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Comparison of Type I Error of some Non-Parametric Tests on Multiple 
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Abstract 

Various non-parametric methods have been used to perform hypothesis test on multiple regression coefficients. In this 
article, at first the most important methods which has been introduced from other statisticians as proper methods, such as 
Kennedy, Freedman and Lane, and modified Kennedy, are explained and then, Freedman and Lane (Huh-John) method 
will be modified in the form of Kennedy method; finally, all aforementioned methods will be compared as simulating. At 
last, we look for a method that done best. So, Huh-John (2001) modify the method of Kennedy which was proposed in 
1995 and showed by simulation that is called modified Huh-John method; and it has less type I error. On the other hand, 
Anderson as simulation (1991) and Schadrekh as theory (2011) had shown that Freedman& Lane method has lower type I 
error in comparison with Kennedy method. We did some modification on Freedman and Lane method that Huh-John had 
done on Kennedy method and compared this modified method with Freedman and Lane and Huh-John method. We 
conclude that Freedman and Lane modified method often has lower type I error estimation and higher power than 
Freedman& Lane and Huh-John method.  

Keywords: Permutation tests; type I permutation error; changeability; multiple regression coefficient. 
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1. INTRODUCTION 

When fundamental hypotheses to perform hypothesis test are not true on linear models regression coefficients, doing 
classic tests on regression coefficients will not give a reliable answer, so we should use non-parametric methods. One 
group of these tests is re-sampling tests including Jacknife, Botstape, and permutation tests. 

Since most of the time, fundamental hypotheses are not true on real data, so permutation tests attain significant place. 
There is an agreement among statisticians about linear simple regression for hypothesis test, but different methods have 
been proposed for multiple regression. Important methods that are based on Permutability principle include: Freedman 
and Lane (1983), Kennedy (1995), Manly (1991), Ter Bruak (1992). In 1999, Anderson and Legendr investigated four 
above methods by doing extensive simulation and showed that Freedman and Lane method and Kennedy method 
perform better than other. In 2010, Schaderch theoretically showed that Freedman and Lane method can perform better 
than Kennedy’s. Huh and John modified Kennedy method in 2001 and showed that Kennedy modified method has better 
performance than Kennedy. Schaderch in 2010 also showed that Freedman and Lane method is better than Huh and 
John. Now, our goal is to modify the method of Freedman& Lane as the way that Huh and John has modified Kennedy 
method, as well as compare it by Freedman and Lane and Kennedy method as simulation. 

2.   Permutation test methods 

In this section, we neglect the presence of missing data and we investigate only the modes have one dependant variable, 
and expand its results to multi-variable modes. The method that is identified appropriate for this mode will be proper to 
permutation methods with models having several dependant models. Here, for the ease of problem, we survey linear 
multiple regression model with two independent variables. We consider the following model for studying with two 
variables, 

          0 1 1 2 2y x x                                                                    (1) 

We use the following statistic for testing the hypothese, 
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where 
2( )bS  is the standard deviation of 2b . 

2.1   Permutation of remaining under reduced model 

Freedman and Lane utilized a model in which the value of remaining are used as permutable units. 

Assume a model in which 0 2: 0H    is true, so we can write model (1) under the title of “reduced model” as below: 

          0 1 1 'y x                                                                  (3) 

It is evident that 1  and    used in reduced model are different from 1  and   in complete model. There are two 

different methods for the use of remaining permutation in regression coefficient estimation. First method was proposed in 
1983 by Freedman & Lane and the second one was in 1995 by Kennedy; we explain both here: 

I) Proposed model by Freedman and Lane: 

Make Y  regression on 1X  and 2X , and estimate the value of 2b  for 2  coefficient using minimum squares method. 

And by use of it, we obtain statistic t value for primary data. We call this statistic Re ft  

2

2

( )

ref
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b
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S
  

1) Make Y  regression on 1X  variable as model (3), and obtain the estimation of 0b  for 0  and 1b  for 1 ; then 

we calculate ˆY : 

2) Obtain the remaining as follow: 

          
1| 0 1 1

ˆ ( )Y xR Y Y Y b b x                                                                  (4) 
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Now we permute these remaining, and show them by 
1

*

|Y xR . 

