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ABSTRACT 
The main purpose of this paper is to study the t-best co-approximation and t-best simultaneous co-approximation in  
intuitionistic fuzzy normed spaces. We develop the theory of t-best co-approximation and t-best simultaneous co-
approximation in quotient spaces. This new concept is employed  by us to improve various characterisations of t-co-
proximinal and t-co-Chebyshev sets.                                                                                                                                         
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1. INTRODUCTION                                                                                                                   

The theory of a fuzzy sets was firstly  introduced by Zadeh [14] in 1965 and thereafter several authors applied it to 
different branches of pure and applied mathematics. On the other  hand , the notion of fuzzyness has a wide 
application in many areas of science and engineering . 

Katsaras [5]in 1984, first introduced the notion of fuzzy norm on a linear space . The concept of a fuzzy norm on a 
linear space by assigning a fuzzy real number to each element of the linear spaces  introduced  by  Felbin   [4]  in 
1992. 

In 1986 ,Atanassov [2] introduced the concept of intuitionistic fuzzy sets. Park[8] first introduced the concept of 
intuitionistic fuzzy metric space and Saadati and Park [9] introduced the concept of intuitionistic fuzzy normed space, 
while the notion of intuitionistic fuzzy n-normed linear space was introduced by S. Vijayabalaji , N. Thillaigovindan and  
Y. Bae [13]. 

In 2011 ,Abrishami  Moghaddam  and  Sistani [1], firstly introduced the concept of the set of all t-best co-approximation 
on fuzzy normed spaces.Surender  Reddy [12] in 2012 discussed the concept of  the t-Best Co-approximation in fuzzy 
anti-2-normed linear spaces.  J. Kavikumar , N. S. Manian  and  M.B.K. Moorthy  [7] introduced the concept of Best 
Co-approximation  and  Best Simultaneous Co-approximation in Fuzzy Normed Spaces . 

In this paper we study the set of all t-best co-approximation and t-best simultaneous co-approximation in intuitionistic fuzzy 
normed linear spaces and we develop the theory of t-best co-approximation and t-best simultaneous co-approximation in 
quotient spaces. This new concept is employed us to improve various characterizations of t-co-proximinal and t-co-
Chebyshevsets. 

2. PRELIMINARIES 

Definition 2.1.[11]: A binary  operation   ,    -  ,    -  ,    - is said to be a continuous t-norm if the following 

axioms are satisfied  : 

( )                                     .  

( )                    

( )                   ,    -. 

( )                                                         ,    -  

Definition 2.2.[11]: A binary operation     ,    -  ,    -  ,    -  is  said to be  a continuous  t-conorm if the 

following axioms are satisfied :  

( )                                     

( )                    

( )                     ,    - 

( )                                                          ,   -  

Remark 2.3[11]: 

(1)  For any        (   )             , there exists       (   )                                       

( )            (   )                     (   )                     

                  

Definition 2.4.[9]: The 5-tuple  (          ) is said  to be an intuitionistic  fuzzy normed linear space (IFNLS) if  

   be a linear space over the field  F (R or  ) ,  is a continuous t-norm ,   is a continuous t-conorm , and   ,    fuzzy 

sets  on    (   ) satisfy the following conditions  for every                   : 

( )  (   )   (   )    

( )    (   )    

( )    (   )                        

( )  (    )   (  
 

| |
)                

( )  (       )   (   )   (   ) 

( )    
   

 (   )    

( )    (   )    

( )  (   )                         
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( )   (    )   (  
 

| |
)                 

(  )   (       )    (   )     (   ) 

(  )    
   

 (   )    

Lemma 2.5.[9]:Let(         ) be an intuitionistic fuzzy normed linear space then :  

( )   (    )        (    )  are non-decreasing and non-increasing  with respect  to   t  ,  respectively . 

