

ALGEBRAIC PROOF IV FERMAT'S LAST THEOREM

James E. Joseph

Department of Mathematics, Howard University, Washington, DC 20059

Abstract:- The special case $z^4 = x^4 + y^4$ is impossible [1]. In view of this fact, it is only necessary to prove, if x, y, z, are relatively prime positive integers, π is an odd prime, $z^\pi \neq x^\pi + y^\pi$ (In this article, the symbol π will represent an odd prime). Also, a new proof is given that $z^4 = x^4 + y^4$ is impossible.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol.11, No.7

www.cirjam.com, editorjam@gmail.com

Theorem 1 If $z^{\pi} = x^{\pi} + y^{\pi}$, then if $z \not\equiv 0 \pmod{\pi} (y \not\equiv 0 \pmod{\pi}) [x \not\equiv 0 \pmod{\pi}]$,

1.
$$(x+y)^{\pi} - z^{\pi} \equiv 0 \pmod{\pi^2}, ((z-x)^{\pi} - y^{\pi} \equiv 0 \pmod{\pi^2}), [(z-y)^{\pi} - x^{\pi} \equiv 0 \pmod{\pi^2}];$$

2.
$$(x+y)^{\pi} - z^{\pi} \not\equiv 0 \pmod{\pi^3}, ((z-x)^{\pi} - y^{\pi} \not\equiv 0 \pmod{\pi^3}), [(z-y)^{\pi} - x^{\pi} \not\equiv 0 \pmod{\pi^3}];$$

3.
$$x \equiv 0 \pmod{\pi} (y \equiv 0 \pmod{\pi}) [z \equiv 0 \pmod{\pi}].$$

Theorem 1 is arrived at through the following three lemmas.

Lemma 1 If $z^{\pi} = x^{\pi} + y^{\pi}$, then $x + y - z \equiv 0 \pmod{\pi} (z - x - y \equiv 0 \pmod{\pi})$.

Proof. It is obvious that

$$(x+y)^{\pi} - z^{\pi} \equiv 0 \pmod{\pi}, (z-y)^{\pi} - x^{\pi} \equiv 0 \pmod{\pi}, (z-x)^{\pi} - y^{\pi} \equiv 0 \pmod{\pi}$$

$$(x+y)^{\pi}-z^{\pi}=(x+y-z+z)^{\pi}-z^{\pi}=\sum_{0}^{\pi-1}C(\pi,k)(x+y-z)^{\pi-k}z^{k};$$

$$(1) (x+y)^{\pi} - z^{\pi} - (x+y-z)^{\pi} = \sum_{k=0}^{\pi-1} C(\pi,k) (x+y-z)^{\pi-k} z^{k}.$$

$$(z-x)^{\pi}-y^{\pi}=(z-x-y+y)^{\pi}-y^{\pi}=\sum_{k=0}^{\pi-1}C(\pi,k)(z-x-y)^{\pi-k}y^{k};$$

(2)
$$(z-x)^{\pi} - y^{\pi} - (z-x-y)^{\pi} = \sum_{k=1}^{\pi-1} C(\pi,k) (z-x-y)^{\pi-k} y^{k}$$
.

$$(z-y)^{\pi}-x^{\pi}=(z-x-y+x)^{\pi}-x^{\pi}=\sum_{0}^{\pi-1}C(\pi,k)(z-x-y)^{\pi-k}x^{k};$$

(3)
$$(z-y)^{\pi} - x^{\pi} - (z-x-y)^{\pi} = \sum_{i=1}^{\pi-1} C(\pi,k) (z-x-y)^{\pi-k} x^{k}$$
.

Lemma 2 If $z^{\pi} = x^{\pi} + y^{\pi}$, and $z \not\equiv 0 \pmod{\pi} (y \not\equiv 0 \pmod{\pi}) [x \not\equiv 0 \pmod{\pi}]$, then $(x+y)^{\pi} - z^{\pi} \equiv 0 \pmod{\pi^2} ((z-x)^{\pi} - y^{\pi} \equiv 0 \pmod{\pi^2}) [(z-y)^{\pi} - x^{\pi} \equiv 0 \pmod{\pi^2}]$.

Proof. See proof of Lemma 1.

Lemma 3 If $z^{\pi} = x^{\pi} + y^{\pi}$, and

$$(x+y)^{\pi} - z^{\pi} \equiv 0 \pmod{\pi^3}, ((z-x)^{\pi} - y^{\pi} \equiv 0 \pmod{\pi^3}), [(z-y)^{\pi} - x^{\pi} \equiv 0 \pmod{\pi^3}], \text{ then } z \equiv 0 \pmod{\pi}; (y \equiv 0 \pmod{\pi}); [x \equiv 0 \pmod{\pi}], \text{ If } (x+y)^{\pi} - z^{\pi} \equiv 0 \pmod{\pi^2} ((z-x)^{\pi} - y^{\pi} \equiv 0 \pmod{\pi^2}), [(z-y)^{\pi} - x^{\pi} \equiv 0 \pmod{\pi^2}], \text{ then } z \equiv 0 \pmod{\pi}; (y \equiv 0 \pmod{\pi}); [x \equiv 0 \pmod{\pi}],$$

