

BEST CO-APPROXIMATION AND BEST SIMULTANEOUS CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES

Kadhim Bahlool Tarish¹, Mohammed Jassim Mohammed²

¹ Department of Mathematics, College of Education for Pure Science, Thi-Qar University, Thi-Qar, Iraq ² Department of Mathematics, College of Education for Pure Science, Thi-Qar University, Thi-Qar, Iraq

ABSTRACT

The main purpose of this paper is to study the t-best co-approximation and t-best simultaneous co-approximation in intuitionistic fuzzy normed spaces. We develop the theory of *t*-best co-approximation and *t*-best simultaneous co-approximation in quotient spaces. This new concept is employed by us to improve various characterisations of *t*-co-proximinal and *t*-co-Chebyshev sets.

Keywords

t-norm, t-conorm; intuitionistic fuzzy normed linear space; open(closed) ball and bounded set inIntuitionistic fuzzy normed linear space.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol.11, No.6

1. INTRODUCTION

The theory of a fuzzy sets was firstly introduced by Zadeh [14] in 1965 and thereafter several authors applied it to different branches of pure and applied mathematics. On the other hand, the notion of fuzzyness has a wide application in many areas of science and engineering.

Katsaras [5]in 1984, first introduced the notion of fuzzy norm on a linear space. The concept of a fuzzy norm on a linear space by assigning a fuzzy real number to each element of the linear spaces introduced by Felbin [4] in 1992.

In 1986 ,Atanassov [2] introduced the concept of intuitionistic fuzzy sets. Park[8] first introduced the concept of intuitionistic fuzzy metric space and Saadati and Park [9] introduced the concept of intuitionistic fuzzy normed space, while the notion of intuitionistic fuzzy n-normed linear space was introduced by S. Vijayabalaji , N. Thillaigovindan and Y. Bae [13].

In 2011 ,Abrishami Moghaddam and Sistani [1], firstly introduced the concept of the set of all t-best co-approximation on fuzzy normed spaces. Surender Reddy [12] in 2012 discussed the concept of the t-Best Co-approximation in fuzzy anti-2-normed linear spaces. J. Kavikumar , N. S. Manian and M.B.K. Moorthy [7] introduced the concept of Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces .

In this paper we study the set of all t-best co-approximation and t-best simultaneous co-approximation in intuitionistic fuzzy normed linear spaces and we develop the theory of t-best co-approximation and t-best simultaneous co-approximation in quotient spaces. This new concept is employed us to improve various characterizations of t-co-proximinal and t-co-Chebyshevsets.

2. PRELIMINARIES

Definition 2.1.[11]: A binary operation $*:[0,1] \times [0,1] \to [0,1]$ is said to be a continuous t-norm if the following axioms are satisfied:

- (a) * is associative and commutative.
- (b) * is continuous.
- (c) a * 1 = a for all $a \in [0,1]$.
- (d) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for each $a, b, c, d \in [0,1]$.

Definition 2.2.[11]: A binary operation $\phi: [0,1] \times [0,1] \to [0,1]$ is said to be a continuous t-conorm if the following axioms are satisfied:

- (a) ◊ is associative and commutative
- (b) ◊ is continuous
- (c) $a \lozenge 0 = a$ for all $a \in [0,1]$
- (d) $a \land b \le a \land c$ whenever $a \le c$ and $b \le d$ for each $a, b, c, d \in [0, 1]$.

Remark 2.3[11]:

- (1) For any $r_1, r_2 \in (0,1)$ with $r_1 > r_2$, there exists $r_3, r_4 \in (0,1)$ such that $r_1 * r_3 \ge r_2$ and $r_1 \ge r_2 \lozenge r_4$.
- (2) For any $r_5 \in (0,1)$, there exists $r_6, r_7 \in (0,1)$ such that $r_6 * r_6 \ge r_5$

and $r_7 \lozenge r_7 \le r_5$.

Definition 2.4.[9]: The 5-tuple $(X, \mu, v, *, \diamond)$ is said to be an intuitionistic fuzzy normed linear space (IFNLS) if X be a linear space over the field $F(R \text{ or } \mathbb{C})$, * is a continuous t-norm, \diamond is a continuous t-conorm, and μ , v fuzzy sets on $X \times (0, \infty)$ satisfy the following conditions for every $x, y \in X$ and s, t > 0:

- $(1) \mu(x,t) + v(x,t) \le 1$
- (2) $\mu(x,t) > 0$
- (3) $\mu(x,t) = 1$ if and only if x = 0
- (4) $\mu(\alpha x, t) = \mu\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$
- (5) $\mu(x + y, t + s) \ge \mu(x, t) * \mu(y, s)$
- $(6)\lim_{t\to\infty}\mu(x,t)=1$
- (7) v(x,t) < 1
- (8) v(x,t) = 0 if and only if x = 0

(9)
$$v(\alpha x, t) = v\left(x, \frac{t}{|\alpha|}\right)$$
 for each $\alpha \neq 0$

(10)
$$v(x+y,t+s) \le v(x,t) \delta v(y,s)$$

$$(11)\lim_{t\to\infty}v(x,t)=0$$

Lemma 2.5.[9]:Let($X, \mu, \nu, *, \emptyset$) be an intuitionistic fuzzy normed linear space then :

(i) $\mu(x,t)$ and u(x,t) are non-decreasing and non-increasing with respect to t, respectively.