1) Add Permutated remaining to ˆY  in order to obtain new values of Y*. A considerable note here is, Y* are not 
permutated values of Y, but indicate the Y that are obtained from permutation of remaining.  

          
1

* *

|
ˆ

Y xY Y R                                                               (5) 

2) Make the Y* obtained from step 4 regression as the model below on both variables of 1X  and 2X . 

          
* * * *

0 1 1 2 2Y x x                                                                    (6) 

Finally obtain an estimation 
*

2b  for 
*

2  and t* for permutation data in the form of 

*
2

*
* 2

( )

ref

b

b
t

S
  with (n-2) freedom degree 

by using it. 

1) Repeat steps 3 to 5 for n! Possible permutation in order to obtain value distribution of t* under permutations. 

2) Calculate absolute value of Ref as the method that was explained at the first of this chapter, and decide to accept 
or omit zero hypotheses. 

II)  Proposed method by Kennedy: 

The steps of Kennedy method are as follow: 

1) First 3 steps are done like Freedman and Lane method. 

2) Calculate regression equation of 2X  variable on 1X  as the model below  

          2 0 1 1x x                                                                  (7) 

and obtain remaining of 
2 1|x xR  from estimation of 2X . 

3) Make 
1

*

|Y xR  vector regression on variable of 
2 1|x xR  under the following model 

          
1 1

*

| 0 1 |Y x Y xR R                                                                   (8) 

and calculate 1b  estimation for 1 , and obtain t* values from it by different permutation. 

4) Repeat Steps 3 until 5 to obtain t* value under permutation. (note that 
2 1|x xR  obtained in Step 4 should be fixed.) 

5) P-value is obtained like methods described. 

3.   Freedman and Lane method in multiple mode: 

     Consider the following regression model: 

          Y= + + +….+ +                                                               (9) 

Where errors are came from an independent random sample uni-distributed by zero mean and  variance. Explain 

individual test of regression coefficients. A regression coefficient which is considered for test is , and the goal of 

performing this test is Freedman and Lane method. 

     =0                                                                                                       

                                                                                                                                (10) 

    : 0 

Rewrite equation (8) as matrix form: 

    Y= + +                       ~F(0, )                                                     (11) 

 

Where error terms have unspecified distribution F as above: 
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 B=  Y=                =       

Indeed, separate the coefficient is considered for test from others, and assumes other coefficients as a vector. Now, we 
perform Freedman and Lane method as follow: 

Step 1) We first obtain  value and also Re ft  statistic value from main data (non-permuted) of equation (11). 

Step 2) Multiply both sides of the equation (11) by the following matrix: 

   = - = -                                                                                    (12) 

The following relation is achieved from above operation: 

   = +                                                                                                                     (13) 

Where 

   =( - )  =            ,  =( - ) =                                                   (14) 

   =( - )Y= Y 

We know that  =I-  matrix is a symmetric and idempotent matrix. Furthermore,  the matrix has the following 

feature: 

    =0                                                                                                                     (15) 

By the use of minimum squares method, we estimate  coefficient as below: 

    =                                                                                                                        (16) 

By simplifying this term and regarding the symmetry and idem potency of , we have: 

    =  =                                                           (17) 

Using  estimation,  estimation is calculated and is called . 

Step 3) Calculate the remaining of subtracting  from  and call it . Then, we permute these remaining and sowed 

them by . 

Step 4) Add permuted remaining to  in order to obtain new values of . Then, we make them regress on  and , 

regression equation is in the form of below: 

    = + +                                                                                                      (18) 

We obtain estimator  by permuted data : 

   =                                                                                                                       (19) 

and by using it we obtain = /s( ). 

Step 5) we repeat steps 3 and 4 and by using values of s we obtain the distribution of permutation of t s and then p-

value. 