Proof. The first assertion comes from the equations in Lemma 2 and the Unique Factorizaeion Theorem. For the second assertion, if two of the equivalences $x+y\equiv 0\ (mod\ \pi), z-x\equiv 0\ (mod\ \pi), z-y\equiv 0\ (mod\ \pi)$ hold the proof is complete by the equivalence x+y-z. Assume $x+y\not\equiv 0\ (mod\ \pi), z-x\not\equiv 0\ (mod\ \pi)$, then

$$(x+y)^{\pi} - z^{\pi}$$

$$= (x+y)((x+y)^{\pi-1} - z^{\pi}(x+y)^{-1})$$

$$\equiv 0 \pmod{\pi^2}$$

$$= (x+y)((x+y)^{\pi-1} - z^{\pi-1} + z^{\pi-1} - z^{\pi}(x+y)^{-1}) \equiv 0 \pmod{\pi^2};$$
$$(x+y)^{\pi-1} - z^{\pi-1} \equiv 0 \pmod{\pi};$$

because of the equation

$$(x+y)^{\pi-1}-z^{\pi-1}=(x+y-z)\sum_{0}^{\pi-2}(x+y)^{\pi-1-k}z^{k};$$

if

(1)
$$(x+y)^{\pi-1} - z^{\pi-1} \equiv 0 \pmod{\pi^2}$$
,

Compare this with

(2)
$$(x+y)^{\pi} - z^{\pi} \equiv 0 \pmod{\pi^2}$$
,

multiplying through (1) by x + y and subtracting (1) from (2) gives

$$z^{\pi-1}(x+y-z)) \equiv 0 \pmod{\pi^2};$$

 $z^{\pi-1} \equiv 0 \pmod{\pi};$

thus $z^{\pi-1} \equiv 0 \pmod{\pi}, z \equiv 0 \pmod{\pi}$.

If

$$(x+y^{\pi-1}-z^{\pi-1}\not\equiv 0\ (mod\ \pi^2),$$

then

$$(x+y)\mu\pi \equiv 0 \ (mod \ \pi^2), (\mu,\pi) = 1,$$

so

$$x + y \equiv 0 \pmod{\pi}$$
,

a contradiction.

To show that $y \equiv 0 \pmod{\pi}$.

$$(z-x)^{\pi} - y^{\pi} = (z-x)^{\pi} - (z-x)y^{\pi}(z-x)^{-1}$$
$$= (z-x)((z-x)^{\pi-1} - y^{\pi-1} + y^{\pi-1} - y^{\pi}(z-x)^{-1}) \equiv 0 \pmod{\pi^2};$$

because of the equation

$$(z-x)^{\pi-1}-y^{\pi-1}=(z-x-y)\sum_{0}^{\pi-2}(z-x)^{\pi-1-k}y^{k},$$

 $(z-x)^{\pi-1}-y^{\pi-1}\equiv 0 \ (mod \ \pi),;$

(1)
$$(z-x)^{\pi} - y^{\pi} \equiv 0 \pmod{\pi^2}$$
,

(2)
$$(z-x)^{\pi-1} - y^{\pi-1} \equiv 0 \pmod{\pi^2}$$
;

multiplying through (2) by z-x and subtracting from (1) gives

if $((z-x)^{\pi-1}-y^{\pi-1} \equiv 0 \pmod{\pi^2})$, this leads to

$$y^{\pi-1}(z-x-y) \equiv 0 \pmod{\pi^2};$$

 $y^{\pi-1} \equiv 0 \pmod{\pi};$

thus $y \equiv 0 \pmod{\pi}$.

lf

$$(z-x)^{\pi-1}-y^{\pi-1}\not\equiv 0\ (mod\ \pi),$$

then

$$(x+y)\mu\pi \equiv 0 \ (mod \ \pi^2), (\mu,\pi) = 1,$$

SO

$$z - x \equiv 0 \pmod{\pi}$$
,

a contradiction.

The paper is finished by producting a new proof of the following theorem.

Theorem 2 If x, y, z are relatively prime positive integers, then $z^4 \neq x^4 + y^4$.

Following the proofs above, several equivalences arise:

Proof.

1.
$$z^2(x+y-z) \equiv 0 \pmod{4}$$
;

2.
$$y^2(z-x-y) \equiv 0 \pmod{4}$$
;

3.
$$x + y \equiv 0 \pmod{2}$$
;

4.
$$z - x \equiv 0 \pmod{2}$$
.

this leads to $z \equiv 0 \pmod{2}$, $y \equiv 0 \pmod{2}$.

REFERENCES

[1] H. Edwards, Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory, Springer-Verlag, New York, (1977).

[2] A. Wiles, Modular ellipic eurves and Fermat's Last Theorem, Ann. Math. 141 (1995), 443-551.

[3] A. Wiles and R. Taylor, Ring-theoretic properties of certain Heche algebras, Ann. Math. 141 (1995), 553-573.