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ABSTRACT

The main purpose of this paper is to study the t-best co-approximation and t-best simultaneous co-approximation in
intuitionistic fuzzy normed spaces. We develop the theory of t-best co-approximation and t-best simultaneous co-
approximation in quotient spaces. This new concept is employed by us to improve various characterisations of t-co-
proximinal and t-co-Chebyshev sets.
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1. INTRODUCTION

The theory of a fuzzy sets was firstly introduced by Zadeh [14] in 1965 and thereafter several authors applied it to
different branches of pure and applied mathematics. On the other hand , the notion of fuzzyness has a wide
application in many areas of science and engineering .

Katsaras [5]in 1984, first introduced the notion of fuzzy norm on a linear space . The concept of a fuzzy norm on a
linear space by assigning a fuzzy real number to each element of the linear spaces introduced by Felbin [4] in
1992.

In 1986 ,Atanassov [2] introduced the concept of intuitionistic fuzzy sets. Park[8] first introduced the concept of
intuitionistic fuzzy metric space and Saadati and Park [9] introduced the concept of intuitionistic fuzzy normed space,
while the notion of intuitionistic fuzzy n-normed linear space was introduced by S. Vijayabalaji , N. Thillaigovindan and
Y. Bae [13].

In 2011 ,Abrishami Moghaddam and Sistani [1], firstly introduced the concept of the set of all t-best co-approximation
on fuzzy normed spaces.Surender Reddy [12] in 2012 discussed the concept of the t-Best Co-approximation in fuzzy
anti-2-normed linear spaces. J. Kavikumar , N. S. Manian and M.B.K. Moorthy [7] introduced the concept of Best
Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces .

In this paper we study the set of all t-best co-approximation and t-best simultaneous co-approximation in intuitionistic fuzzy
normed linear spaces and we develop the theory of t-best co-approximation and t-best simultaneous co-approximation in
quotient spaces. This new concept is employed us to improve various characterizations of t-co-proximinal and t-co-
Chebyshevsets.

2. PRELIMINARIES

Definition 2.1.[11]: A binary operation #:[0,1] x [0,1] = [0,1] is said to be a continuous t-norm if the following
axioms are satisfied :

(a) = is associative and commutative.
(b) =*is continuous .
(¢) a*1=a forallae[0,1].

(d) a*b <cxd whenever a<c and b<d foreacha,b,c,d € [0,1].

Definition 2.2.[11]: A binary operation ¢: [0,1] x [0,1] - [0,1] is said to be a continuous t-conorm if the
following axioms are satisfied :

(a) ¢ is associative and commutative
(b) ¢ iscontinuous
() ad0=a foralla € [0,1]

(d)a 0b<adc whenever a <c and b <d foreacha,b,c,d € [0,1].

Remark 2.3[11]:

(1) Forany ry,r, € (0,1) with r, > 1, , there exists 13,7, € (0,1)such that r; 13 = rpand 1, 21,0 1, .

(2)For any 75 € (0,1) , there exists 1,17 € (0,1) such that rg x1g = 75

and 1,017 < 715

Definition 2.4.[9]: The 5-tuple (X,u,v,%9) is said to be an intuitionistic fuzzy normed linear space (IFNLS) if

X be a linear space over the field F (R or ¢) , is a continuous t-norm , ¢ is a continuous t-conorm , and y , v fuzzy
sets on X x (0, ») satisfy the following conditions for every x,y € X and s,t > 0:

D plx,t) +vlx,t) <1

2) px,t)>0

3) plx,t) =1lifandonlyif x=20
(4) plax,t) =u (x, ﬁ) foreacha # 0
Gux+y,t+s)=plxt)*uly,s)
(6)limu(x,0) = 1

@ vix,t)<1

@) v(x,t) =0if andonly if x=0
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9) v(ax,t) =v (x,%) foreacha #0
(10) v(x +y,t+5s) < v(x,t) 0 v(y,s)

(11) %im vix,t) =0

Lemma 2.5.[9]:Let(X, u,v,%,0) be an intuitionistic fuzzy normed linear space then :

(i) u(x,t) and u(x,t) are non-decreasing and non-increasing with respect to t , respectively .

@) px—y,t) =puly —x,t) and v(x—y,t) =v(y—x,t) forevery t >0 and x,y €X.