(  )   (     )   (     )            (     )   (     )                                  

Example2.6. [9]: Let (  ‖ ‖)  be a normed linear  space , and let        *    +            *   + 

            ,   -     For all                    (   )   
 

  ‖ ‖
                (   )    

‖ ‖

  ‖ ‖
 

Then (         )  is an intuitionistic fuzzy normed linear space . 

Definition 2.7.[9]: Let  (         ) be an intuitionistic fuzzy normed linear space . We define  an  open  ball  

 (       )  with  the  center       and  the  radius       , as    (     )  *      (     )        

 (      )   + for every     also a subset      is called open if for each     , there exist              

               (       )     Let   (   ) denote the family of all open subset  of   (   )  is called the topology induced  by 

intuitionistic  fuzzy norm . 

Definition 2.8.[9]:  Let (         ) is an intuitionistic fuzzy normed linear space . For      ,  we  define  closed  ball  

 ,       -  with  center       and  radius        as    ,        -  *      (     )         (      )   +  .  

Definition2.9.[9]: Let(        ) be  IFNLS ,  A subset   of  X  is called  intuitionistic fuzzy-bounded set (IF-bounded)  

if there exists                              (    )       and   (    )                      

3. t-BEST CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES 

Definition 3.1: Let (         ) be IFNLS  and  G  be a nonempty subset of    An element         is called an 

intuitionistic fuzzy -t-best co-approximation to    from    (IF-t-best co-approximation) if  for      ,  (      )   (     )  
and   (      )   (     )                  The set of all  IF-t-best co-approximation  to    from     will be  denoted by  

      
 ( )   

Remark 3.2: The set        
 ( ) of all  IF-t-best co-approximation  to     from     can be written as : 

      
 ( )  *       (      )   (     )         (      )   (     )              + 

Definition 3.3:  Let (         ) be IFNLS and     be a nonempty subset of  . The set of the  t-co-metric complement, 

Define as: for      *     (   )   (     )   (   )   (     )     +     (  
 )  (* +) will be denoted by  

    ̃ .  

Proposition 3.4:  Let (         ) be IFNLS and    be a subspace of   , Then for all                
 ( ) if 

and only if            ̃  for          

Proof :( )  Suppose that           
 ( )      

   (      )   (      )          (      )   (      )            

  Let                                    

   (       )   (       )          (       )   (       ) 

Since   (       )   (        ) 

   (         )   (         ) 

   (    )   ((    )      )   (  (    )) 

   (    )   (  (    )  ) 

similarly , we get  

 (    )   (  (    )    )          

            ̃  . 

( ) Assume            ̃ 

   (     )   (  (    )   )        (    )   (  (    )   )        
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Let                  

 (      )   (   (    )   )            (      )   (   (    )   ) 

  (        )   (     (    )   )           (        )    (     (    )   ) 

  (        )   (      )          (        )   (      )         

Hence            
 ( )                             ̃ .  

Definition 3.5:  Let (          )                    be  a nonempty subset  of    . If for every       has  at  least  

one  IF-t-best co-approximation  in      ,  then       is  called  an  intuitionistic  fuzzy-t-co-proximinal set (IF-t- co-proximinal 

set) . 

Definition 3.6:  Let (          )                    be  a nonempty subset  of    .  If for every        has   exactly  

one  IF-t-best co-approximation  in      ,  then       is  called  an intuitionistic fuzzy -t-co-Chebyshev  set (IF -t-co-

Chebyshev  set ) . 

Definition 3.7:  Let  (         )  be an IFNLS. A subset    is said to be convex set  if (   )          

whenever                           

Theorem 3.8:  Let (          ) be an IFNLS and     is a nonempty  subset  of     ,  if           
 ( )         

 (   )                             then    (   )           
 ( ) . 

