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ABSTRACT 

We investigate the oscillation of class of time fractional partial differential equation of the form  
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 for ),[0,=  ,=),(   RGRtx  where   is a bounded domain in NR  with a piecewise smooth boundary (0,1),     

is a constant, 
tD ,  is the Riemann-Liouville fractional derivative of order   of u  with respect to t  and   is the Laplacian 

operator in the Euclidean N - space NR  subject to the Neumann boundary condition  
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 We will obtain sufficient conditions for the oscillation of class of fractional partial differential equations by utilizing 
generalized Riccatti transformation technique and the integral averaging method. We illustrate the main results through 
examples. 
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1.INTRODUCTION  

Fractional differential equations, that is differential equations involving fractional order derivatives seems to be a natural 

description of observed evolution phenomena of several real world problems. Recently studying fractional order differential 

systems turn out to be an active area of research. It is evident that in interdisciplinary fields many systems can be 

described by fractional differential equations [2, 9-12, 16,20]. The study of oscillation and other asymptotic properties of 

solutions of fractional order differential equations has attracted a good bit of attention in the past few years [4-6, 8]. 

However, only a few results have appeared regarding the oscillatory behavior of fractional partial differential equations, 

see [1, 13, 14-15, 17] and the refrences cited there in. 

Chen[3] studied the oscillation of the fractional differential equation  

 0,>0,=))()(()())()()(( ' tdssytsftqtyDtr
t

 


    

 where yD
  is Liouville right-sided fractional derivative of order (0,1)  of y, 0>  is a quotient of odd positive integers, 

r  and q  are positive continuous functions on ),[ 0 t  for a certain 0,>0t  and RRf :  is a continuous function such 

that Kuuf >)/( 
 for a certain 0>K  and for all 0u . They established some oscillation criteria for the equation by 

generalized Riccati transformation technique and integral inequality. 

In[19], the authors considered non linearity term )(yg  to self adjoint term in the class of fractional differential 

equation and derive the oscillation criteria for the following equation  

 0,>0,=))()(()())))((()(( ' tdssytsftptyDgtr
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 where yD
  is Liouville right-sided fractional derivative of order (0,1)  of y. 

To the best of our knowledge, nothing is known regarding the oscillatory behavior for the following class of 

fractional partial differential equations with forced term of the form  
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 ,=),( GRtx   where   is a bounded domain in NR  with a piecewise smooth boundary (0,1),     is a constant, 


tD ,  is the Riemann-Liouville fractional derivative of order   of u  with respect to t  and   is the Laplacian operator in 

the Euclidean N - space NR  (ie) 
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  . Equation (E) is supplemented with the Neumann boundary 

condition  
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where   is the unit exterior normal vector to   and ),( tx  is continuous function on  R , and  

.),(0,=),()( 2  RtxtxuB   

Our results established in this paper are infact improvement of results in [13] and [19]. These oscillation criteria 

generalize those of existing one. In what follows, we always assume without mentioning that 
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)( 4H  );(1 RRCg 
 are continuous functions with 0>)(1 uug  for 0u  and there exist positive constant 

  such that )()()( 111 vguguvg     for 0uv ; 

)( 5H  );( RGCF  such that 0.),(  dxtxF  

By a solution of )(),( 1BE  and )( 2B  we mean a non trivial function );(),( 1


 RGCtxu 
 with 

);(),()( '

0


  RGCdssxust
t

 , );()),(()( '
,   RGCtxuDgtp t
  and satisfies )(E  on G  and the boundary conditions )( 1B  

and ).( 2B  A solution ),( txu  of )(E  is said to be oscillatory in G  if it is neither eventually positive nor eventually negative. 

Otherwise it is nonoscillatory. Equation )(E  is said to be oscillatory if all its solutions are oscillatory. The purpose of this 

paper is to establish some new oscillation criteria for )(E  by using a generalized Riccati technique and integral averaging 

method. Our results are essentially new. 

2.PRELIMINARIES 
 In this section, we give the definitions of fractional derivatives and integrals and some notations which are useful 

throughout this paper. There are serveral kinds of definitions of fractional derivatives and integrals. In this paper, we use 

the Riemann-Liouville left sided definition on the half-axis .R  The following notations will be used for the convenience. 

,=,),(
1
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 (1) 

Definition 2.1. [8] The Riemann-Liouville fractional partial derivative of order 1<<0   with respect to t  of a 

funciton ),( txu  is given by  

 dvvxuvt
t

txuD
t

t ),()(
)(1

1
:=),)((

0
,






 





  (2) 

 provided the right hand side is pointwise defined on R  where   is the gamma funciton.  