(ii)
$$\mu(x-y,t) = \mu(y-x,t)$$
 and $v(x-y,t) = v(y-x,t)$ for every $t > 0$ and $x,y \in X$.

Example 2.6. [9]: Let $(X, \|.\|)$ be a normed linear space, and let $a*b = min\{a, b\}$ and $a \lozenge b = max\{a, b\}$

for all
$$a,b \in [0,1]$$
, For all $x \in X$ and $t > 0$, $\mu(x,t) = \frac{t}{t+\|x\|}$ and $v(x,t) = \frac{\|x\|}{t+\|x\|}$

Then $(X, \mu, \nu, *, \delta)$ is an intuitionistic fuzzy normed linear space.

Definition 2.7.[9]: Let $(X,\mu,v,*,\delta)$ be an intuitionistic fuzzy normed linear space . We define an open ball B(x,r,t) with the center $x\in X$ and the radius 0< r<1, as $B(x,r,t)=\{y\in X: \mu(x-y,t)>1-r, v(x-y,t)< r\}$ for every t>0 also a subset $A\subseteq X$ is called open if for each $x\in A$, there exist t>0 and 0< r<1 such that $B(x,r,t)\subseteq A$. Let $\tau_{(\mu,v)}$ denote the family of all open subset of X. $\tau_{(\mu,v)}$ is called the topology induced by intuitionistic fuzzy norm .

Definition 2.8.[9]: Let $(X, \mu, \nu, *, \flat)$ is an intuitionistic fuzzy normed linear space. For t > 0, we define closed ball B[x, r, t] with center $x \in X$ and radius 0 < r < 1 as $B[x, r, t] = \{y \in X : \mu(x - y, t) \ge 1 - r, \nu(x - y, t) \le r\}$.

Definition2.9.[9]: Let(X, μ , ν , ν) be IFNLS, A subset G of X is called intuitionistic fuzzy-bounded set (IF-bounded) if there exists t>0 and 0< r<1 such that $\mu(x,t)\geq 1-r$ and $\nu(x,t)\leq r$ for all $x\in G$.

3. t-BEST CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES

Definition 3.1: Let $(X, \mu, \nu, *, \diamond)$ be IFNLS and G be a nonempty subset of X. An element $g_0 \in G$ is called an intuitionistic fuzzy -t-best co-approximation to x from G (IF-t-best co-approximation) if for t>0, $\mu(g_0-g,t)\geq \mu(x-g,t)$ and $\nu(g_0-g,t)\leq \nu(x-g,t)$ for all $g\in G$. The set of all IF-t-best co-approximation to x from G will be denoted by $IF-R_G^t(x)$.

Remark 3.2: The set $IF - R_G^t(x)$ of all IF-t-best co-approximation to x from G can be written as:

$$IF - R_G^t(x) = \{g_0 \in G : \mu(g_0 - g, t) \ge \mu(x - g, t) \text{ and } v(g_0 - g, t) \le v(x - g, t) \text{ for all } g \in G \}$$

Definition 3.3: Let $(X,\mu,v,*,\diamond)$ be IFNLS and G be a nonempty subset of . The set of the t-co-metric complement, Define as: for t>0 $\{x\in X: \mu(g,t)\geq \mu(g-x,t)\,,\, v(g,t)\leq v(g-x,t),\,\,\forall g\in G\}=IF-(R_G^t)^{-1}(\{0\})$ will be denoted by $IF-\tilde{G}$.

Proposition 3.4: Let $(X, \mu, \nu, *, \delta)$ be IFNLS and G be a subspace of X, Then for all $x \in X$, $g_0 \in IF - R_G^t(x)$ if and only if $x - g_0 \in IF - \tilde{G}$ for t > 0.

Proof: (\Rightarrow) Suppose that $g_0 \in IF - R_G^t(x)$, $x \in X$

$$\Rightarrow \mu(g_0-g,t) \ge \mu(x-g,t)$$
 and $v(g_0-g,t) \le v(x-g,t)$, $\forall g \in G$

Let
$$g_1 = g + g_0$$
 , $\forall g \in G \implies g_1 \in G$

$$\Rightarrow \mu(g_0 - g_1, t) \ge \mu(x - g_1, t)$$
 and $v(g_0 - g_1, t) \le v(x - g_1, t)$

Since $\mu(g_1 - g_0, t) = \mu(g_0 - g_1, t)$

$$\Rightarrow \mu(g+g_0-g_0,t) \ge \mu(x-g-g_0,t)$$

$$\Rightarrow \mu(g,t) \ge \mu((x-g_0)-g,t) = \mu(g-(x-g_0))$$

$$\Rightarrow \mu(g,t) \ge \mu(g-(x-g_0),t)$$

similarly, we get

$$v(g,t) \le v(g - (x - g_0),t)$$
, $\forall g \in G$

$$\Rightarrow x - g_0 \in IF - \tilde{G}$$
.

$$(\Leftarrow)$$
 Assume $x - g_0 \in IF - \tilde{G}$

$$\Rightarrow \mu(g,t) \ge \mu(g-(x-g_0),t)$$
 and $v(g,t) \le v(g-(x-g_0),t)$, $\forall g \in G$