Proof :   Let          
 ( )       (   )                        

  (      )   (     )          (      )   (     )         ( ) 

Therefore , for a given     , take  the natural number     such that    
 

 
 

By assumption and definition 2.4. , we have  

 (,(   )     -      )  

  (,(   )           -      ) 

  ((   )  (   )   (    )   ) 

  ((   )(   )   (    )   ) 

  (    
 

 (   )
)    (     

 

  
) 

  (    
 

 (   ) 
)     (    

 

   
)      

   
  (    

 

   
)     (     )    ,        ( )       

 

 
 - 

and for a given     ,take  the natural number     such that   
 

 
 

 (,(   )     -      ) 

  (,(   )           -      ) 

  ((   )  (   )   (    )   ) 

  ((   )(   )   (    )   ) 

  (    
 

 (   )
)    (     

 

  
) 

  (    
 

 (   ) 
)    (    

 

   
)     

   
 (    

 

   
)    (     )     ,       ( )       

 

 
  - 

Thus    (   )            
 ( ) .  

Corollary 3.9: Let (           )  be an IFNLS. If     is convex subset of    ,  then       
 ( )is  convex  subset  of      

Proof :  Let   is convex subset of   and          
 ( )                               

Since    is convex subset of    

By theorem 3.8 ,  we get  

(   )           
 ( ) 

Hence       
 ( )is  convex  subset of   .     
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Theorem 3.10: Let (          ) be an IFNLS and     be  a  subspace  of          : 

( )       
| | (  )         

 ( )                                   * +. 

(  )        
 (   )        

 ( )                           . 

proof : ( )   
 
       

| | (  ) 

           (     | | )    (     | | )          (     | | )    (     | | )       

   (
 

 
   

 

 
    )   (  

 

 
    )          (

 

 
   

 

 
    )   (  

 

 
    )    

 

 
    

  .
 

 
        /   (       )   and     .

 

 
        /   (       )   ,      

 

 
     

 
 

 
        

 ( )           
 ( )  

 Hence         
| | (  )         

 ( ) 

(  )            
 (   ) 

  (   (   )   )    ((   )  (   )  )         (   (   )  )   ((   )  (   )  )             

  ((    )      )   (      )          ((    )      )    (      )        

            
 ( ) 

         
 ( )     

Hence         
 (   )         

 ( )                

Corollary 3.11: Let (          ) be an IFNLS and    be  a subspace  of     Then the  following statements  are 

hold  : 

( )    is   IF-t-co- proximinal set  (resp.  IF-t-co-Chebyshevset )   if and only if  | |   is  IF-| | -co-proximinal set  (resp.  

IF-| |t-co-Chebyshev set )  for any scalar     |* +  . 

(  )    is   IF-t-co- proximinal set (resp.  IF-t-co-Chebyshev set) if and only if        is  IF-t-co- proximinal set (resp.  
IF-t-co-Chebyshev set) for every       

proof : ( )    is IF-t-co-proximinal          
 ( )    

                 

       
 ( )        

        
| | (  )     

Then    | |    is  IF-t-co-proximinal set . 

similarly ,  we get  

| |   is  IF-t-co-Chebyshev set . 

(  )    is IF-t-co-proximinal set         
 ( )    

      
 ( )               

 (   )    

 Then         is   IF-t-co-proximinal set . 

similarly, we get   

     is  IF-t-co-Chebyshev  set .    

4. t-CO-PROXIMINALITY  AND  t-CO-CHEBYSHEVITY  IN  QUOTIENT  SPACES 

Definition 4.1.[3]: Let (          )  be an IFNLS  and    is a closed subspace of   , for       , we  define    

 (      )     *   (       )       + 

 (      )     *  (      )     +   where       *       + . 

Theorem 4.2. [3]: Let (          ) be an  IFNLS  and    is a closed subspace of  ,   (      )       (      )  
are defined in  Definition 4.1 , and   ⁄  *       +. Then  ( |         ) is an intuitionistic fuzzy normed linear 

space . 
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Theorem 4.3:  Let (          )  be an IFNLS  and     is a closed subspace of   and     a subspace  of    .  If  

   is  an  IF-t-co-proximinal set  of     ,  Then    |    is  an  IF-t-co-proximinal set of   |  . 