Definition 2.2. [8] The Riemann-Liouville fractional integral of order 0>  of a function RRy :  on the half-axis 

R  is given by  

 0>)()(
)(

1
:=))(( 1

0
tfordvvyvttyI

t


 
 




 (3) 

 provided the right hand side is pointwise defined on .R    

Definition 2.3. [8] The Riemann-Liouville fractional derivative of order 0>  of a function RRy :  on the half-

axis R  is given by  
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 provided the right hand side is pointwise defined on R  where    is the ceiling function of  .   

Lemma 2.1. [13] Let y  be solution of )(E  and  
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 Then  

 0.>(0,1)))()((1=)( tandfortyDtK    
 (6) 

Lemma 2.2 .[7] If X  and Y  are nonnegative, then  

 ,1)(1 mmm YmXmXY 
 (7) 
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 where m  is a positive integer.  

 

3.OSCILLATION OF THE PROBLEM )(),( 1BE  

 We begin with the following theorem.  

Theorem 3.1.  If the fractional differential inequality  
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 has no eventually positive solution, then every solution of )(E  and )( 1B  is oscillatory in G .  

Proof. Suppose that ),( txu  is a nonoscillatory solution of )(E  and ).( 1B  Without loss of genearality, we may assume 

that 0>),( txu  in ),[ 0  t  for some 0.>0t  Integrating (E) with respect to x  over . , we obtain  
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 Using Green’s formula and boundary condition )( 1B  it is obvious that  
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 By using Jensen’s inequality and  2H  we get  
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 In view of (1), (10)-(12) and (9) yield  
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 Therefore )(tV  is an eventually positive solution of (8). This contradicts the hypothesis and completes the proof.  

Theorem 3.2.  Suppose that the conditions )()( 51 HH  , and  
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 hold. Futhermore, Assume that there exists a positive function ));,([ 0
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 where  ,j  are defined as in )( 3H  Then every solution of (8) is oscillatory.  

Proof. Suppose that )(tV  is a non oscillatory solution of (8). Without loss of generality we may assume that V  is an 

eventually positive solution of (8). Then there exists 01 tt   such that 0>)(tV  and 0>)(tK  for 1tt   . Therefore it follows 

from (8) that  
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  for some .01 tt   We now claim that  

 .0,)( 1ttfortVD 
  (17) 

Suppose not, then 0<)(tVD
  and there exists ),[ 12  tt  such that 0<)( 2tVD

 . 

Since  )()( tVDgtp 
  is strictly decreasing on ).,[ 1 t  It is clear that  

     ctVDgtptVDgtp  :=)()(<)()( 22
  

 where 0>c  is a constant for ).,[ 2  tt  Therefore from (6) we have  

 








 



 


)(
<)(=

)(1

)( 1

tp

c
gtVD

tK 


 

                             ).(=),,[
)(

1 1
12

1
1 cgwherettfor

tp
g  










   

 Then we get  

 ).,[
)(1

)(

)(

1
2

1

1 













 ttfor
tK

tp
g


 

 Integrating the above inequality from 2t  to t , we have  
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 Letting t  we get  
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 This contradicts (14). Hence 0))((  tVD
 for ),[ 1  tt  holds. 

Define the function W  by the generalized Riccati substititution  

 ).,[
)(

))(()(
)(=)( 1  ttfor

tK

tVDgtp
ttW



  (18) 

 Then we have 0>)(tW  for ).,[ 1  tt  From (18),(6), (8) and )( 3H  it follows that  
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 Using Lemma 2.2 and (20) in (19), we have  
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 Integrating both sides of the above inequality from 1t  to t  we obtain  
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 Taking the limit supremum of both sides of the above inequality as t  we get  
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 which contradicts (15), and completes the proof.  

Theorem 3.3.  Suppose that the conditions )()( 51 HH  , and (14) hold. Futhermore, suppose that there exists a 

positive function ));,([ 0
'

 RtC  and a function ),( RDCH  where  0:),(:= tststD   such that   
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where  00 >:),(:= tststD  , and H  has a continuous and non-positive partial derivative 
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 where  ,j  are defined as in Theorem 3.2.Then all the solutions of (8) are oscillatory.  

Proof. Suppose that )(tV  is non oscillatory solution of (8) Without loss of generality we may assume that V  is an 

eventually positive solution of (8). Then proceeding as in the proof Theorem 3.2, to get (21)  
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 which is a contradiction to (22).The proof is complete.  

Corollary 3.1.  Assume that the conditions of Theorem 3.3 hold with (22) replaced by  
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 then every solution ),( txu  of )(),( 1BE  is oscillatory in G .  
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 which yields that (14) does not hold. In this case, we have the following result.  

