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ABSTRACT 

It is well known that the different stages of the Cartan-Whitehead decomposition  of a 0-connected space can be obtained 
as the Adams cocompletion of the space with respect to suitable sets of morphisms.  In thispaper Cartan-Whitehead 
decomposition  is obtained for a nilpotent space, in terms of Adams cocompletion, using the primary homotopy theory 
developed by Neisendonfer.           
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1. INTRODUCTION 

Deleanu, Frei and Hilton have developed the notion of generalized Adams completion in a categorical context; they have 
also studied the dual notion, namely the Adams cocompletion of an object in a category [9]. It is to be emphasized that 
many algebraic and geometrical constructions in Algebraic Topology, Differential Topology, Differentiable Manifolds, 
Algebra, Analysis, Topology, etc.,  can be viewed as Adams completions or cocompletions of objects in suitable 
categories, with respect to carefully chosen sets of morphisms. Behera and Nanda [3] have shown that the different 
stages of the Cartan-Whitehead decomposition of a 0-connected space are the Adams cocompletion of a space with 
respect to suitable sets of morphisms. In [12], Neisendonfer has studied the primary homotopic theory in an exhaustive 
manner..  The central idea of this note is to study how  Cartan-Whitehead decomposition of a 0-connected nilpotent space 
is characterized in terms of its Adams cocompletions; it is done using the primary homotopy theory developed by 
Neisendonfer. 

Let 𝒞   be an arbitrary category and   S  a set of morphisms of  𝒞.  Let  𝒞[S−1]   denote the category of fractions of  𝒞with 

respectS andF: 𝒞 →  𝒞[S−1]be the canonical functor.  Let  𝒮  denote the category of sets and functions. Then for a given 
object  Y  of 𝒞, 

𝒞[S−1](Y, −) ∶  𝒞 →   𝒮 

defines a covariant functor. If this functor is representable by an object   YS  of  𝒞, that is, if 

𝒞 S−1  Y, − ≅ 𝒞 YS , −  

then   YS  is called the (generalized) Adams cocompletion of Y with respect to the set of morphisms   S    or simply the   S-

cocompletion ofY. We shall often refer to     YS    as the cocompletion of     Y  [9]. 

 

Given aset  S  of morphisms of   𝒞,   the saturation of   S, denoted  as S   is the set of all morphisms  u  in   𝒞  such that  F(u) 

is an isomorphism in     𝒞 S−1 .  Furthermore,S   is said to be saturated   if   S = S [4,9]. 

Deleanu, Frei and Hilton have shown that if the set of morphisms  Sis saturated then the Adams cocompletion of a space 

is characterized by a certain couniversal property ([9],dual of Theorem 1.2). In most of the applications, however, the set 
of morphisms  S is not saturated. There is a stronger version of Deleanu, Frei and Hilton’s characterization of Adams 

cocompletion in terms of couniversal property as described below. 

Theorem1.1.  ([4], dual of Theorem 1.2)  Let   S  be a set of morphisms of     𝒞   admitting a calculus of right fractions.  

Then an object   YS  of    𝒞  is the    S-cocompletion of  the object   Y  with respect to    S  if and only if  there exists a 

morphism e ∶ YS  →   Y in S  which is couniversal with respect to  morphisms inS :  given a morphism s  ∶   Z →   Y in  S there 

exists a unique  morphism  t ∶ YS  →   Z in  S    such that st = e. In other words, the following diagram is commutative : 

t

YS

e
→ Y

↓             ↗ s

Z

 

 

Also the above theorem turns out to be essentially the dual of Theorem 1.2 [9] if we assume S to be saturated; hence the 

proposition can be proved by recasting the dual of the proof of the Theorem 1.2 [9] with minor changes. The details are 
omitted. 

The following Theorem (dual of Theorem 1.3, [4]) shows that under certain conditions the morphisms e: YS → Y always 

belongs to S. 

Theorem1.2 . ([4], dual of Theorem 1.3) Let   S = S1 ∩ S2. be a set   of morphisms in a category    𝒞  admitting a 

calculus of right fractions.  Let   e ∶ YS  →   Y be the canonical morphism as defined in Theorem 1.1, where   YS  is the S-
cocompletion of   Y.  Assume further that     S1  and   S2  have the following properties : 

(i) S1  and   S2  are closed under composition. 

(ii) fg ∈ S1 implies thatg ∈ S1. 

(iii) fg ∈ S2 implies thatf ∈ S2. 

Then   e ∈ S. 

2.The category   𝓝𝟎. 