Example2.6. [9]: Let (x,|I.II) be a normed linear space , and let a * b = min{a, b} and a ¢ b = max{a, b}

IE]
t+|lx]|

foralla,b€[0,1], Forall x€Xand t>0 ,u(x,t) = and v(x,t) =

t
t+lx|l

Then (X, y,v,%,0) is an intuitionistic fuzzy normed linear space .

Definition 2.7.[9]: Let (X,u,v,%0) be an intuitionistic fuzzy normed linear space . We define an open ball
B(x,r,t) with the center xe€X and the radius 0<r<1,as B@nrt)={yeX: uk-yt)>1-r,
v(x—y,t) <r}forevery t >0 also a subset AC X is called open if for each x € A, there exist t > 0and 0 <r <
1 such that B(x,r,t) CA.Let 7, denote the family of all open subset ofX.z(,,) is called the topology induced by
intuitionistic fuzzy norm .

Definition 2.8.[9]: Let (X, y,v,+,0) is an intuitionistic fuzzy normed linear space . For t >0, we define closed ball
Blx,r,t] with center x € X and radius0<r<1 as Blx,r,t]={yeX: px—-y,t)=21—-7r,v(x—y,t)<r} .

Definition2.9.[9]: Let(X,u,u*0) be IFNLS, A subset G of X is called intuitionistic fuzzy-bounded set (IF-bounded)
if there exists t > 0 and 0 <r <1 suchthatu(x,t)=1—7r and v(x,t) <r forall x€G .

3. t-BEST CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES

Definition 3.1: Let (X,u,u,%0) be IFNLS and G be a nonempty subset of X. An element g, € G is called an
intuitionistic fuzzy -t-best co-approximation to x from G (IF-t-best co-approximation) if for ¢t > 0, u(go — g,t) = u(x — g, t)
and v(gy —g,t) <v(x—g,t) for all g€ G. The set of all IF-t-best co-approximation to x from G will be denoted by
IF — RL(x) .

Remark 3.2: The set IF — RE(x) of all IF-t-best co-approximation to x from G can be written as :
IF — RE(x) = {go €G : p(go—g,t) 2 ulx —g,t) and v(go—g,t) Sv(x—g,t)for all g€G}

Definition 3.3: Let (X, y,v,%9) be IEFNLS and G be a nonempty subset of . The set of the t-co-metric complement,
Define as: for t >0 {x € X:u(g,t) = u(g —x,t), v(g,t) <v(g —x,t), Vg € G} = IF — (RE)7*({0}) will be denoted by
IF -G .

Proposition 3.4: Let (X,p,v,%9) be IFNLS and G be a subspace of X, Then forall x € X, g, € IF —R%(x) if
andonlyif x—go €IF—G for t>0 .

Proof :(=) Suppose that g, € IF—R.(x), x € X

= pgo—g,t) 2 px—g,t) and v(go—g.t) <v(x—g,t) , VgEG
Let gy =9g+9go , VgeEG = g,€G

= U(go — gu,t) = P(x — gy, t) and v(go — g1, t) <v(x — gy, t)
Since p(gy — go,t) = H(go — g1,t)

= (g +9go—go) =X —g—go,t)

= (g, ) 2 p((x—go) —g,t) = p(g — (x — g0))

= p(g,t) = plg — (x — go),t)

similarly , we get

v(g, ) <v(g—(x—go),t) ,Vg €G

=x—go €EIF— G .

(&) Assume x—go€EIF—G

= p(g,t)=plg—(x—go),t)and v(g,t) <v(g—(x—goy),t) ,VgEG
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Let g1=9g—g0=91€GC

p(gy,t) = p(gr — (x — go),t) and v(gy,t) <v(gy— (x—go),t)

= p@g—g0,t)Zu(g—go—(x—go),t) and v(g—go,t) < v(g—go— (x—go),0)
=g —9go,t)z2ulg—x,t) and v(g—go,t)<v(g—x,0),VgEeEG

Hence g, € IF —R.(x) if and onlyif x— gy, €EIF—G .m

Definition 3.5: Let (X,u,v,%0)be an IFNLS and G be a nonempty subset of X . If for every x € X has at least
one IF-t-best co-approximation in G , then G is called an intuitionistic fuzzy-t-co-proximinal set (IF-t- co-proximinal
set) .