Proof :  Let     is an IF-t-co-proximinal set of   . 

                           (      )    (     )         (      )   (     )         

   (           )    (         )and   (           )   (         )  ,      

   ((    )  (   )   )   ((   )  (   )  )   and   ((    )  (   )   )   ((   )  (   )  ) 

        |               |  

              | 
 (   ) 

      | 
 (   )    

  |   is an IF-t-co-proximinal set of   |           

Corollary 4.4: Let (          )  be an  IFNLS  and    is a closed subspace of    and     a subspace of     .If 

   |    is  an IF-t-co-proximinal  with     |   ,  Then      is an IF-t-co-proximinal with    .   

Proof:  Let    |   is an IF-t-co-proximinal  with   |  . 

      | 
 (   )     

               | 
 (   ) 

  ((    )  (   )  )   ((   )  (   )  )       ((    )  (   )  )    ((   )  (   )  )        

  (      )   (     )          (      )   (     )         

         
 ( ) 

  IF-  
 ( )    

     is  IF-t-co-proximinal  with    .      

Theorem 4.5:  Let (          )  be an IFNLS  and    is a closed subspace of    and     a subspace of     .  If 

   |   is  an IF-t-co-Chebyshev  with   |  ,  Then     is an IF-t-co-Chebyshev  with    . 

Proof: Let  |  is IF-t-co-Chebyshev with  |   and   has two distinct t-best co-approximation of  

                                 

  (      )   (      )           (      )   (      )      

also    (      )    (      )         (      )   (      )        

  ((    )  (   )  )   ((   )  (   )   )         ((    )  (   )  )   ((   )  (   )   ) 

           

also    ((    )  (   )  )    ((   )  (   )   )          ((    )  (   )  )   ((   )  (   )   )  

         

                 | 
 (   ) 

since                        

      | 
 (   )                                               ( )   

          

 Then     is an IF-t-co-Chebyshev  with    .      

Definition 4.6.[6]:  Let (          )  be an IFNLS  and    is a closed subspace of     for              the 

distance between           define as : 

   (     )     *  (      )     +  and      (     )     *  (      )     +   

Theorem 4.7:  Let     and     are  two  subspaces  of  (           )  such that      and            ,     
 .  If      is  IF-t-best co-approximation to     from     , Then        is an  IF-t-best co-approximation  to       from 

the quotient space      . 
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Proof :  Suppose that      is  IF-t-best co-approximation to     from    and       is  not  IF-t-best co-

approximation to       from the quotient space      .  

    ́      |   such that   ( ́    (    )  )    (    ( ́   )  )  and  

 ( ́    (    )  )   (    ( ́   )  ) 

  ( ́        )    (   ́     )  and     ( ́        )   (   ́     ) 

Since    (      )     *  (      )     +   and      (      )     * (      )     + 

    * (   ́      )+     *   ( ́         )+   and       * (   ́      )+     *  ( ́         )+ 

   (   ́     )    ( ́         )   and      (   ́     )    ( ́         ) 

this implies that there exists       such that   

 (   ́      )    ( ́        )   ( ́        )         (   ́      )    ( ́        )   ( ́        ) 

     ́     such that   ((   ́ )      )   (  (   ́ )   )         ((   ́ )      )   (  (   ́ )   ) 

    is  not  an  IF-t-best co-approximation to     from    , this contradiction with hypothesis( ) . 

Then         is an IF-t-best co-approximation to       from the quotient space    .        

5.t-BEST SIMULTANEOUS CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED 
LINEAR SPACES 

Definition 5.1:  Let  (          )  be an IFNLS  and     be  a subset of     ,    be  IF-bounded  subset  in     .  An 

element        is   called  IF-t-best simultaneous  co-approximation  to     from      , if  for         

 (        )     *  (     )     +  and   (      )     *  (      )     +  for all       . 