Let $g_1 = g - g_0 \Longrightarrow g_1 \in G$

$$\mu(g_1,t) \ge \mu(g_1 - (x - g_0),t)$$
 and $v(g_1,t) \le v(g_1 - (x - g_0),t)$

$$\Rightarrow \mu(g - g_0, t) \ge \mu(g - g_0 - (x - g_0), t)$$
 and $v(g - g_0, t) \le v(g - g_0 - (x - g_0), t)$

$$\Rightarrow \mu(g-g_0,t) \ge \mu(g-x,t)$$
 and $v(g-g_0,t) \le v(g-x,t), \forall g \in G$

Hence $g_0 \in IF - R_G^t(x)$ if and only if $x - g_0 \in IF - \tilde{G}$.

Definition 3.5: Let $(X, \mu, v, *, \diamond)$ be an IFNLS and G be a nonempty subset of X. If for every $x \in X$ has at least one IF-t-best co-approximation in G, then G is called an intuitionistic fuzzy-t-co-proximinal set (IF-t- co-proximinal set).

Definition 3.6: Let $(X, \mu, v, *, \diamond)$ be an IFNLS and G be a nonempty subset of X. If for every $x \in X$ has exactly one IF-t-best co-approximation in G, then G is called an intuitionistic fuzzy -t-co-Chebyshev set (IF -t-co-Chebyshev set).

Definition 3.7: Let $(X, \mu, v, *, \diamond)$ be an IFNLS. A subset G is said to be convex set if $(1 - \lambda)x + \lambda g_0 \in G$ whenever $g_0 \in G$, $x \in X$ and $0 < \lambda < 1$.

Theorem 3.8: Let $(X, \mu, v, *, \diamond)$ be an IFNLS and G is a nonempty subset of X, if $g_0 \in IF - R_G^t(x)$ and

$$(1-\lambda)x + \lambda g_0 \in G \quad for \quad 0 < \lambda < 1, \ t > 0$$
, then $(1-\lambda)x + \lambda g_0 \in IF - R_G^t(x)$.

Proof: Let
$$g_0 \in IF - R_G^t(x)$$
 and $(1 - \lambda)x + \lambda g_0 \in G$ for $0 < \lambda < 1$, $t > 0$

$$\Rightarrow \mu(g_0 - g, t) \ge \mu(x - g, t)$$
 and $v(g_0 - g, t) \le v(x - g, t)$, $\forall g \in G$ (1)

Therefore, for a given t > 0, take the natural number n such that $t > \frac{1}{n}$

By assumption and definition 2.4., we have

$$\mu([(1-\lambda)x+\lambda g_0]-g,t)$$

$$= \mu([(1-\lambda)x - \lambda g + \lambda g + \lambda g_0] - g, t)$$

$$= \mu((1-\lambda)x - (1-\lambda)g + \lambda(g_0 - g), t)$$

$$= \mu ((1 - \lambda)(x - g) + \lambda(g_0 - g), t)$$

$$\geq \mu \left(x - g, \frac{t}{2(1 - \lambda)}\right) * \mu \left(g_0 - g, \frac{t}{2\lambda}\right)$$

$$\geq \mu\left(x-g,\frac{1}{2(1-\lambda)n}\right)*\mu\left(x-g,\frac{1}{2\lambda n}\right) = \lim_{n\to\infty}\mu\left(x-g,\frac{1}{2\lambda n}\right) = \mu\left(x-g,t\right) \quad [since (1) and \ t > \frac{1}{n}]$$

and for a given t > 0, take the natural number n such that $t < \frac{1}{n}$

$$v([(1-\lambda)x + \lambda g_0] - g, t)$$

$$= v([(1-\lambda)x - \lambda g + \lambda g + \lambda g_0] - g, t)$$

$$= v((1-\lambda)x - (1-\lambda)g + \lambda(g_0 - g), t)$$

$$= v((1-\lambda)(x-g) + \lambda(g_0 - g), t)$$

$$\leq v\left(x-g,\frac{t}{2(1-\lambda)}\right) \delta v\left(g_0-g,\frac{t}{2\lambda}\right)$$

$$\leq v\left(x-g,\frac{1}{2(1-\lambda)n}\right) \Diamond \ v\left(x-g,\frac{1}{2\lambda n}\right) = \lim_{n\to\infty} v\left(x-g,\frac{1}{2\lambda n}\right) = v(x-g,t) \quad [\text{ since (1) and } t<\frac{1}{n}]$$

Thus
$$(1-\lambda)x + \lambda g_0 \in IF - R_G^t(x)$$
.

Corollary 3.9: Let $(X, \mu, v, *, \delta)$ be an IFNLS. If G is convex subset of X, then $IF - R_G^t(x)$ is convex subset of X.

Proof: Let G is convex subset of X and $g_0 \in IF - R_G^t(x)$, for every $x \in X$ and $0 < \lambda < 1$

Since G is convex subset of X

By theorem 3.8, we get

$$(1 - \lambda)x + \lambda g_0 \in IF - R_G^t(x)$$

Hence $IF - R_G^t(x)$ is convex subset of X.

