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ABSTRACT 

We consider a generalized version of the classical Lotka Volterra model with differential equations. The version has a 
variable structure (discontinuous right hand side) and the solutions are subjected to the discrete impulsive effects. The 
moments of right hand side discontinuity and the moments of impulsive effects coincide and they are specific for each 
solution. Using the Brouwer fixed point theorem, sufficient conditions for the existence of periodic solution are found. 
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1 INTRODUCTION 

We assume that the predator-prey community is subjected to the external effects. These effects are discrete in time and 
relate to: 

1. Impulsive changes in the biomass amount of both species (forming part of the community). Mathematically this is 
expressed through a jump-like change of the state (phase or solution) of the modeling system; 

2. Instantaneous rate of change of community development speed. Usually this effect is associated with a jump-like 
change system parameters. Generally, this effect is expressed by changing the structure of the modeling. 

 We shall assume that these jump-like changes (both the state and also the speed of community development) 
are performed simultaneously. The moments of external effects are variable and depend on the quantities of biomass, i.e. 
on the specific solution of modeling system. The above-described community has different variations of mathematical 
modeling. In general, these options depend on: 

1. The nature of interactions between the species in the periods outside of the moments of external influences 
(reflected in the type of right hand side of modeling system); 

2. Impulsive moments and the way they are set (these are the moments that the external effects take place); 

3. Impulsive effects (the quantities of withdrawal or adding biomass to the predator and prey); 

4. Changing the structure of the modeling system (values which change the parameters of the community 
development), etc. 

 Impulsive differential equations are suitable mathematical tool for processes modeling with short-term changes in 
their phase state. This type of equations is developed intensively because of their serious applications. Concrete results 
relating to the Lotka-Volterra models, subjected to pulse effects, are contained in [5], [6], [9], [10] and [11]. 

 Various aspects of the qualitative theory of impulsive differential equations with variable structure and impulses 
are discussed in [1], [2], [4], [7] and [8]. 

This paper contains the application of the above mentioned type of differential equations. More precisely, 
conditions associated with the elements of system, ensuring the existence of periodic solutions are found. 

2 DESCRIPTION OF THE MODEL 

Consider the following initial value problem for systems of differential equations with variable structure and moments of 
impulsive effects 

        1 1 1

1, , , ;i i i i i i

dm
f m M m r q M m t M t t t t

dt
         (1) 

        2 2 2

1, , , ;i i i i i i

dM
f m M M r q m m t M t t t t

dt
          (2) 

         0 , , ;i i i i i im t g m t m t M t        (3) 

      00

10 , , , 1,2,... ;i i i i iM t M m t M t i        (4) 

   0 00 , 0 ,m m M M         (5) 

where: 

-   0m m t   and   0M M t   are the prey and predator biomasses at the moment 0t  ; 

- 
1 0ir const   and 

2 0ir const   are specific growth factors, relevant to the first species (prey) and second 

(predator), respectively; 

- 
1 0iq const   and 

2 0iq const   are the coefficients indicating interspecies competition. In the common case, 

they are different for the prey and predator; 

-  
2 1

00 00
2 1, ,i i

i i
i i

r r
m M

q q

 
  
 

; 
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- 1 2, ,...   are switching sets,   00 00, ; , , 1,2,...i i im M m m M M i     ; 

- :ig R R  ; 

- 1 2, ,...t t  are switching moments; 

- 
0 0m   and 

0 0M   are the prey and predator biomasses at the initial moment 0.t   

Remark 1. The solution     0 0 0 0; , , ; ,m t m M M t m M  of the initial value problem (1)-(5) is defined as follows: 

1.1. For 0 10 t t t   : 

1.1.1.     0 0 0 0; , , ; ,m t m M M t m M  coincides with the solution of the system (1), (2) for 1i   with initial 

condition (5); 

1.1.2.     0 0 0 0 1; , , ; ,m t m M M t m M  ; 

1.2. For 1t t : 

1.2.1.     1 0 0 1 0 0 1; , , ; ,m t m M M t m M  ; 

1.2.2.     1 0 0 1 1 0 0 10; , ; ,m t m M g m t m M m   ,   00

1 0 0 2 10; ,M t m M M M    ; 

2.1. For 1 2t t t  : 

2.1.1.     0 0 0 0; , , ; ,m t m M M t m M  coincides with the solution of system (1), (2) for 2i   with initial 

condition    1 1 1 1,m t m M t M   ; 

2.1.2.     0 0 0 0 2; , , ; ,m t m M M t m M  ; 

2.2. For 2t t : 

2.2.1.     2 0 0 2 0 0 2; , , ; ,m t m M M t m M  ; 

2.2.2.     2 0 0 2 2 0 0 20; , ; ,m t m M g m t m M m   ,   00

2 0 0 3 20; ,M t m M M M    ; 

and so on. 