 

 

3.1 Criticism of the Freedman and Lane method 



ISSN 2347-1921                                                           
 

5430 | P a g e                                            N o v e m b e r  1 8 ,  2 0 1 5  

In Friedman and Lane's approach from the reduced regression equation based on residuals about the null hypothesis, we 

decided that we need to know the distribution of . This is a point that  in model (11) has an equal distribution with  but 

the distribution of  in model (14) with the distribution of  is different. 

3.2 Distribution of Errors and Compare them: 

In multiple Friedman and Lane's approach mean and variance of the error is as follows: 

E( )=E(( - ) )=( - )E( )=0                                        

V( )=Var(( - ) )=( - )Var( ) ( - = ( - ) ( - = ( - )        (20) 

= ( - ) 

 ~F(0, )                                                                   

Also in equation (14) we express the mean and variance of the error, now if we consider P as a permutation matrix, we 
have: 

 

                      E( ) =E( )=pE( )=0                                                            (21) 

V( )=V( )=pV(( ) =p = p =  

Therefore  and  are identically distribution. For comparing the distribution of  and  by using the permutation matrix 

we have: 

 E( ) =E( )=pE( )=0                                                                                    (22) 

V )=V( )=pV( ) =p( ( )) = (p -p )= ( - ) 

Considering the above term, we find that the variance of  is affiliated  so that by any permutation of ,  would 

be multiply the new number and the variance would be change. Mean and variance  with  are not the same; as a 

result, their distribution is not equal. In view of the hypothesis =0 the distribution of  will be different from the 

distribution of . This is due to Friedman and Lane's approach that is under doubt. 

3.3 Modified Freedman and Lane method: 

Error expressed in Friedman and Lane method was first in the Kennedy method that Huh and John gave a way to resolve 

this problem; similarly we used this method to improve Friedman and Lane method. Considering that the matrix ( - ) is 

an idempotent matrix with rank =n-k, (where k is the number of independent variables in the model.) For Correcting 

Friedman and Lane method the following steps will apply: 

Step 1) Calculate eigenvectors of matrix ( - ) and its rank. 

Step 2) Consider eigenvectors corresponding to the eigenvalues of one that their number with rank ( - ) is equivalent, 

as a matrix. 

Step 3) Using Gram-E.schmidt method the above matrix is converted to a orthogonal matrix. 

Step 4) Dividing each column by norm of that column it goes to a unit vector and resulting matrix will be represented by 

 that is an (n ) orthogonal matrix so that has the following features: 

 =                                                                                                                      (23) 

Step 5) Since the eigenvalue of matrix  is one and by using theory of Spectral Decomposition presented in index, 

matrix ( - ) is obtained 

( - )= I =                                                                                              (24) 

Step 6) Product  in = +  equation: 

 

= +                                                                                                       (25) 
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Where  =             =            =  

For mean and variance   we have 

E( )=E( )= E( )=0 

V( )=V( )= V( ) =  ( ( - )) = 

 ( ( )) =  ( ) = =  

~(0, )                                                                                                                     (26) 

To consider the distribution of permutated vector  namely  , we use permutater matrix p , therefore  

=p         E( )=E(p )=pE( )=0 

V( )=v(p )=pV( ) =p( ) = p = =  

~(0, )                                                                                                                   (27) 

So,  and  are identically distribution, in fact with this method distribution of the error terms after the permutation also 

are fixed, so by using new regression equation in the Freedman and Lane algorithm, this problem will disappear. 

By using Sum Least Squares Error we obtain : 

    =(                                                                                                          (28) 

Now we explain how we obtained the above estimation 

=( ( )= = ( - ) = - = -                

Where    =  ( - )Y=( - )Y= Y- Y                                                           

Since  is self-power we have 

= Y- Y=0        = -0=                                                                         (29) 

=( ( )= =  ( - ) = -  

And also 

=  ( - ) = - = - =0                           

= I -0=  

Therefore 

= = =                                                                                                       (30) 

= +                                                                                                                   (31) 

So estimate   by least squares method is as follow 

=                                                                                                                          (32) 

 

Where  is a ( ) vector that has obtained by random permutation . Because of testing of null hypothesis we 

obtained all s and t* and then p-value, and decision whether hypothesis should be rejected or not. 