Theorem 3.10: Let $(X, \mu, \nu, *, \delta)$ be an IFNLS and G be a subspace of X, Then:

(i) $IF - R_{\alpha G}^{|\alpha|t}(\alpha x) = IF - \alpha R_G^t(x)$ for every $x \in X$, t > 0 and $\alpha \in R/\{0\}$.

(ii)
$$IF - R_{G+y}^t(x+y) = IF - R_G^t(x) + y$$
 for every $x, y \in X$, $t > 0$.

proof: (i) $g_0 \in IF - R_{\alpha G}^{|\alpha|t}(\alpha x)$

 $\Rightarrow g_0 \in \alpha G \ , \mu(g_0 - g, |\alpha|t) \geq \mu\left(\alpha x - g, |\alpha|t\right) \ \ and \ \ v(g_0 - g, |\alpha|t) \leq v\left(\alpha x - g, |\alpha|t\right), \forall g \in \alpha G$

$$\iff \mu\left(\frac{1}{\alpha}g_0 - \frac{1}{\alpha}g, t\right) \ge \mu\left(x - \frac{1}{\alpha}g, t\right) \ \ and \ \ \upsilon\left(\frac{1}{\alpha}g_0 - \frac{1}{\alpha}g, t\right) \le \upsilon\left(x - \frac{1}{\alpha}g, t\right), \forall \ \frac{1}{\alpha}g \in G$$

$$\Longleftrightarrow \mu\left(\frac{1}{\alpha}g_0-g_1\,,t\right) \geq \mu(x-g_1\,,\,\,t) \quad \text{and} \quad \upsilon\left(\frac{1}{\alpha}g_0-g_1\,,\,t\right) \leq \upsilon(x-g_1\,,\,\,t) \quad ,\,\,\forall g_1=\frac{1}{\alpha}\,g\in G$$

$$\Leftrightarrow \frac{1}{\alpha}g_0 \in IF - R_G^t(x) \Leftrightarrow g_0 \in IF - \alpha R_G^t(x)$$

Hence $IF - R_{\alpha G}^{|\alpha|t}(\alpha x) = IF - \alpha R_G^t(x)$

(ii) $g_0 \in IF - R_{G+v}^t(x+y)$

$$\Leftrightarrow \mu(g_0 - (g+y), t) \ge \mu((x+y) - (g+y), t) \text{ and } v(g_0 - (g+y), t) \le v((x+y) - (g+y), t), \ \forall g+y \in G+y$$

$$\Leftrightarrow \mu \big((g_0 - y) - g \,, t \big) \geq \mu (x - g \,, t) \quad and \quad v \big((g_0 - y) - g \,, t \big) \leq v (x - g \,, t) \,\,, \forall g \in G \,\, \text{for all } g \in G \,\,$$

$$\iff g_0 - y \in IF - R_G^t(x)$$

$$\Leftrightarrow g_0 \in IF - R_G^t(x) + y$$

Hence $IF - R_{G+y}^t(x+y) = IF - R_G^t(x) + y$

Corollary 3.11: Let $(X, \mu, \nu, *, \diamond)$ be an IFNLS and G be a subspace of X, Then the following statements are hold:

(i) G is IF-t-co-proximinal set (resp. IF-t-co-Chebyshevset) if and only if $|\alpha|G$ is IF- $|\alpha|t$ -co-proximinal set (resp. IF- $|\alpha|t$ -co-Chebyshev set) for any scalar $\alpha \in R|\{0\}$.

(ii) G is IF-t-co-proximinal set (resp. IF-t-co-Chebyshev set) if and only if G + y is IF-t-co-proximinal set (resp. IF-t-co-Chebyshev set) for every $y \in X$.

proof: (i) G is IF-t-co-proximinal \Leftrightarrow IF $-R_G^t(x) \neq \emptyset$

by theorm 3.10

$$\Leftrightarrow IF - \alpha R_G^t(x) \neq \emptyset$$

$$\Leftrightarrow IF - R_{\alpha G}^{|\alpha|t}(\alpha x) \neq \emptyset$$

Then $|\alpha|G$ is IF-t-co-proximinal set.

similarly, we get

 $|\alpha|G$ is IF-t-co-Chebyshev set .

(ii) G is IF-t-co-proximinal set \Leftrightarrow IF $-R_G^t(x) \neq \emptyset$

$$\Leftrightarrow IF - R_G^t(x) + y \neq \emptyset \iff IF - R_{G+y}^t(x+y) \neq \emptyset$$

Then G + y is IF-t-co-proximinal set.

similarly, we get

G + y is IF-t-co-Chebyshev set.

4. t-CO-PROXIMINALITY AND t-CO-CHEBYSHEVITY IN QUOTIENT SPACES

Definition 4.1.[3]: Let $(X, \mu, \nu, *, \delta)$ be an IFNLS and M is a closed subspace of X, for t > 0, we define $\emptyset(x + M, t) = \sup\{\mu(x + y, t) : y \in M\}$

$$\varphi(x + M, t) = \inf\{v(x + y, t) : y \in M\} \text{ where } x + M = \{x + m : m \in M\}.$$

Theorem 4.2. [3]: Let $(X, \mu, v, *, \delta)$ be an IFNLS and M is a closed subspace of X, $\emptyset(x + M, t)$ and $\varphi(x + M, t)$ are defined in Definition **4.1**, and $X/M = \{x + M : x \in X\}$. Then $(X|M, \emptyset, \varphi, *, \delta)$ is an intuitionistic fuzzy normed linear space.