 Further, we use the notations   0 0; , ,i i im g m t m M   iM 
 

00

1, 1,2,... .iM i   

For 1,2,...i  , consider the corresponding initial value problems 

 1 , ;i

dm
f m M

dt
        (6) 

 1 , ;i

dm
f m M

dt
        (7) 

   0 0 0 0, .i i i im t m M t M        (8) 

Denote their solutions by     0 0 0 0 0 0; ; , , ; ; ,i i i i i i i im t t m M M t t m M , where the initial points  0 0 0, ,i i it m M  

R R R     , 1,2,... .i   

Remark 2. It is known that for 1,2,...i  , the system (6), (7) (without impulses) has the following properties: 
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1. Unstable (saddle) stationary point  0,0 . It is filled    1 20,0 0,0 0i if f  ; 

2. Stable stationary point  
2 1

00 00
2 1, ,i i

i i
i i

r r
m M

q q

 
  
 

. It is filled  1 00 00,i i if m M  2 00 00, 0i i if m M  ; 

3. First integral of the form 

 ,iV m M
1 2

1 2 1 2 1 2
1 2ln ln ln 1 ln 1i i

i i i i i i
i i

r r
q M q m r M r m r r

q q

   
          

   
; 

4. For each constant 0c  , implicitly given curve 

    , ; ,c

i im M V m M c    

is a trajectory of system (1), (2). This trajectory is closed; 

5. For each constant 0c  , the set 

    , ; ,c

i iG m M V m M c   

is a connected domain, situated in R R  , which possesses contour 
c c

i iG   ; 

6. If 1 20 c c  , then 1 2c c

i iG  ; 

7. Let c  and C  be arbitrary constants such that 0 c C  . We assume that for 1,2,...,i   the phase space of 

system (1), (2) is defined as 
, \c C C c

i i iG G G , i.e. 

    , , ; ,c C

i iG m M c V m M C   ; 

8. The switching sets of system (1)-(4) satisfy the inclusions 
, .c C

i iG   It is true 

  , , 00 00, ; , .c C c C

i i i i iG m M m m M M       

9. If the point  0 0,i im M R R   , then the solution   0 0 0; ; , ,i i i im t t m M  0 0 0; ; ,i i i iM t t m M  of the 

initial value problem (6), (7), (8) is continuable up to  ; 

10.  If the initial point   ,

0 0, c C

i i im M G , then the solution of (6), (7), (8) for each 0it t  also belongs to 
,c C

iG ; 

11. Because the set 
,c C

iG  is closed and bounded and the functions 
1

if  and 
2

if  are continuous on 
,c C

iG , then 

there exist positive constants 1
if

M  and 2
if

M , such that 

      1 2

, 1 2, , , , .
i i

c C

i i if f
m M G f m M M f m M M      

12. It is fulfilled 

    0 0 0 0; , , ; ,m t m M M t m M        (9) 

    

    

1 0 0 0 1 0 0 0 0 1

1 1 1 1 1 1 1

; ; , , ; ; , , 0 ;

; ; , , ; ; , , , 2,3,...,i i i i i i i i i i

m t t m M M t t m M t t t

m t t m M M t t m M t t t i

   

   

      

   


 
  



 

where    0 0 0 0, ,m M m M   ; 

13. The following inequalities are valid 

    0 0 0 0; , , ; ,m t m M M t m M  
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          00

1 1 1 1 1 1 1; ; , , ; ; , , , 1,2,... .i i i i i i i i i i im t t m M M t t m M M t t t i   

            

Remark 3. Further, we denote by 
,maxc

im  and 
C,max

im  the bigger solutions of the equations 

 
1 2 2 2

00

1 2 2 2 2
, , ln 1 lni i i i

i i i

i i i i i

r r r r c
V m M V m c m m

q q q q q

   
         

   
 

and 

 
1 2 2 2

00

1 2 2 2 2
, , ln 1 ln ,i i i i

i i i

i i i i i

r r r r C
V m M V m C m m

q q q q q

   
         

   
 

respectively. The constants 
,minc

im  and 
C,min

im  are smaller solutions of the above two equations. We introduce the 

following sets 

  , ,max ,max ,max 00 ,, ; , , 1,2,...c C c C c C

i i i i im M m m m M M G i        

and 

  , ,min ,min ,min 00 ,, ; , , 1,2,... .c C C c c C

i i i i im M m m m M M G i        

It is clear that the switching sets 

, , ,max , 1,2,... .c C c C

i i i i     

Remark 4. It can be seen immediately that the sets 
, ,minc C

i  and 
, ,maxc C

i  are closed intervals located in R R  . 