Definition 3.6: Let (X,u,v,%9) be an IFNLS and G be a nonempty subset of X . If for every x € X has exactly
one IF-t-best co-approximation in G , then G is called an intuitionistic fuzzy -t-co-Chebyshev set (IF -t-co-
Chebyshev set) .

Definition 3.7: Let (X,p,v,%0) be an IFNLS. A subset G is said to be convex set if (1 -2 )x+/1g0 EG
whenever g, €G, x€X and 0<A<1.

Theorem 3.8: Let (X,u,v,%0) be an IFNLS and G is a nonempty subset of X, if g, € IF —RL(x) and
(1-MDx+Ago€G for 0<A<1, t>0,then (1—Ax+A1gy€IF — R:(x) .

Proof : Let goeIF —R.L(x) and (1 —Dx+Agy €G for 0<A<1, t>0

= ulgo— g,t) = u(x —g,t) and v(gy—g,t) <v(ix—g,t),VgE€G ....(1)

Therefore , for a given t > 0, take the natural number n such that t >%

By assumption and definition 2.4. , we have

p([(1 = Dx +2Agol — g, 1)

=p([1-Dx—2g +2g + 1gol — g .t)

= p((1 = Dx = (1~ Dg +(go — 9) )

=p((1-Dx—9)+(go—9) ,t)

t t

1 1 1 1
> —_ _ —_ — | =1 —_ ] = — [ —_
>u (x g'2(1 it /1)71) * L (x 9, ZAn) lim y (x 9, Zln) u(x—g,t) [ since(l)andt> n]

now
and for a given t > 0 ,take the natural number n such that t < %
v([(1 =Dx + g0l —g.0)

=v([A-Dx—2g + g + Ago] —g.0)

=v((1-Dx— A =Dg +2(go — 9),t)

=v((1=D(x —9) +Ago — 9),t)

t t
< g - — g —
—”(x 9'2(1—1))0 ”(90 9’2/1)

1 1 1 1
< — _— — — )=l — ) = — [ —
<v (x g T /1)71) 0 v (x g, Zln) _,11_{10101) (x g, Z/In) v(x—g,t) [since(D)andt < - ]
Thus (1—2A)x+Agy € IF —Ri(x) .m

Corollary 3.9: Let (X, y ,v,%,0) be an IFNLS. If G is convex subset of X, then IF —R.(x)is convex subset of X .

Proof : Let G is convex subset of X and g, € IF — R5(x) , for every x €X and 0 <A< 1
Since G is convex subset of X

By theorem 3.8, we get

(1=2Dx + Agy € IF — RE(x)

Hence IF — R.(x)is convex subsetofX. m
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Theorem 3.10: Let (X, u, v,%0) be an IFNLS and G be a subspace of X, Then:

) IF — RL“Glt(ax) =IF —aR.(x) forevery x€X, t>0 and a € R/{0}.

(i) IF = R¢1y(x +y) =IF —R;(x) +y forevery x,y €X, t>0.

proof : (i) g, e IF - RV (ax)
= go €aG ,u(go— g lalt) = y(ax —g,|alt) and v(go — g,lalt) <v (ax — g,|alt),Vg € aG
1 1 1 1 1 1 1
s u(;go—;g,t)zu(x—gg,t) and v(ago—gg,t>5v<x—ag,t>,v EgEG
‘E’U(égo_ght)zll(x_gh t) and v(igo—gl,t)Sv(x—gl, t) ., Vogu =igEG
PN égo € IF — RL(x) & go € IF — aRL(x)
Hence IF —R%(ax) = IF — aR%(x)
(i) go € IF = REyy(x +)
S plgo—(g+y)t)2p((x+y)—(g+y),t) and v(go—(g+y), ) <v((x+y)—(g+y)t), Vg+y€G+y
S (g - -g.t)=pix—g,t) and v((go—y)—g.t)< vix—g,t) ,YgEG
© go—yE€IF—R;(x)
S goEIF—RE(X) +y
Hence IF — RG,,(x+y) = IF —R;(x) +y u
Corollary 3.11: Let (X, u,v,%0) be an IFNLS and G be a subspace of X ,Then the following statements are
hold :

(1) G is IF-t-co- proximinal set (resp. IF-t-co-Chebyshevset) if and only if |a|G is IF-|a|t-co-proximinal set (resp.
IF-|a|t-co-Chebyshev set ) for any scalar a € R|{0} .