Theorem 4.3: Let $(X, \mu, v, *, \delta)$ be an IFNLS and M is a closed subspace of X and $G \supseteq M$ a subspace of X. If G is an IF-t-co-proximinal set of X, Then G|M is an IF-t-co-proximinal set of X|M.

Proof: Let G is an IF-t-co-proximinal set of X.

```
\Rightarrow \exists \ g_0 \in G \ , x \in X \ \ such \ that \ \ \mu(g_0 - g, t) \geq \mu(x - g, t) \ \ and \ \ v(g_0 - g, t) \leq v(x - g, t) \ \ , \forall g \in G
```

$$\Rightarrow \mu(g_0-m+m-g,t) \geq \mu\left(x-m+m-g,t\right) \text{ and } v(g_0-m+m-g,t) \leq v(x-m+m-g,t) \ , \forall m \in M$$

$$\Rightarrow \mu((g_0 + m) - (g + m), t) \ge \mu((x + m) - (g + m), t) \text{ and } v((g_0 + m) - (g + m), t) \le v((x + m) - (g + m), t)$$

 $\forall g + M \in G | M \text{ and } x + M \in X | M$

$$\implies g_0 + M \in IF - R_{G|M}^t(x + M)$$

$$\implies$$
 IF $-R_{G|M}^t(x+M) \neq \emptyset$

 \Rightarrow G|M is an IF-t-co-proximinal set of X|M.

Corollary 4.4: Let $(X, \mu, \nu, *, \diamond)$ be an IFNLS and M is a closed subspace of X and $G \supseteq M$ a subspace of X. If $G|_M$ is an IF-t-co-proximinal with $X|_M$, Then G is an IF-t-co-proximinal with X.

Proof: Let G|M is an IF-t-co-proximinal with X|M.

$$\Rightarrow IF - R_{G|M}^t(x+M) \neq \emptyset$$

Let
$$g_0 + M \in IF - R_{G|M}^t(x + M)$$

$$\Rightarrow \mu \big((g_0+m) - (g+m), t \big) \geq \mu \big((x+m) - (g+m), t \big) \ and \ v \big((g_0+m) - (g+m), t \big) \leq v \big((x+m) - (g+m), t \big) \ , \forall \ m \in M$$

$$\Rightarrow \mu(g_0 - g, t) \ge \mu(x - g, t)$$
 and $v(g_0 - g, t) \le v(x - g, t)$, $\forall g \in G$

$$\Rightarrow g_0 \in IF - R_G^t(x)$$

$$\Rightarrow$$
 IF- $R_G^t(x) \neq \emptyset$

 \Rightarrow G is IF-t-co-proximinal with X.

Theorem 4.5: Let $(X, \mu, v, *, \diamond)$ be an IFNLS and M is a closed subspace of X and $G \supseteq M$ a subspace of X. If G|M is an IF-t-co-Chebyshev with X|M, Then G is an IF-t-co-Chebyshev with X.

Proof: Let G|M is IF-t-co-Chebyshev with X|M and G has two distinct t-best co-approximation of $x \in X$ such as y_1, y_2 in X.

$$\Rightarrow \mu(y_1 - g, t) \ge \mu(x - g, t)$$
 and $v(y_1 - g, t) \le v(x - g, t), \forall g \in G$

also
$$\mu(y_2 - g, t) \ge \mu(x - g, t)$$
 and $v(y_2 - g, t) \le v(x - g, t)$, $\forall g \in G$

$$\Rightarrow \mu((y_1 + m) - (g + m), t) \ge \mu((x + m) - (g + m), t) \text{ and } v((y_1 + m) - (g + m), t) \le v((x + m) - (g + m), t)$$

 $\forall g \in G, m \in M$

 $\text{also} \quad \mu \big((y_2 + m) - (g + m), t \big) \geq \mu \left((x + m) - (g + m), t \right) \text{ and } v \big((y_2 + m) - (g + m), t \big) \leq v \big((x + m) - (g + m), t \big), \\ \forall g \in G, m \in M$

$$\Rightarrow y_1 + M, y_2 + M \in IF - R_{G|M}^t(x + M)$$

since
$$y_1, \neq y_2 \implies y_1 + M \neq y_2 + M$$

$$\Rightarrow$$
 IF $-R_{G|M}^t(x+M)$ is not IF $-t-co-Chebyshev$, this contradiction(#).

$$\implies y_1 = y_2$$

Then G is an IF-t-co-Chebyshev with X.

Definition 4.6.[6]: Let $(X, \mu, v, *, \diamond)$ be an IFNLS and M is a closed subspace of X, for t > 0 and $x \in X$ the distance between x and M define as:

$$d_{\mu}(x,M,t) = \sup \{ \, \mu(x-y\,,t) : y \in M \} \, \text{ and } \, d_{\nu}(x,M,t) = \inf \{ \, v(x-y\,,t) : y \in M \} \, .$$

Theorem 4.7: Let M and G are two subspaces of $(X, \mu, v, *, \diamond)$ such that $M \subset G$ and $x + G \in X/G$, $g_1 \in G$. If g_1 is IF-t-best co-approximation to x from G, Then $g_1 + M$ is an IF-t-best co-approximation to x + M from the quotient space G/M.