4. Simulation  
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In this section we want to compare three methods:  modified Kennedy (Huh and John), Freedman and Lane and modified 
Freedman and Lane. We investigate the result of simulation by using figures and programs exist in index written by S-
PLUS software. 

4.1. Simulation way: 

For this purpose, we compute the estimation of type I error for all three permutation methods (Huh and John, Freedman 
and Lane, and modified Freedman and Lane) in terms of following 4 factors: 

1- Sample size (n) 

2- Correlation between two variables of 1X  and 2X  which is demonstrated by  

3-  regression coefficient value which is not tested. 

4- Error variable distribution 

 To perform stimulation, we consider the values of random variable of 1X  and 2X  from three uniform distributions (-3, 

3), exponential distribution with parameter 2, and Gama distribution with parameters1 and 2 so that one of them is 

symmetric and two others are skew to the right. Y vector is also generated through Y=X +  where X is a matrix that its 

columns are 1X  and 2X , and  vector consist of the values of {  and }. Since the goal of the test is the hypothesis 

of : =0, and regarding to the fact that, type I error is possible to deny zero hypothesis when it is true, thus we must 

assume zero hypothesis of : =0 true, then  will adopt selective values of {0, 0.5, 1, 1.5, 2, 2.5}. 

    The values of error term are also generated by three distribution of standard normal distribution, exponential distribution 

with parameter 2 (skew to the right), and uniform distribution (-3, 3). The correlation between two variables of 1X  and 

2X  is obtained by using Choleski decomposition of correlation matrix , whose values on main diagonal are 1 and 

values on minor diagonal are , which are here {0, 0.1 and 0.9}. Therefore,  

=X×                                                                                                                        (33) 

Where  is matrix that is achieved by Choleski decomposition of R,  is also a matrix whose columns are consisted of 

 and  vectors, which are correlated to each other by R and consistent with correlation coefficient of . finally, Y 

vector is regenerated by using this matrix based on Y= +  model.  

The estimation of type1 errors at significance level of 0.05 is calculated by 1000 replication for 3 methods namely, 
Freedman and Lane, Huh and John, and modified Freedman and Lane. Calculation method of type I error for every type 
and every combination that is called experimental or permutation error is such that, we obtain the proportion of times that 

p- values are less than significance level of =0.05, and consider it as type I error estimation.  

At the end, we compare the power of all three methods considering values of {0.5, 1, and 1.5} for parameter . We 

prepare and simulate these programs in S-PLUS. Some of figures from simulation are in the below. It is sufficient to 
compare type I error and power of three methods in the following examples. 

Fig.  2.1 
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    For investigating power of three mentioned methods we present some figures for n=20 and 30: 

I. n=20 
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II. n=30 
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In total, every method that its type I error is close to =0/05 identified have been done better. Also, by using simulation we 

showed under reduced models, modified Freedman and Lane due to lower type I error and higher power is first choice and 
Freedman and Lane and Huh and John will be our next choice. 
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INDEX  (Simulation Programs) 

 These three algorithms for a bivariate regression model with the hypothesis test =0 have been regulated and they 

have the capacity that for different values of sample size and correlation coefficient (r) can change. To determine these 
values we marked them by (*). 

A. Kennedy’s Algorithm  

alpha_matrix(nrow=1000,ncol=1) 

for(i in 1:1000){ 

x1_runif( ,-3,3( 

x1_matrix(c(x1),ncol=1( 

x2_runif( ,-3,3( 

x2_matrix(c(x2),ncol=1( 

x_matrix(c(x1,x2),ncol=2( 

beta_matrix(c( ,0)) 

e_rexp( ,2) 

e_matrix(c(e),ncol=1) 

r_matrix(c(1, , ,1),ncol=2) 

sr_chol(r ) 

xr_x%*%sr 

y_(xr%*%beta)+e 

reg_lm(y~x1+x2) 

