Q)i z2dx+2u (1— %]”m”i vol (F)lwzd o,

(3.6)

hence, using (3.6) and (2.5) (given in Subsection 2.2) we get

Iy, 2w, > (e - ,u(l—é))yVyF dx+(l+2,u(1—§jvol(§2)J i 2%dx

+(m0 +2,u(l—§j||m||i vol(l“)j l wzda+@ i y2dx.

0

(3.7)
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2
We choose £ >0and 0 <& <1such that the coefficients of I|Vy| dx, I ydx, J.ZZdX and IWZ do are positive;
0 0 0 T

that is

o, — 1(1—35) > 0, which implies that 4 < 10505 :

1+2,u(1—%jv0|(§2)>0,then U< 1 L :
2(5—1JVOI(Q)

My

Zy(;—lj”m”i vol(T)

m, + Zy(l—%j”m”i vol(I") >0, then p <

Because 0 < 6 <1, o, >0and my >0, itis sufficient to choose £ >0 such that

0<smintsZs: 2(1 1ljvo| Q) ’2(1 1)|Tr:1||2 vol(r) |
5 5 -
On the other hand, C, >0, so @ >0.
Finally, 0
¢y, 2w, 2 K[ 2 Wy iy @

Where K =min {% —y(l—é),”(l_g) 1+ Zyil—%]vol (Q),m, + Zy(l—%jnm”z vol(l“)}. From (3.3)
C, >
and (3.8), we get that
2 2 2
K ”(y’ Z, W)”Hl(Q)xLZ(Q)xLZ(F) §||(y’ Z’W)”Yd < K”(y’ Z, W)”Hl(Q)xLZ(Q)xLZ(F) )
So, the state space Yy =H"(Q) x L* () x L*(T") ; endowed with the inner product (3.1) is a Hilbert space.

We turn now to the formulation of the closed-loop system (1.1)- (1.3) and (1.4)-(1.5) in an abstract form in Yd . Let

zt) =y, (@), z@t) =y, (), wt) =y, (1')|1_ and D(t) =(y(t), z(t), W(t)). Then, the closed loop system can be

written as

{cbt t)+T,®(t)=0
(3.9

D(0) = @, = (y(0),2(0), w(0)) = (Yo, Zy, Wp)

Where Td is an unbounded linear operator defined by:
1
T, (y,z,W) = (—z,—Ay+az,m8Ay), v(y,z,w) e D(Ty) (310

and
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D(Ty) ={(y.z,W) e Y4 :T,(y,z,w) € Yy andw=zon T}
(y,z,w)e Y, :(—z,—Ay+az,L8Ay) eY,and w=zon F}
m(x)

(3.11)

(y,z,W)e Y,:ze H(Q),- Ay +az e LZ(Q),%éAye L*(T)
andw=zonT

={(y,z,w) e H*(Q)x H(Q) x L*(T'), w=zon T'}.

By using variational formulation and Lax-Milgram theorem [3], we conclude that Td is @ maximal monotone operator.

3.2 Stabilization of the problem
In this subsection, we prove a stability result which is similar to the one obtained in [13] for the boundary feedback case.

Definition 3.2. The @ -limit set is
(o, w,,0,) €Y :3{t, }anincreasing sequence of positive numbers;}

“’(y°'z°’w°):{!‘LQH(y(tn),z(tn>,w(tn))—(wvwz’a’s)Hv =0

Theorem 3.3. For any initial data @, = (Y,, Z,,W,) € Y, the solution ®(t) = (y(t), z(t), w(t)) > (,0,0) in Y, as
t — 400, where

;(zuade_l [ D8

Q

that is,

. 2
lim||(y(®), (1), w(t)) - (%.0,0)[};, =O0.
Proof. Applying LaSalle's principle [24], we have:

) (Vg ZgsWy) @y (Yo, 2y, W,) €Y 4 and it is compact set.

i) @(Yo1Zy, W,) is invariant under the semi-group S(t) (S(t) Yo, 2 Wo) = &Y Zgs Wo) ) -

iii) Let (Y(t), z(t), w(t)) = S(t)(Y,, Z, W,) be a solution of (3.9), then (Y (), 2(t), W(t)) € (Yo, 25, W) -
iv) @(Y,,Z,,W,) = D(T,).