Proof: Suppose that g_1 is IF-t-best co-approximation to x from G and $g_1 + M$ is not IF-t-best co-approximation to x + M from the quotient space G/M.

$$\begin{split} & \Rightarrow \exists \ \acute{g}_1 + M \in G | M \ \text{such that} \ \mu(\acute{g}_1 + M - (g_1 + M), t) < \mu \, (x + M - (\acute{g}_1 + M), t) \ \text{ and } \\ & v(\acute{g}_1 + M - (g_1 + M), t) > v(x + M - (\acute{g}_1 + M), t) \\ & \Rightarrow \mu(\acute{g}_1 - g_1 + M, t) < \mu \, (x - \acute{g}_1 + M, t) \ \text{ and } \ v(\acute{g}_1 - g_1 + M, t) > v(x - \acute{g}_1 + M, t) \\ & \text{Since} \ d_{\mu}(x \, , M, t) = \sup \{ \mu \, (x - y \, , t) : y \in M \} \ \text{ and } \ d_{v}(x \, , M, t) = \inf \{ v(x - y \, , t) : y \in M \} \\ & \Rightarrow \sup \{ \mu(x - \acute{g}_1 + M \, , t) \} > \sup \{ \mu \, (\acute{g}_1 - g_1 + M \, , t) \} \ \text{ and } \ \inf \{ v(x - \acute{g}_1 + M \, , t) \} < \inf \{ v(\acute{g}_1 - g_1 + M \, , t) \} \end{split}$$

$$\Rightarrow d_{\nu}(x - g_1, M, t) > d_{\nu}(g_1 - g_1, M, t) \text{ and } d_{\nu}(x - g_1, M, t) < d_{\nu}(g_1 - g_1, M, t)$$

this implies that there exists $g \in M$ such that

$$\mu(x - \acute{g}_1 - g, t) > d_{\mu}(\acute{g}_1 - g_1, M, t) > \mu(\acute{g}_1 - g_1 + g, t) \quad and \quad v(x - \acute{g}_1 - g, t) < d_{\nu}(\acute{g}_1 - g_1, M, t) < v(\acute{g}_1 - g_1 + g, t)$$

$$\Rightarrow \exists g + \acute{g}_1 \in G \text{ such that } \mu \big((g + \acute{g}_1) - g_1, t \big) < \mu (x - (g + \acute{g}_1), t) \text{ and } v \big((g + \acute{g}_1) - g_1, t \big) > v (x - (g + \acute{g}_1), t)$$

 \Rightarrow g_1 is not an IF-t-best co-approximation to x from G , this contradiction with hypothesis(#) .

Then $g_1 + M$ is an IF-t-best co-approximation to x + M from the quotient space G/M.

5.t-BEST SIMULTANEOUS CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES

Definition 5.1: Let $(X, \mu, \nu, *, \emptyset)$ be an IFNLS and G be a subset of X, M be IF-bounded subset in X. An element $g_0 \in G$ is called IF-t-best simultaneous co-approximation to M from G, if for t > 0,

$$\mu(g_0-g\,,t\,)\geq \inf\{\mu\,(m-g,t):m\in M\} \ \text{ and } \ v(g_0-g,t)\leq \sup\{v(m-g\,,t):m\in M\} \ \text{ for all } \ g\in G\ .$$

The set of all IF-t-best simultaneous co-approximation to M from G, will be denoted by $IF - S_G^t(M)$ and define as follows:

$$IF - S_G^t(M) = \{g_0 \in G: \mu(g_0 - g, t) \geq \inf_{m \in M} \mu(m - g, t) \text{ and } v(g_0 - g, t) \leq \sup_{m \in M} v(m - g, t), \forall g \in G \}$$

Definition 5.2: Let G be a subset of $(X, \mu, \nu, *, \delta)$. It is called IF-t-best simultaneous co-proximinal subset of X, if for each IF-bounded set M in X, there exists at least one IF-t-best simultaneous co-approximation from G to M.

Definition 5.3: Let G be a subset of $(X, \mu, v, *, \diamond)$. It is called IF-t-best simultaneous co-Chebyshev subset of X, if for each IF-bounded M in X there exists a unique IF- t- best simultaneous- co-approximation from G to M.

Theorem 5. 4: Let $(X, \mu, v, *, \diamond)$ and G be a subset of X. If M is IF-bounded subset of X and $*, \diamond$ satisfying the condition $a*b \geq a$, $a \diamond b \leq a$, $\forall a, b \in [0,1]$, then $IF - S_G^t(M)$ is IF-bounded subset of X.