Let    Sm   denote the m-dimensional sphere.  Suppose    m ≥ 2,     and let   k ∶  Sm  →  Sm  denote a map of degree  k.  The 

space    Sm−1  em
k    is denoted by  Pm k   or  Pm (ℤ kℤ ).  If  m ≥ 2,   the     m-th modkhomotopy group of  X is [Pm k ; X],  

denoted by    πm (X; ℤ kℤ )  [12].  If   m ≥ 3,     πm (X; ℤ kℤ )  is a group and     m ≥ 4,     πm (X; ℤ kℤ )   is an abelian group 
[12]. 
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If   f  ∶    X ⟶   Y   is a map, then there are induced maps f∗: πm X; ℤ kℤ   →   πm (Y; ℤ kℤ )defined by  f∗  g  = [ fg ].  If    
m ≥ 3,   f∗  is a homomorphism and, if    m = 2,   f∗  is compatible with the action of   π2[12]. 

For a group   G,   the   lower central series 

⋯   ⊆   Γi+1 G  ⊆  Γi G   ⋯ ⊆  Γ1 G  

of   G,    is defined by the setting    

Γ1 G = G,   Γi+1 G = [G, Γi G ],   i ≥ 1. 

G  is said to be nilpotent  if  Γ𝑗  𝐺 = {1}   for  𝑗  sufficiently large [10]. 

A connected   𝐶𝑊-complex   𝑋  is said to nilpotent  if   𝜋1(𝑋)  is nilpotent and operates nilpotently on   𝜋𝑛 (𝑋)   for every  

𝑛 ≥ 2[10]. 

Let     𝒩0   denote the category of   0-connected based   nilpotent spaces and based maps and let   𝒩 0   be the 

corresponding homotopy category. We assume that the underlying sets of the elements of    𝒩 0    are the elements of   𝒰,  

where 𝒰  is a fixed Grothendeick universe.  We now fix suitable sets of morphisms of   𝒩 0.  

Let    𝑆𝑛  denote the set of all maps  𝛼  in   𝒩 0   having the following property:  𝛼  ∶   𝑋  →   𝑌   is in  𝑆𝑛  if and only if 𝛼∗ ∶
  𝜋𝑚  𝑋; ℤ 𝑘ℤ   → 𝜋𝑚  𝑌; ℤ 𝑘ℤ  is an isomorphism for    𝑚 > 𝑛   and a monomorphism for    𝑚 = 𝑛. 

Proposition 2.1.  𝑆𝒏admits a calculus of right fractions. 

Proof.   Clearly 𝑆𝒏  is closed under composition.  We shall verify conditions (i) and (ii) of Theorem 1.3∗ [9].  Only 

condition (ii)  is in question. For proving this condition it is enough to prove that every diagram 

𝐴

↓ 𝛼

𝐶
𝛾
→ 𝐵

 

 

in   𝒩 0  with    𝛾 ∈  𝑆𝑛 ,   can be embedded in a weak pull-back diagram  

𝛽

𝐷
𝛿
→ 𝐴

↓ ↓ 𝛼

𝐶
𝛾
→ 𝐵

 

 

with    𝛿 ∈  𝑆𝑛 .   Suppose   𝛼 = [𝑓]   and    𝛾 = [𝑠].   We replace  𝑓  and  𝑠   by fibrations   𝑓′    and    𝑠 ′   respectively;   we 

have𝑓 = 𝑓′𝑟 ∶ 𝐴  
𝑟
→ 𝑃𝑓

𝑓 ′

→  𝐵 and 𝑠 = 𝑠 ′𝑡 ∶  𝐶
𝑡
→ 𝑃𝑠

𝑠′

→  𝐵where  𝑟   and   𝑡   are homotopy equivalences and       𝑃𝑓    and  𝑃𝑠  

are mapping tracks of    𝑓 and    𝑠  respectively.  Let   𝑟   and 𝑡    be the homotopy inverses of   𝑟 and   𝑡 respectively.  Let  𝐷  

be the usual pull-back of   𝑓′   and   𝑠 ′    and𝑝 ∶ 𝐷 → 𝑃𝑓 ,    𝑞 ∶ 𝐷 → 𝑃𝑠be the respective projections. Let  𝛿 = [𝑟 𝑝]    and  

𝛽 =  𝑡 𝑞 .   Thus 𝛼𝛿 =   𝑓  𝑟 𝑝   =   𝑓𝑟 𝑝  =   𝑓′𝑟𝑟 𝑝  =   𝑓′𝑝 =   𝑠 ′𝑞    =     𝑠 ′𝑡𝑡 𝑞 =    𝑠𝑡 𝑞   =  𝑠  𝑡 𝑞 = 𝛾𝛽.Moreover, if    