The set  of  all  IF-t-best simultaneous  co-approximation  to     from     , will  be denoted by       
 ( )  and  define  

as follows  : 

     
 ( )  *       (        )           (      )         (       )          (       )      + 

Definition 5.2: Let      be  a  subset  of  (           ) . It  is   called   IF-t-best simultaneous co-proximinal subset of     

, if  for each   IF-bounded  set    in    , there exists at least one IF-t-best simultaneous co-approximation  from            . 

Definition 5.3:  Let     be  a subset  of   (          ) .  It is called  IF-t-best simultaneous co-Chebyshev subset of  

 , if for each IF-bounded             there exists a unique IF- t- best simultaneous- co-approximation  from              

Theorem 5. 4: Let (           )         be  a  subset  of    . If     is IF-bounded subset of     and        satisfying  

the condition         ,                ,   - , then       
 ( )  is  IF-bounded  subset  of     . 

Proof : Let      is  IF-bounded subset of     and          
 ( ) 

   there exist                      (   )         (   )                             

 (      )          (     )and    (      )          (     )       

  for every         ,  (     )=  (         )   (       )    (   )  

  (           )  (   ) 

           (       )    (     )  (   ) 

                                                                                (     )   (     )  (   ) 

          (     )   (   )  

                                                                                                     

and    (     )   (          )     (        )      (    ) 

   (            )    

                                                                            (      )   (      )    

                                                                                    (      )     (      )      

           (      )       

                                                                               for   some            

 Then         
 ( )   is an  IF-bounded  subset of  X .     
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Theorem 5.5: Let (           )            is IF-bounded subset of     . If     is a convex  subset  of     and       

satisfying  the condition       ,              ,   - ,  then       
 ( )  is  a convex  subset of    . 

Proof :  Suppose  that      is a convex subset  of    

 (   )          for  every                            

Therefore  ,                                           
 

 
             

 (,(   )       -      ) 

  (,(   )           -      ) 

  ((   )  (   )   (    )   ) 

  ((   )(   )   (    )   ) 

  (     
 

 (   )
)    (      

 

  
) 

  (     
 

 (   ) 
)           (    

 

   
)     

    
         (    

 

   
)              (     ) 

and                                           
 

 
             

 (,(   )       -      ) 

  (,(   )           -      ) 

  ((   )  (   )   (    )   ) 

  ((   )(   )   (    )   ) 

      .     
 

 (   )
/◊  .     

 

  
/ 

   .     
 

 (   ) 
/◊          .    

 

   
/                 .    

 

   
/            (     ) 

 (   )           
 ( ) 

Then       
 ( )                             

Theorem 5.6 :Let     is  a subset  of  (           )  and     is IF-bounded  in      ,  Then the  following  assertions  

are  hold  for       : 

( )        
 (   )       

 ( )                          

( )        
| | (  )          

 ( )          . 

Proof  :  ( )  let           
 ( )    

     Forevery         (   (    )   )   (          )            (  (    )   )            (         )   

 (   (    )   )                (         ) 

similarly , we  get   (   (    )   )                (         ) 

Then               
 (   ) 

Let               
 (   ) 

 For  every                   (        )   (     (    )   )            (    (    )  ) 

           (       ) 

  (        )            (       )        

similarly ,  we  get  

 (       )           (       )         

Then          
 (   )       

 ( )             . 

( )         
| | (  )        

 ( )            

Proof  :  clearly  equality  holds  for      

  Let       ,         
| | (  )   if and only if  
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        such  that   (     | | )            (      | | )        

 (     | | )           (     | | )       

  .
 

 
   

 

 
    /             .  

 

 
     / and    .

 

 
   

 

 
    /              .  

 

 
     /    

 

 
    

   .
 

 
        /              (        )and    .

 

 
        /              (        )        

 

 
    

 
 

 
          

 ( )               
 ( ) 

Then          
| | (  )           

 ( )  
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