This means that they are compact, connected and convex sets. 

Remark 5. Pay attention that for   00

iM t M  and   00

im t m , the right hand side of (1) becomes zero. 

Therefore, we have 0dm
dt
 . It can be shown that just then the victim’s biomass is maximum. Consequently, the 

withdrawal of biomass from the victim in these moments  1 2, ,...t t  is justified. 

3 EXISTENCE OF PERIODIC SOLUTIONS 

Introduce the following conditions: 

H1. There exists 0k N  such that 

0 0 0 0

1 1 2 2 1 1 2 2; ; ; , 1,2,... .k i i k i i k i i k i ir r r r q q q q i         

H2. The functions 
, ,max ,c C

i ig C R    ,    , ,max ,min ,min

1 1;c C C c

i i i ig m m m m      and for each 

0

, ,maxc C

km , it is satisfied    
0

, 1,2,... .k i ig m g m i    

Remark 6. From condition H1, we obtain the equalities: 

     
0 0 0

00 00 00 00; ; , , , , ;k i i k i i k i im m M M V m M V m M m M R R 

        

0 0

, ,, 0; , , , 0 ;c c c C c C

k i i k i ic const G G c const C const c C           

0 0 0 0

,min ,min ,min ,min ,max ,max ,max ,max; ; ; ;c c C C c c C C

k i i k i i k i i k i im m m m m m m m        

0 0

, ,min , ,min , ,max , ,max; .c C c C c C c C

k i i k i i      

Theorem 1. Let the conditions H1 and H2 hold. 
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Then the system (1)-(4) has at least one periodic solution with initial point   , ,min

0 0 1, c Cm M   and period 

 
0 0 0 0,k kT t t m M  . 

Proof. For convenience, the proof will be presented in several parts. 

Part 1. Let the initial point   , ,min ,

0 0 1 1, c C c Cm M G  . The solution of initial value problem (1)-(5) is defined for 

00 t t T   . In fact, for 0 10 t t t   , the solution of considered problem with variable structure and impulses 

coincides with the solution of initial value problem (6), (7), (8), where 1i   and    01 01 0 0, ,m M m M  (see equality 

(9)). From condition H2, it is seen that the point   , ,min ,

1 1 2 2, c C c Cm M G    . For 1i it t t   , the solution of (1)-(5) 

coincides with the solution of initial value problem (6), (7), (8), where 
02,3,...,i k  and the initial point 

    , ,min ,

0 0 1 1, , c C c C

i i i i i im M m M G 

    . In other words, for 0 t T  , we have 

    0 0 0 0; , , ; ,m t m M M t m M  

    1 1 1 1 1 1 1 0; ; , , ; ; , , , 1,2,..., .i i i i i i i i i im t t m M M t t m M t t t i k   

           

Part 2. Consider the mapping 
, ,min , ,max

1 1 1: ,c C c C    defined as follows 

         , ,min

0 0 1 1 0 0 1 1 0 0 1 1 0 0, , ;0, , , ;0, ,c Cm M m M m t m M M t m M            

  00 , ,max

1 1 0 0 1 1;0, , , .c Cm t m M M    

We will show that the mapping 1  is continuous on 
, ,min

1

c C . For this purpose, it is sufficient to establish that 

 1 1 0 0;0, ,m t m M 
 depends continuously on the initial point  0 0,m M 

. Let a point  * * , ,min

0 0 1, c Cm M    and a 

constant 
*

1 0t   be such that: 

-     * * * * , ,max *

1 0 0 1 0 0 1 1;0, , , ;0, , , 0c Cm t m M M t m M t t       ; 

-     * * * * * * , ,max

1 1 0 0 1 1 0 0 1;0, , , ;0, , .c Cm t m M M t m M      

For concreteness, we assume that 
*

1 1t t  is fulfilled. The remaining case is considered analogously. According to the 

property 13 of Remark 2, it follows that for each sufficiently small constant 0  , we have 

   * * 00 * * 00

1 1 0 0 1 1 1 0 0 1;0, , ; ;0, , .M t m M M M t m M M        

From the theorem of continuous dependence (see Theorem 7.1, § 7, Ch. I, [4]), it follows that 