V) t—>||S(t)a)||id is a constant function for any @ € (Y, Z,,W,) .

We will prove that (y(t), Z(t),W(t)) converges to (,0,0) as t goes to o0. From (jii), it is sufficient to prove that

@(Yy, Zy,W,) contains only elements of the form (,0,0). Let @, € @(Y,, Z,,W,) we prove thata, = (y,0,0).
We have

d 2 d d
Slsaf, )-0={S(50a) S0a ) -0={Fow.00) -0

Yq Yq
where @(t) = (y(t), z(t), w(t)) is the solution of (3.9) corresponding to @, .

(To(),00)), :jazzdx =0.But, a(X)=a,>0,50 2=0 on Q.
Q
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Because Y, =Z = 0, then y is a constant with respect to t. Therefore, W = Z|1_ =0, so
yn|1_ =0.Then Ay=Yy, =0 and aAy|1_ =0.
Therefore, using Green's formula,

—I Ayydx:—IaAyyda+jZn:a“ajyaiydx:Izn:aijajyaiydx:o. But,
Q r i i

i, j=1 i, j=1

n n
2
.[ Z a;0,y0,ydx = aOIZ(ai y) dx, where ¢, >0, therefore Y is a constant with respect to X .

i, j=1 O i=l

Finally Y = y, where y is a constant.

Hence, the @-limit set contains only elements of the form (y,0,0), where yis a constant, and we find
lim(y (), 2(t), W(t)) = (7,0,0) .

Now, we have to find the expression of ¥ . Because

Y. (X, D)—Ay (X, t)+a(X) y, (X, t)=0in Qx(0,0)and 0,y =00nT x(0,0), then

(J.( Y, (x,t) + a(x)y(x,t))dx] = j Aydx = J.G‘AydO' =0, therefore I(yt(xit) +a(x)y(xt))dx

is a constant function.

Thus,
j( Y, (%, £) +a(x)y(x,t) Jdx = j( Y, (x,0) +a(x)y(x,0) Jdx = J‘(z0 +ay, )dx Vt €(0,00). By passing to the limit

where t goes to 00, and using the

fact that !im(y(t), z(t)) =(x,0), we getj(0+a(x);()dx = J. (z, +ay,)dx, this implies that
o

Q
;(I adx = J'(z0 +ay,)dx,
Q Q

SO

¥ = (I adxj_ J‘(z0 +ay,)dx$. m

4 Applications To Other Systems

The method presented in the previous two sections can be applied for a large class of distributed systems (where the
classical energy defines only a semi-norm in the state space) to prove that the solution exists and converges to an
equilibrium point (when the time goes to infinity). This equilibrium point can be determined explicitly in term of the
parameters of the considered systems. We give here some particular applications to Petrovsky system, coupled wave-
wave equations and elasticity systems. For more details concerning these systems, see [15]-[23] and the references
therein. The proof of the obtained stability results of this chapter is inspired from the approach introduced in [13] for the
case of boundary feedback.

4.1 Petrovsky system.

Let Q be a bounded open connected set in R"” having a smooth boundary " =0Q of class C*.

We consider the following Petrovsky system with static boundary conditions:
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Yo (6 D)+ A%y (x, 1) +a(x)y, (x,1) =0
0,y(x,t)=0

0,Ay(x,t)=0

Y(Xr 0) = yo(X), Y (X, 0) = Zo(x)

ISSN 2347-1921

in Qx (0, )
onI" x (0,)
onI"x (0, )
inQ,

(4.1)

Where (Y,,Z,) is a given initial data in V x L*(€2) where V = {goe H?(Q);0,=00n F}, ael”(), such

that there exists @, >0 satisfying a(X)>a, VXeQ, andv =(v;,V,,...,v,) is the unit normal of I pointing

towards the exterior of Q.

Consider the state space
2
Y, =V xL*(Q)

Equipped with the inner product
((y,2),(¥, Z)>Yp E I(AyAy + zZ)dx+ g(.[ (z+ ay)dxj(j (Z+ ay)dx]. (4.2)
Q Q Q

where & > Qis a constant to be determined.