(ii) G is IF-t-co- proximinal set (resp. IF-t-co-Chebyshev set) if and only if G +y is IF-t-co- proximinal set (resp.
IF-t-co-Chebyshev set) for every y € X.

proof . (i) G is IF-t-co-proximinal < IF — RE(x) # 0
by theorm 3.10

S IF —aRi(x) # 0

< IF — Rla"f;'t(ax) =0

Then |a|G is IF-t-co-proximinal set .

similarly , we get

|a|G is IF-t-co-Chebyshev set .

(ii) G is IF-t-co-proximinal set < IF — RL(x) # @

S IF-R(x)+y#0® < IF—R, ,(x+y)#0

Then G+ y is IF-t-co-proximinal set .

similarly, we get

G +y is IF-t-co-Chebyshev set. m

4. 1-CO-PROXIMINALITY AND t-CO-CHEBYSHEVITY IN QUOTIENT SPACES

Definition 4.1.[3]: Let (X,u, v,%0) be an IFNLS and M is a closed subspace of X , for t>0 , we define
Bx+M,t)=sup{u(x+y,t): yeM}

px+M,t)=inflv(x+y,t):yeM} where x+ M ={x+m:me M}.

Theorem 4.2. [3]: Let (X,u,v,%0) be an IFNLS and M is a closed subspace of X, @(x+ M ,t) and ¢(x + M ,t)
are defined in Definition 4.1 , and X/M ={x + M : x € X}. Then (X|M,®,,*0) is an intuitionistic fuzzy normed linear
space .
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Theorem 4.3: Let (X,u,v,%90) beanIFNLS and M is a closed subspace of X and G D M a subspace of X . If
G is an IF-t-co-proximinal set of X , Then G|M is an IF-t-co-proximinal set of X|M .

Proof : Let G isan IF-t-co-proximinal set of X.

=39y €G,x €X suchthat u(go—g,t) = plx—g,t) and v(gy—g,t) <v(x—g,t) ,VgEG

> ugo—m+m—-g,t)=ux—m+m-—g,t)and v(go—m+m-—g,t) <vix—-m+m-—g,t) ,YmeM
:u((g0+m)—(g+m),t)2p((x+m)—(g+m),t) and v((g0+m)—(g+m),t)Su((x+m)—(g+m),t)
,Vg+MeGIM and x+M € X|M

= go+M € IF — Ry, (x + M)

= IF = Rgy(x + M) # ¢

= G|M is an IF-t-co-proximinal setof X|M. m

Corollary 4.4: Let (X, y,v,+0) bean IFNLS and M is a closed subspace of X and G DM a subspace of X .If
G|M is an IF-t-co-proximinal with X|M , Then G is an IF-t-co-proximinal with X .

Proof: Let G|M isan IF-t-co-proximinal with X|M .

= IF = RGy(x + M) # @

Let go+ M € IF — R, (x + M)

=>u((g0 +m) —(g+m),t) Zu((x+m)—(g+m),t) and v((go +m)—(g+m),t) < u((x+m) — (g+m),t),Vm EM
= p(go— g, t) 2 plx —g,t) and v(go—g,t) <v(x—g,t) ,VgEG

= go € IF — RE(x)

= IF-RL(x) # @

= G is IF-t-co-proximinal with X. m

Theorem 4.5: Let (X,u,v,%0) beanIFNLS and M is a closed subspace of X and G DM a subspace of X . If
G|M is an IF-t-co-Chebyshev with X|M , Then G is an IF-t-co-Chebyshev with X .

Proof: Let GIM is IF-t-co-Chebyshev with X|M and G has two distinct t-best co-approximation of
x € X suchas y,,y, in X .

= puly,—gt) 2px—g,t) and v(y;—g,t) <vix—g,t),VgEG

also IJ(yZ_grt)Zl-l(x_gﬁt) and U(Yz_g;t)ﬁv(x_g;f) !VgEG
=u(r+m) —(g+m),t) = pu((x+m)—(g+m),t) and v((y; +m) — (g +m),t) <v((x+m) — (g +m),t)
,VgeEGmMEM

also p((yz +m)—(g+m),t) 2u((x+m)—(g+m),t) and v((y2+m)—(g+m),t) Sv((x+m)—(g+m),t),
VgeEGmMEM

= y1+M,y; + M € IF — Rg)p, (x + M)

since y,#y, = W +M+y, + M

= IF — RglM(x + M) is not IF —t — co — Chebyshev, this contradiction(#) .
= Y1=Y2

Then G is an IF-t-co-Chebyshev with X. =

Definition 4.6.[6]: Let (X,u,v,+0) be an IFNLS and M is a closed subspace of X, for t >0andx € X the
distance between x and M define as :

d, (M, t) =sup{u(x—y,t):ye M} and d,(x,M,t) = inf{v(x —y,t) : y € M}.