h_summary(reg)$coefficient 

bref_h[3,1] 

tref_h[3,3] 

reg2_lm(y~ x1) 

x0_matrix(c(rep(1, ),ncol=1)) 

x_matrix(c(x0,x1),ncol=2) 

xt_t(x( 

z_xt%*%x 

zv_solve(z( 

e_x%*%zv 

h_e%*%xt 

i_diag( (  

mx_i-h 

k_matrix(nrow= ,ncol=1( 

for(i in 1: ( { 

 mxy_mx%*%y 

 mxys_sample(mxy) 

 mxx2_mx%*%x2 

 reg3_lm(mxys~mxx2) 

 s_summary(reg2)$coefficient 
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 t_s[2,3] 

 k[i]_t 

 k 

{ 

kplus_abs(k) 

k1_kplus[kplus>=tref] 

k1_length(k1) 

pvalue_k1/  

pvalue 

} 

alpha_alpha[pvalue<0.05] 

halpha_length(alpha)/1000 

halpha 

B. Huh and John’s Algorithm 

alpha_matrix(nrow=1000,ncol=1) 

for(i in 1:1000){ 

x1_runif( ,-3,3( 

x1_matrix(c(x1),ncol=1( 

x2_runif( ,-3,3( 

x2_matrix(c(x2),ncol=1( 

x_matrix(c(x1,x2),ncol=2( 

beta_matrix(c( ,0(( 

e_rexp(n,2( 

e_matrix(c(e),ncol=1( 

r_matrix(c(1, , ,,1),ncol=2( 

sr_chol(r) 

xr_x%*%sr 

y_(xr%*% )+e 

reg_lm(y~x1+x2( 

h_summary(reg)$coefficient 

bref_h[3,1] 

tref_h[3,3] 

reg2_lm(y~ x1) 

x0_matrix(c(rep(1, -1)),ncol=1( 

x_matrix(c(x0,x1),ncol=2( 

xt_t(x( 

z_xt%*%x 

zv_solve(z( 

e_x%*%zv 

h_e%*%xt 
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i_diag( (  

mx_i-h 

m_matrix(c(mx),nrow= (  

d_eigen(m)$vectors 

k_qr(d)$rank 

d_d[,1:k] 

td_t(d( 

v_matrix(nrow= ,ncol=k( 

v[,1:k]_d[,1:k] 

 for(i  in 2:k({ 

 s_matrix(0, ,1) 

 for(j  in 1:(k-1(({ 

  s_s+(t(v[,j])%*%v[,j])/(t(v[,j])%*%v[,j])*v[,j] 

 } 

 v[,k]_d[,k]-s 

 v 

} 

vn_matrix(nrow= ,ncol=k) 

 for(i  in 1:k({ 

  vn[,i]_v[,i]/sqrt(t(v[,i])%*%v[,i]) 

  vn 

 } 

 tvn_t(vn( 

 mxy_mx%*%y 

 ytilde_tvn%*%mxy 

     mxx2_mx%*%x2 

 xtilde_tvn%*%mxx2 

 k_matrix(nrow= -1,ncol=1( 

 for(i  in 1: ({ 

 ytildes_sample(ytilde( 

  reg3_lm(ytildes~xtilde( 

  s_summary(reg3)$coefficient 

  t_s[2,3] 

  k[i]_t 

  k} 

 kplus_abs(k( 

  k1_kplus[kplus>=tref] 

  k2_length(k1( 

  pvalue_k2/  

  pvalue} 
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alpha_alpha[pvalue<0.05] 

halpha_length(alpha)/1000 

halpha 

C. Freedman and Lane’s Algorithm 

alpha_matrix(nrow=1000,ncol=1) 