Using LaSalle's principle and following the arguments used before, we obtain that, for any initial data Yp the solution of

the system (4.1) satisfy: (Y(t), Y, (t))—>(%,0) in Y, ast —00, where

x= (i adx}l[j(ayo + zo)de.

Q

Remark 4.1 One can consider dynamical boundary conditions; that is

where d and M are defined by (1.4) and (1.5) respectively.

We consider the state space:

Ve (X, 1) + A%y (x,t) +a(x)y, (x,t) =0 on Qx (0, )
0,y(x,t)=0 onI" x (0,)

-m(x)y, (x,t)+0,Ay(x,t) =0 onI"x (0, ) (4.3)
y(%,0) = Yo (%), Y, (X, 0) = 2,(x) inQ

Y| (x,0)=w onl’

Y =V xL2(Q)x L*(IN),

equipped with the inner product

((y,z,w),(¥.2, v”v))Yd = jAyAydx+Idex+jmedo
Q Q r

+y[](z + ay)dx+.|'mwdaj[.|'(2+ ay)dx+Idea].

where £ > Qs a constant to be determined.
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We obtain that, (Y(t), Y, (t), Y, |r 1)—>(2,0,0) in Y ,; as t —0, where

() e

4.2 Coupled wave-wave equations

Let Q) be a bounded open connected setin R" having a smooth boundary T' =0Q of class C?.
We consider the following coupled wave-wave system with static boundary conditions:

Y (X, 1) = Ay(x,t) +ay,(x,t)+bu, =0 in Qx (0, )

U, (x,t) — Bu(x,t) +a,u, (x,t) + by, =0 inQx (0, )

0,Y(x,t) =0zu(x,t)=0 onT x(0,) (4.5)
y(%,0) = Yo (X), ¥ (X, 0) = ,(x) inQ
u(x,0) =u,(x),u,(x,0) =v,(x) inQ,

Where (yo,uo,zo,vo) is a given initial data in (H*(Q))? x (L* (Q))*, A= iai(aﬂaj), B= Zn:(?i(b“ d;)and

i,j=1 i,j=1

a.,b. € C}(Q) such that there exist ay,b, >0, satisfying a; =a;,b, =b; Vi, j=1,2,...,n

ij 1 ™ij jir

Za” & J>aOZ:giz,Z:bu(c:lgJ >h Ze V(g &y €,) ER".
i=1 i=1

i,j=1

Moreover, there exist two positive constants &, ; and a, ; such that

a, e L”(Q)a(X)=a, VxeQ, a, e " (QY);a,(X) 2 a,,, VXeQ, a, e L"(Q);a,(X) 2 a,,, VX Q and

bel” (Q) satisfies ||b|Lo < 1. For more details concerning these systems, see [20],[23] and the references therein.

We consider the state space
Y, = (H ()" = (L*(Q))°

equipped with the inner product

a,0,y0, 5+ Zbua,uﬁ u}jx

i,j=1 i,j=1

o G850, 3

+j(ytyt +u.d, +b(y,d, + ytut))dx
U(yt +bu )dx+Ia1ydx](j(yt +ba )dx+ja1ydx]

+({ [ oy, +u)dx+ azudx]( [ (b3, +0,)dx+ azl]dx],

(4.6)

where & > Qis a constant to be determined.
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Using LaSalle's principle and following the arguments used before, we obtain that, for any initial data YWthe solution of

the system (4.5) satisfy: (y(t),u(t), z(t),v(t))>(x, ¥,,0,0) in Y ,as t —o0where

z( | aldx]wz [ | azdxj = { [ @+b)(z, +vo)dx+ [ (ary, +a2u0>dx}

fA=B, a =a, and (Y,,Z,) =(U,,V,) then itfollows from the symmetry that

X=X :(J'aide U(l+b)zodx+J‘a1yodxj.