Theorem 4.7: Let M and G are two subspaces of (X,u ,v,%0) suchthat MG and x+GE€X/G , g, €
G. If g, is IF-t-best co-approximation to x from G , Then g, + M is an IF-t-best co-approximation to x + M from
the quotient space G/M .
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Proof : Suppose that g, is IF-t-best co-approximation to x from G and g, +M is not IF-t-best co-
approximation to x + M from the quotient space G/M .

=3g;+M €G|M suchthat u(g; + M — (g, + M), t) <p(x+ M- (g, + M),t) and
V(g +M— (g1 + M), t) >v(x + M — (g, + M),t)
Suldg—g+Mt)<pylx—g,+M,t) and v(g, —g;1+Mt)>v(x—g; +M,t)
Since d,(x,M,t) =sup{y (x—y,t): y € M} and d,(x,M,t) =inf{v(x—y,t):y € M}
= sup{u(x — g1 + M, )} > sup{p (g1 — g1 + M, )} and inflv(x — g + M, )} < inf{v(g, — g1 + M, 1)}
=dy(x — g, M,t) > dy(g1 — g1, M,t) and dy(x — g1, M, t) < dy(g1 — g1, M ,t)
this implies that there exists g € M such that
Hx—g1—g,t) >d,(g1 — g, M, t) > u(gy — g1 +g,t) and v(x — g, — g,t) <d,(g1 — g1, M, t) <v(g; — g1 + g,t)
= 3g + g, € G such that U((g +41) — 91't) <p(x—(g+4gi),t) and v((g +41) — gbt) >v(x—(g+41).t)
= g, is not an IF-t-best co-approximationto x from G , this contradiction with hypothesis(#) .

Then g, + M is an IF-t-best co-approximation to x + M from the quotient spaceG/M . =

5.t-BEST SIMULTANEOUS CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED
LINEAR SPACES

Definition 5.1: Let (X, y,v,%0) beanIFNLS and G be asubsetof X , M be IF-bounded subset in X . An
element g, € G is called IF-t-best simultaneous co-approximation to M from G ,if for t>0,

ulgo—g,t)=influm—g,t) : me M} and v(gy—g,t) < sup{vim—g,t) :me M} foral geG .

The set of all IF-t-best simultaneous co-approximation to M from G , will be denoted by IF — S5(M) and define
as follows :

IF —SE(M) = {go €G : p(go — g ,t) = infrpey H(m —g,t) and v(go—g,t) < supmey v(m—g,t),Yg € G}

Definition 5.2: Let ¢ be a subset of (X,u ,v,%0) .1t is called IF-t-best simultaneous co-proximinal subset of X
, if for each IF-bounded set M in X , there exists at least one IF-t-best simultaneous co-approximation from G to M .

Definition 5.3: Let G be asubset of (X, y,v,%0) . Itiscalled IF-t-best simultaneous co-Chebyshev subset of
X, if for each IF-bounded M in X there exists a unique IF- t- best simultaneous- co-approximation from G to M .

Theorem 5. 4: Let (X, ,u,40) and G be a subset of X .If M is IF-bounded subset of X and =,0 satisfying
the condition axb>a , a0b<a, Va,b €[0,1],then IF —S;(M) is IF-bounded subset of X.