        * * , ,min * *

1 0 0 1 0 0 0 0 10 : , , , ,c Cconst m M m M m M                      (10) 

   * * 00 * * 00

1 1 0 0 1 1 1 0 0 1;0, , ; ;0, , ;M t m M M M t m M M             (11) 

           * * 00

1 0 0 1 1 1;0, , , ;m t m M m t t t        

   * *

1 1 0 0 1 1 0 0;0, , ;0, , ;m t m M m t m M                  (12) 

   * *

1 1 0 0 1 1 0 0;0, , ;0, , .m t m M m t m M                  (13) 
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From (11), taking into account the assumption (more precisely 
*

1 1t t ), we reach the following inequalities 

*

1 1 1 1t t t t     . According to the property 11 of Remark 2, we have: 

      1

1
11

1

1 1 0 0 1 1 0 0 1 1 0 0;0, , ;0, , ;0, , ;
t

ft
m t m M m t m M f m m M d M      


      

      
*
1

1
11

* * * * * 1 * *

1 1 0 0 1 1 0 0 1 1 0 0;0, , ;0, , ;0, , .
t

ft
m t m M m t m M f m m M d M      


      

From the above two inequalities and (12), we find 

   * *

1 1 0 0 1 1 0 0;0, , ;0, ,m t m M m t m M         (14) 

   * *

1 1 0 0 1 1 0 0;0, , ;0, ,m t m M m t m M        

   * * * *

1 1 0 0 1 1 0 0;0, , ;0, ,m t m M m t m M       

      1 1 0 0 1 1 0 0;0, , ;0, ,m t m M m t m M       

 1
1

1 2 .
f

M    

From (10) and (14), we conclude that 

         * * , ,min * *

0 0 1 0 0 0 00 0 : , , , ,c Cconst m M m M m M                 

   * *

1 1 0 0 1 1 0 0;0, , ;0, , .m t m M m t m M        

Thus, we have proved that the mapping 1  is continuous. 

Part 3. Consider the mapping 
, ,max , ,min

1 1 2: c C c C    defined as follows  

       , ,max 00 , ,min

1 1 1 1 1 1 1 1 1 2 2, , , , .c C c Cm M m M g m M M      

According to condition H2, the mapping 1  is continuous. 

Part 4. Consider the mapping 
, ,min , ,max

0: , 2,3,..., ,c C c C

i i i i k     which is defined by means of the equalities 

         , ,min

1 1 1 1 1 1 1 1, , ;0, , , ;0, ,c C

i i i i i i i i i i i i i im M m M m t m M M t m M       

            

   00 , ,max

1 1;0, , , .c C

i i i i i im t m M M 

    

Similarly as in Part 2, it can be established that this mapping is continuous on its domain. 

Part 5. Let the mapping 
, ,max , ,min

1 0: , 2,3,..., ,c C c C

i i i i k     be defined as follows 

       , ,max 00 , ,min

1 1, , , , .c C c C

i i i i i i i i i i im M m M g m M M        

According to condition H2, the mapping i  is continuous. 

Part 6. Let us introduce the mapping 
0

, ,min , ,min

1 1: ,c C c C

kF    where 

  , ,min

0 0 1, c Cm M    
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       0 0 0 00 0 1 1 1 1 0 0, ... , ... .k k k kF m M m M        

 

      
  

 

From condition H1, taking in mind Remark 6, we find that 
0

, ,min

1

c C

k  , ,min

1

c C , i.e. 
, ,min , ,min

1 1: .c C c CF    From 

previous parts (with numbers 2, 3, 4 and 5) of the proof, it follows that 
, ,min , ,min

1 1, .c C c CF C       From Remark 4, we 

have that 
, ,min

1

c C  is compact, connected and convex set. Using the Brouwer fixed point theorem, we reach the 

conclusion that 

      , ,min

0 0 1 0 0 0 0, : , , .c Cm M F m M m M    

Part 7. Taking into account the definitions of functions 
i  and 0, 1,2,..., ,i i k   we conclude that 

      
0 00 0 0 0 0 0: , 0; , , 0; ,k kF m M m t m M M t m M    

and therefore, 

      
0 00 0 0 0 0 00; , , 0; , , .k km t m M M t m M m M    

Finally, from conditions H1 and H2, we obtain that     0 0 0 0; , , ; ,m t m M M t m M  is a periodic solution of the initial 

value problem (1)-(5). The period of solution is 
0kT t . 

The theorem is proved. 
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