 $\leq r_0$ for some $0 < r_0 < 1$

Proof: Let M is IF-bounded subset of X and $g_0 \in IF - S_G^t(M)$

```
 \Rightarrow \text{ there exist } 0 < r < 1 \text{ such that } \mu(x,t) \geq 1-r \text{ , } v(x,t) \leq r \text{ , } \forall x \in M \text{ , } t > 0 \text{ and } \mu(g_0-g,t) \geq \inf_{m \in M} \mu(m-g,t) \text{ and } v(g_0-g,t) \leq \sup_{m \in M} v(m-g,t) \text{ , } \forall g \in G   \Rightarrow \text{ for every } g \in G, m \in M \text{ , } \mu(g_0,3t) = \mu(g_0-m+m,3t) \geq \mu(g_0-m,2t) * \mu(m,t)   \geq \mu(g_0-g+g-m,2t) * (1-r)   \geq \mu(g_0-g,t) * \mu(g-m,t) * (1-r)   \geq \inf_{m \in M} \mu(m-g,t) * (1-r)   \geq tot_{m \in M} \mu(m-g,t) * (1-r)   \leq tot_{m \in M} \mu(m-g,t) * tot_{m
```

Then $IF - S_G^t(M)$ is an IF-bounded subset of X.

Theorem 5.5: Let $(X, \mu, v, *, \delta)$ *IFNLS and M* is IF-bounded subset of *X*. If *G* is a convex subset of *X* and $*, \delta$ satisfying the condition $a * b \ge a$, $a \delta b \le a$, $\forall a, b \in [0,1]$, then $IF - S_G^t(M)$ is a convex subset of *X*.

Proof: Suppose that G is a convex subset of X

$$\Rightarrow$$
 $(1 - \lambda)x + \lambda g_0 \in G$ for every $g_0 \in G$, $x \in X$ and $0 < \lambda < 1$

Therefore, for a given t > 0, take $n \in N$ such that $t > \frac{1}{n}$, we get

$$\mu([(1-\lambda)m + \lambda g_0] - g, t)$$

$$= \mu([(1-\lambda)m - \lambda g + \lambda g + \lambda g_0] - g, t)$$

$$=\mu\big((1-\lambda)m-(1-\lambda)g+\lambda(g_0-g),t\big)$$

$$= \mu ((1-\lambda)(m-g) + \lambda(g_0 - g), t)$$

$$\geq \mu \left(m - g, \frac{t}{2(1-\lambda)} \right) * \mu \left(g_0 - g, \frac{t}{2\lambda} \right)$$

$$\geq \mu\left(m-g,\frac{1}{2(1-\lambda)n}\right)*\inf_{m\in M}\,\mu\left(m-g,\frac{1}{2\lambda n}\right)=\lim_{n\to\infty}\,\inf_{m\in M}\,\mu\left(m-g,\frac{t}{2\lambda n}\right)=\inf_{m\in M}\,\mu\,\left(m-g,t\right)$$

and for a given t > 0, take $n \in \mathbb{N}$ such that $t < \frac{1}{n}$, we get

$$v([(1-\lambda)m + \lambda g_0] - g, t)$$

$$= v([(1 - \lambda)m - \lambda g + \lambda g + \lambda g_0] - g, t)$$

$$= v((1-\lambda)m - (1-\lambda)g + \lambda(g_0 - g), t)$$

$$= v((1-\lambda)(m-g) + \lambda(g_0 - g), t)$$

$$\leq v \left(m - g, \frac{t}{2(1-\lambda)}\right) \lozenge \cup \left(g_0 - g, \frac{t}{2\lambda}\right)$$

$$\leq v\left(m-g\,,\frac{1}{2(1-\lambda)n}\right) \lozenge \; sup_{m\in M} \; v\left(m-g,\frac{1}{2\lambda n}\right) = \lim_{n\to\infty} \; sup_{m\in M} \; v\left(m-g,\frac{1}{2\lambda n}\right) = sup_{m\in M} \; v\left(m-g,t\right)$$

$$\Rightarrow (1 - \lambda)m + \lambda g_0 \in IF - S_G^t(M)$$

Then $IF - S_G^t(M)$ is a convex subset of X.

Theorem 5.6:Let G is a subset of $(X, \mu, v, *, \delta)$ and M is IF-bounded in X, Then the following assertions are hold for t > 0:

(1)
$$IF - S_{G+x}^t(x+M) = IF - S_G^t(M) + x$$
 , $\forall x \in X$.

(2)
$$IF - S_{\alpha G}^{|\alpha|t}(\alpha M) = IF - \alpha S_G^t(M)$$
, $\forall \alpha \in R$.

Proof: (1) let $g_0 \in IF - S_G^t(M) + x$

 $\Rightarrow \text{ Forevery } g_1 \in \mathcal{G} \text{ , } \mu \left(g_1 - \left(g_0 + x \right) \text{ , } t \right) = \mu \left(g_1 - x - g_0 \text{ , } t \right) \geq \inf_{m \in \mathcal{M}} \mu \left(m - \left(g_1 - x \right) \text{ , } t \right) = \inf_{m \in \mathcal{M}} \mu \left(m + x - g_1 \text{ , } t \right) \Rightarrow \mu \left(g_1 - \left(g_0 + x \right) \text{ , } t \right) \geq \inf_{m \in \mathcal{M}} \mu \left(m + x - g_1 \text{ , } t \right) \Rightarrow \mu \left(g_1 - \left(g_0 + x \right) \text{ , } t \right) = \mu \left($