Proof : Let M is IF-bounded subset of X and g, € IF — SL(M)
= there exist 0 <r <1 such that y(x,t) =1—r , v(x,t)<r ,VxEM,t>0 and
H(go — 9,t) = infipey (m — g, t)and v(go — g,t) < Suppem v(m — g,t), Vg € G
= foreveryg € G,m € M , u(go,3t)= u(go — m +m,3t) = u(go — m, 2t) * y (m,t)
2p(go—g+g-—m2t)x(1—-r)
2 ulgo—g,0*p(g—mt)x(1-r)
= infypem UM — g, 0) x p(m — g,t) = (1 — 1)
> infipey Mm—g,t) * (1 —1)
>1—-1ry for some 0<1r,<1
and v(go,3t) =v(gy—m+m,3t) < v(gy—m,2t) ¢ u(m,t)
<u(lgo—g+g—m2t)0r
<v(lgg—g. t)ov(g—m,t)0r

IA

SUPmem ViMm—g,t) 0V vim—g,t) 0 r

IA

SUPmey Vim—g,t) O 1
<r for some 0<ry<1

Then [F —S{(M) isan IF-bounded subsetof X. m
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Theorem 5.5: Let (X,u ,v,%0)IFNLS and M is IF-bounded subset of X . If G is a convex subset of X and x,0
satisfying the conditona*b>a,a®¢b <a, Ya,b €[0,1], then IF —SE(M) is aconvex subsetof X .

Proof : Suppose that G is a convex subset of X

= 1-MDx+Ago€G for every go€G,x€Xand 0<1i<1
Therefore , for a given t >0, taken € N such that t > % , we get
p(@ = 2Dm + Agol —g.,0)

=p([1-Dm—-2g+29+ 2901 —g.0)
=pu(@-Dm-Q1-Dg+1(go—9g),t)

= p((1 =D (m — g) +4(go — 9) ,t)

t t
> _—g —_— — g —
—“(m 9'2(1—,1))*“<9° g'zz)

1 1 t
> g, — ) xi —g—) = lim i —g—) =i _
= u(m 930 A)n) * Mfinem u(m 93 An) Jim infinen u(m 93 An) inf mem 4 (m—g,1t)

and foragiven t >0, taken € N suchthat t < % , we get
v([A=Dm + 2go]l —g.,t)

=v([(A-Dm—-2Ag+2g +2go]l —g.t)

= (1= Dm =1 ~g +2(go— 9 ,t)
=v(@—-Dn—g)+ (g0 — 9).t)

sv (m -9 ’2(1t—/1))<> U(go a g,%)

1 1 9 1
<v (m -9 ,2(1_1)11)0 SUPmem V (m - g,m) = lim;, 00 SUPmem V (m -9 m) = SUp mem v (m—g,t)

= (1-D)m+ Ag, € IF — SE(M)
Then IF — SE(M) is a convex subset of X . m

Theorem 5.6 :Let G is asubset of (X,u,v,%0) and M is IF-bounded in X , Then the following assertions
are hold for t >0 :

(DIF =St (x+M)=IF-SE(M)+x , VxeX
() IF =S\ (aM) = IF — a SL(M) , V a €R.
Proof : (1) let g, € IF —SL(M) + x

= Forevery g; €G, u(g; — (go+x),t) = (g1 —x — go,t) = infrney M — (g1 — %) ,t) = infpey HM +x — g1 ,t) =
(g = (go +2),t) = infrney (M +x—gq,t)

similarly , we get v(g; —(go +%),t) < suppem vim+x—gy,t)
Then go+x €IF —SE, (M +x)

Let go+x€IF —SE, (M +x)

=For every g, +x€G+x , p(gy—go,t) =p(gs +x—(go+x),t) = infmem H(m+x— (g, +x),t)
= infnem M (M —gq,1t)

= (g1 — 9o, ) = infyem U (M —g,,t),V g1 €G

similarly , we get

v(g1 — 9o, ) < supmem v(m —g;,6),¥V g1 €G

Then [F—Si,(M+x)=IF—SE(M)+x,Vx€EX .

() IF =S (aM) = IF — aSL(M) , Va €R

Proof : clearly equality holds for @ =0

Leta #0 ,go € IF —S/%"(aM) if and only if
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Jo € a G such that u(g, — g, lalt) = infiey plam —g,lalt) and

v(go — g, lalt) < supmey v(m —g,lalt) ,Vg €G

@p(%go—ig, t)z iNfmem p(m—%g, t)and u(%go—ig, t) < SUPmem v(m—%g, t) ,vigEG

1

1 . 1
A u(;go—gl, t)Z infmem M (m—gy, t)and v(;go—gl, t) S Supmey v(m—gi, t) Vg1 =_9g€G

a

1
©—go €1IF — SL(M) = go € IF —a SL(M)

Then IF — S%%(aM) = IF — a S5(M)m
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