Theorem 3.4.  Suppose that the conditions )()( 51 HH   and (23) hold, and that there exists a positive function 
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 Then every solution V of (8) is oscillatory or satisfies   0.=)(lim
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Proof. Assume that )(tV  is nonoscillatory solution of (8) Without loss of generality we may assume that V  is an 

eventually positive solution of (8). Then proceeding as in the proof Theorem 3.2, there are two cases for the sign of 

)()( tVD
 . The proof when ))(( tVD

  is eventually positive is similar to that of Theorem 3.2 and hence is omitted. Next, 

assume that )()( tVD
  is eventually negative. Then there exists 23 tt   such that 0<)()( tVD

  for .3tt   From (6) we get  
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 Integrating the last inequality from 4t  to t  we get  
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 Letting ,t  from (24), we get .=)(lim 
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  The proof is now complete.  

Theorem 3.5.  Suppose that the conditions )()( 51 HH   and (23) hold. Let ),(),( stHt  be defined as in Theorem 

3.3  such that (22) holds. Furthermore, assume that for every constant 0tT   (24) holds. Then every solution V of (8) is 

oscillatory or satisfies   0.=)(lim
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dssVst
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Proof. Assume that V  is an nonoscillatory solution of (8). Without loss of generality assume that V  is an eventually 

positive solution of (8). Proceeding as in the proof of Theorem 3.2, there are two cases for the sign )(tVD
 . The proof 

when )(tVD
  is eventually positive is similar to that of Theorem 3.3, and hence is omitted. The proof when )(tVD

  is 

eventually negative is similar to that of Theorem 3.4, and thus is omitted. The proof is now complete.  

  

4.OSCILLATION OF THE PROBLEM )(),( 2BE  

 In this section we establish sufficient conditions for the oscillation of all solutions of ).(),( 2BE  For this we need 

the following: 

The smallest eigen value 0  of the Dirichlet problem  
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 is positive and the corresponding eigen function )(x  is positive in .   

Theorem 4.1.  Let all the conditions of Theorem 3.2 and 3.3 be hold. Then every solution of )(E  and )( 2B  oscillates 

in G .  

Proof. Suppose that ),( txu  is a nonoscillatory solution of )(E  and )( 2B . Without loss of genearality, we may assume 

that 0,>),( txu  in ),[ 0  t  for some 0.>0t  Multiplying both sides of the Equation (E) by 0>)(x  and then integrating 

with respect to x  over .  We obtain for 1tt  ,  
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 Using Green’s formula and boundary condition )( 3B  it follows that  
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  (26) 

 By using and Jensen’s inequality, and )( 2H  we get  
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By )( 5H ,  
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In view of (26)-(29), (25) yields  
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 for .1tt   Rest of the proof is similar to that of Theorems 3.2 and 3.3, and hence the details are omitted.   

Corollary 4.1  If the inequality (30) has no eventually positive solutions, then every solution V  of )(E  and )( 2B  is 

oscillatory in G .   

Corollary 4.2  Let the conditions of Corollary 3.1 hold; then every solution V  of )(E  and )( 2B  is oscillatory in G .  

Theorem 4.2  Let the conditions of Theorem 3.4 hold; Then every solution V of (30) is oscillatory or satisfies 
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Theorem 4.3  Let the conditions of Theorem 3.5 hold; Then every solution V of (30) is oscillatory or satisfies 
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 The proofs of Corollaries 4.1 and 4.2 and Theorems 4.2 and 4.3 are similar to that of in Section 3 and hence the 

details are omitted. 

  

5  EXAMPLES 
 In this section we give some examples to illustrate the results established in Sections 3 . 

Example 1. Consider the fractional partial differential equation  
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 Thus all the conditions of Theorem 3.2  are satisfied. Hence every solution of (31)),( 1E  oscillates in ).,[)(0,  T  Infact 

sinxcosttxu =),(  is one such solution of the problem )( 1E  and (31). 

Example 2. Consider the fractional partial differential equation  
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 Here 
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 which shows that (15) holds. Furthermore, for every constant 1,T  we have  
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 which shows that (24) holds. Therefore, by Theorem 3.4  every solution of (32)),( 2E  is oscillatory in ),[)(0,  T  or 

satisfies 0.=)()(lim
0

dssVst
t

t





  Infact sinxcosttxu =),(  is one such solution of the problem )( 2E  and (32). 

Conclusion: We have studied the oscillatory behavior for a class of fractional parabolic partial differential equation 

)(E  with the boundary conditions )( 1B  and )( 2B . We have also given a new oscillation criterian by utilizing generalized 

Riccatti transformation technique and the integral averaging method. We illustrated our main results by providing suitable 

examples. We believe that there is a wide scope for further study on this topic. 
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