similarly, we get $v(g_1 - (g_0 + x), t) \leq \sup_{m \in M} v(m + x - g_1, t)$

Then
$$g_0 + x \in IF - S_{G+x}^t(M+x)$$

Let
$$g_0 + x \in IF - S_{G+x}^t(M+x)$$

$$\Rightarrow \text{For every} \quad g_1+x \in G+x \quad \text{,} \quad \mu(g_1-g_0\,\text{,}t) = \mu(g_1+x-(g_0+x)\,\text{,}t) \geq \inf_{m \in \mathbb{M}} \; \mu\left(m+x-(g_1+x),t\right)$$

$$= inf_{m \in M} \; \mu \left(m - g_1 \, , t \right)$$

$$\Longrightarrow \mu(g_1-g_0\,,t) \geq \inf\nolimits_{m \in M} \, \mu\,(m-g_1\,,t), \forall \; g_1 \in G$$

similarly, we get

$$v(g_1 - g_0, t) \le \sup_{m \in M} v(m - g_1, t), \forall g_1 \in G$$

Then
$$IF - S_{G+x}^t(M+x) = IF - S_G^t(M) + x$$
 , $\forall x \in X$.

(2)
$$IF - S_{\alpha G}^{|\alpha|t}(\alpha M) = IF - \alpha S_G^t(M)$$
, $\forall \alpha \in R$

Proof: clearly equality holds for $\alpha = 0$

Let
$$\alpha \neq 0$$
 , $g_0 \in IF - S_{\alpha G}^{|\alpha|t}(\alpha M)$ if and only if

 $g_0 \in \alpha \ G$ such that $\mu(g_0 - g, |\alpha|t) \ge \inf_{m \in M} \ \mu(\alpha m - g, |\alpha|t)$ and

 $v(g_0-g,|\alpha|t) \leq sup_{m \in M} \; v(m-g\,,|\alpha|t) \,, \forall g \in G$

$$\Longleftrightarrow \mu\left(\frac{1}{\alpha}g_0 - \frac{1}{\alpha}g \text{ , } t\right) \geq \ \inf\nolimits_{m \in M} \ \mu\left(m - \frac{1}{\alpha}g \text{ , } t\right) \text{ and } \ v\left(\frac{1}{\alpha}g_0 - \frac{1}{\alpha}g \text{ , } t\right) \leq \ \sup\nolimits_{m \in M} \ v\left(m - \frac{1}{\alpha}g \text{ , } t\right) \text{ , } \forall \frac{1}{\alpha}g \in G$$

$$\iff \mu\left(\frac{1}{\alpha}g_0-g_1\text{ , }t\right)\geq \text{ } inf_{m\in M}\text{ }\mu\left(m-g_1\text{ , }t\right) \text{ and } \text{ }v\left(\frac{1}{\alpha}g_0-g_1\text{ , }t\right) \leq \text{ } sup_{m\in M}\text{ }v(m-g_1\text{ , }t\text{) }\text{ ,} \forall g_1=\frac{1}{\alpha}g\in G$$

$$\Leftrightarrow \frac{1}{\alpha}g_0 \in IF - S^t_G(M) \iff g_0 \in IF - \alpha \, S^t_G(M)$$

Then
$$IF - S_{\alpha G}^{|\alpha|t}(\alpha M) = IF - \alpha S_G^t(M) \blacksquare$$

Acknowledgement: Authors would like to thank the referee for his comments and suggestions to have the manuscript done perfectly and for assistance in responding to concerns and questions regarding my paper.

REFERENCES

- [1] M. Abrishami Moghaddam and T. Sistani, On *t*-best co-approximationin fuzzy 2-normed spaces, *Australian Jouranl of Basic and Applied Sciences*, 5(9):2241–2248,2011.
- [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986), 87-96.
- [3] Cihangir Alaca ,HakanEfe , On Intuitionistic Fuzzy Banach Spaces , International Journal of Pure and Applied Mathematics , Volume 32 No. 3 , 2006, 345-361 .
- [4] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy seteand, systems, 48 (1992) 239-248.
- [5] A. K. Katsaras, "Fuzzy topological vector spaces II," Fuzzy Sets and Systems, vol. 12, no. 2, pp. 143–154, 1984.
- [6] J. Kavikumar, AzmeKhamis, and N. S. Manian ,t-Best Approximation inIntuitionistic Fuzzy Normed Spaces, 978-1-4244-8126-2/10/\$26.00©2010 IEE .
- [7] J. Kavikumar, N. S. Manian, M.B.K. Moorthy, Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces, International Journal of Mathematical, Computational, 2014.
- [8] J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039-1046.
- [9] R. Saadati, J.H. Park, On the intuitionistic topological spaces, Chaos, Solitons and Fractals, 27 (2006), 331-344.
- [10] R. Saadati and S.M.Vaezpour, some results On Fuzzy Banach Space, J.Appl.Math. & Computing Vol. 17(2005), No. 1 2, pp. 475 484.
- [11] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10(1960), 314-334.
- [12] B. Surender Reddy, On t-Best Co-approximation in fuzzy anti-2- normed linear spaces, International Journal of Fuzzy Mathematics and Systems.ISSN2248-9940Volume 2, Number 3 (2012), pp. 297–306.
- [13] S. Vijayabalaji , N. Thillaigovindan , Y. Bae Jun Intuitionistic fuzzy n- normedlinear space, Bull. Korean Math. Soc. 44 (2007) 291 308.
- [14] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.