Remark 4.2

(i) One can consider dynamical boundary conditions for both equations
Y (X, 1) — Ay(x,t) +a Yy, (x,t)+bu, =0 in Qx (0, )
u, (x,t) - Bu(x,t) +a,u,(x,t)+ by, =0 inQx (0, )
m(x)y,(x,t)+0,y=0 onTI x (0, )
M (X)u, (X,t) +0,u=0 onT x(0,)
y(X,0) = Yo (X), Y; (X, 0) = ,(x) inQ
u(x,0) =uy(x),u,(x,0) =V, (x) inQ
Vil (%,0) =Wy (x), U] (x,0) = W/ (x) onl’

or static boundary condition for one equation and dynamical boundary condition for the other equation and we obtain in
both cases the same results as for (4.5) with the constants y; and j, defined above.

(if) We can also consider static or dynamical boundary conditions only for Y and the homogeneous Dirichlet ones for U or

the reverse). In this case, we get ( y(),u(t), y, (t),u, (t))—)()(, 0,0,0) where

¥= ( | aldxj ( [@+b)zgdxe| aiyodx].

(i) Similar results can obtained for a coupled Petrovsky-Petrovsky or wave-Petrovsky systems with static or dynamical
boundary conditions.

4.3 Elasticity systems
Let Q be a bounded open connected setin R" having a smooth boundary " =0Q of class C?.

We consider the following elasticity system:

ym(x,t)—Zn:aij‘j(y)(x,t) +a,(x)y, (x,t)=0 inQx(0,0),Vi=12,...,n
_Zn:aij(y)vj =0 onI'x(0,0),Vi=12,..,.n (4.7)
Y (%,0) = Y2 (X), ¥, (%,0) = 27 (X) inQ,vVi=12,..,n

Where (y°, ZO) = ((yf,..., ¥0), (20,..., Zg)) is a given initial dataY _ =(H1(Q))n x(LZ(Q))n.
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Here Y = (Y,,..., ¥,) :QQ >R"is the solution of (4.7), & (X) € L”(€2) such that there exists a,, >0 satisfying
a(x)za,>0vxeQ,Vi=12,..,n
180 _ oy oy,
J |](y) Zauklgkl(y) gu(y) (y| j +y]|) yl i :
OX; b} ax
Qg eCl(Q) such that there exists @,>0 satisfying &y, =ay =&, vi, j,k,1=12,...,n and

Moreover Oy (y)=

n n
Z Qi €ij€u 2, Z &;;€;; for all symmetric tensor &;; . For more details concerning these systems, see [15]-{18]
i,jk =1 i,j=1
and the references therein.

We consider the state space
Y, =(H'(©Q)) x(L2(©)

equipped with the inner product, for any Y = (Y,,...,Y,), 2=(Z,,-.,2,) , Y=(Y,-.. ¥,) and Z=(Z,,...,Z,),

((%.2).(5.2)), j[za.,(y)e.,(y)]dmj(zz )dx

ij=1

+52K j (z +aiyi)dxj( j (Z+a Vi)dxﬂ,

where & is a constant to be determined. Using LaSalle's principle and following the arguments used before, we obtain
that, for any initial data @, = (y°,2°) € Y, the solution of the system (4.7) satisfies: (Y(t),z(t))—>(x,0) in Y, as
t — cowhere

(4.8)

= X2 Xy) and Zz. [Ia(X)de—IZ(Z +a,y; )dx

Q i=1
If & =a, ,yi° = yj.), and Zi0 = Z?,Vi, J=12,...,n, then by symmetry of (4.7) we have

([adx} IZ 2’ +a,(x)y )dx.

O i=1
Remark 4.3
We can consider static conditions for Y;, i=12..r, dynamical boundary conditions for Y;, i=r+1,.., p . andthe

homogeneous Dirichlet ones for Y, i= p+1,...,n ,where 0<r < p<n;thatis
n

> o (y)v; =0, on'x(0,0),Vi=1...r,

j=1

> oy (y)v; +my, =0, onl'x(0,0),Vi=r+1,..., p,
j=1

y, =0 onI'x(0,),Vi=p+1...,n

In this case, (Y(t), Y, (t))—>(x,0)ast — oo, where ¥ = (11, Xor-r X)) -
=0fori=p+1...,n,and
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P P

> x J'ai (x) dx :IZ(ZIO +a,(x)y; ) dx.

i=1 Q Q i=
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