for(i in 1:1000){ 

x1_runif( ,-3,3( 

x1_matrix(c(x1),ncol=1( 

x2_runif( ,-3,3( 

x2_matrix(c(x2),ncol=1( 

x_matrix(c(x1,x2),ncol=2( 

beta_matrix(c( ,0(( 

e_rexp( ,2( 

e_matrix(c(e),ncol=1( 

r_matrix(c(1, , ,1),ncol=2( 

sr_chol(r( 

xr_x%*%sr 

y_(xr%*%beta)+e 

reg_lm(y~x1+x2( 

h_summary(reg)$coefficient 

bref_h[3,1] 

tref_h[3,3] 

reg2_lm(y~x1) 

x0_matrix(c(rep(1, )),ncol=1) 

x_matrix(c(x0,x1),ncol=2) 

h1_summary(reg2)$coefficients 

b_h1[,1] 

yhat_x%*%b 

k_matrix(nrow=, ,ncol=1) 

for(i in 2: , ){ 

 R_y-yhat 

 Rs_sample(R) 

 ys_yhat+Rs 

 reg3_lm(ys~x1+x2( 

 h2_summary(reg3)$coefficients 

 t_h2[2,3] 

 k[i]_t 

 k 

} 

kplus_abs(k( 

k1_kplus[kplus>=tref] 

k1i_length(k) 

pvaluei_k1i/1000 

pvaluei 

} 
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alpha_alpha[pvaluei<0.05] 

halpha_length(alpha)/1000 

halpha 

D. Modified Freedman and Lane’s Algorithm 

alpha_matrix(nrow=1000,ncol=1) 

for(i in 1:1000){  

x1_runif( ,-3,3( 

x1_matrix(c(x1),ncol=1) 

x2_ runif( ,-3,3( 

x2_matrix(c(x2),ncol=1) 

x_matrix(c(x1,x2),ncol=2) 

beta_matrix(c( ,0)) 

e_rnorm( ,0,1) 

e_matrix(c(e),ncol=1) 

r_matrix(c(1, , ,1),ncol=2) 

sr_chol(r) 

xr_x%*%sr 

y_(xr%*%beta)+e 

reg_lm(y~x1+x2) 

h_summary(reg)$coefficient 

bref_h[3,1] 

tref_h[3,3] 

x0_matrix(c(rep(1, )),ncol=1) 

x_matrix(c(x0,x1),ncol=2) 

xt_t(x) 

z_xt%*%x 

zv_solve(z) 

e_x%*%zv 

h_e%*%xt 

i_diag( ) 

mx_i-h 

m_matrix(c(mx),nrow= ) 

d_eigen(m)$vector 

k_qr(d)$rank 

d_d[,1:k] 

td_t(d) 

v_matrix(nrow= ,ncol=k) 

v[,1:k]_d[,1:k] 

for(i in 1:k){ 

s_matrix(0, ,1) 

for(j in 1:(k-1)){ 

s_s+(t(v[,j])%*%v[,j])/(t(v[,j])%*%v[,j])*v[,j] 

} 

v[,k]_d[,k]-s 

} 
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vn_matrix(nrow= ,ncol=k) 

for(i in 1:k){ 

vn[,i]_v[,i]/sqrt(t(v[,i])%*%v[,i]) 

vn 

} 

tvn_t(vn) 

mxy_mx%*%y 

ytilde_tvn%*%mxy 

mxx2_mx%*%x2 

xtilde2_tvn%*%mxx2 

mxx1_mx%*%x1 

xtilde1_tvn%*%mxx1 

reg2_lm(ytilde~mxx1) 

h1_summary(reg2)$coefficient 

b_h1[,1] 

yhat_x%*%b 

k_matrix(nrow=1000,ncol=1) 

for(i in 1:1000){ 

R_ytilde-yhat 

Rtilde_sample(R) 

ys_yhat+Rtilde 

reg3_lm(ys~xtilde1+xtilde2) 

h2_summary(reg3)$coefficients 

t_h2[3,3] 

k[i]_t 

k 

} 

kplus_abs(k) 

k1_kplus[kplus>=tref] 

k2_length(k1) 

pvalue_k2/1000 

pvalue 

} 

alpha_alpha[pvalue<0.05] 

halpha_length(alpha)/1000 

halpha 

 

 

  

 