𝛼𝜇 = 𝛾𝜆,   let 𝑢 ∶  𝑈 →  𝐴,   𝑣 ∶  𝑈 →  𝐶   be in the classes    𝜇, 𝜆   respectively  so that 𝑓𝑢 ≃ 𝑠𝑣    or     𝑓′𝑟𝑢 ≃ 𝑠𝑣.Let 

𝐹 ∶  𝑈 × 𝐼 →  𝐵be a homotopy with𝐹0 =  𝑓′𝑟𝑢    and    𝐹1 = 𝑠𝑣.Since  𝑓′  is a fibration there exists a homotopy𝐺 ∶  𝑈 × 𝐼 →
 𝑃𝑓such that𝑓′𝐺𝑡 = 𝐹𝑡     and    𝐺0 = 𝑟𝑢.Thus 𝑓′𝐺1  =  𝐹1  =  𝑠𝑣 = 𝑠 ′𝑡𝑣.By the pull-back property of    𝐷   there exists a map  

𝑘  ∶   𝑈  →   𝐷   such that𝑝𝑘 = 𝐺1 ≃ 𝑟𝑢   and   𝑞𝑘 = 𝑡𝑣.Thus if   𝜌 = [𝑘],   then𝛿ρ =  𝑟 𝑝  𝑘 =  𝑟 𝑝𝑘 =  𝑟 𝑟𝑢 =   𝑢 = 𝜇and   

𝛽𝜌 =  𝑡 𝑞  𝑘 =  𝑡 𝑞𝑘 =  𝑡 𝑡𝑣 = [𝑣] = 𝜆. 

It remains to be shown that   𝛿 ∈ 𝑆𝑛 .    We assume that the map   𝛼 ∶ 𝐴 →  𝐵 is a fibration with fibre   𝑄.    We note 

that    𝑄  is also the fibre of   𝛽 ∶  𝐷 →  𝐶.   We have the following commutative diagram. 

⋯ → 𝜋𝑚+1(𝐶; ℤ 𝑘ℤ) → 𝜋𝑚 (𝑄; ℤ 𝑘ℤ) → 𝜋𝑚 (𝐷; ℤ 𝑘ℤ) → 𝜋𝑚 (𝐶; ℤ 𝑘ℤ) → 𝜋𝑚−1(𝑄; ℤ 𝑘ℤ) → ⋯

𝛾∗ ↓ ∥ 𝛿∗ ↓ 𝛾∗ ↓ ∥

⋯ → 𝜋𝑚+1(𝐵; ℤ 𝑘ℤ) → 𝜋𝑚 (𝑄; ℤ 𝑘ℤ) → 𝜋𝑚 (𝐴; ℤ 𝑘ℤ) → 𝜋𝑚 (𝐵; ℤ 𝑘ℤ) → 𝜋𝑚−1(𝑄; ℤ 𝑘ℤ) → ⋯

 

By Five Lemma     𝛿∗   is an isomorphism for   𝑚 > 𝑛   and   a monomorphism for    𝑚 = 𝑛,    showing  𝛿 ∈ 𝑆𝑛 . This 

completes the proof of Proposition 2.1.     

In fact, the set    𝑆𝑛     admits astrong calculus of right fractions.  A set   𝑆   of morphisms of a small    𝒱-category  𝒞,  𝒱  

being a Grothendieck universe,   admits a strong calculus of right fractions[14] if   

(i) 𝑆 admits a calculus of right fractions, 
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(ii) for any set {𝑠𝑖 : 𝐵𝑖 →  𝐴, 𝑖 ∈ 𝐼, 𝐼 is a 𝒱-set}, there exists a commutative completion   {𝑓𝑖 : 𝐶 →  𝐵𝑖 , 𝑖 ∈ 𝐼}   such 
that     𝑠𝑖𝑓𝑖 ∈ 𝑆   for every  𝑖 ∈ 𝐼. 

Proposition 2.2.  𝑆𝒏admits a strong calculus of right fractions. 

Proof.   Let    {𝑠𝑖 ∶  𝑌𝑖  →  𝑋, 𝑖 ∈ 𝐼}    be a given set of morphisms in    𝒩 0   with every    𝑠𝑖  ∈  𝑆𝑛    and   𝐼 ∈  𝒰.  We have 

a map from   𝑋 →   𝑃𝑛𝑋,   where   𝑃𝑛𝑋  denotes the Postnikov decomposition of  𝑋 ([10], proof of Proposition 1.1).  

Convert this into a fibration:𝑋𝑛

𝑢𝑛
       𝑋   →    𝑃𝑛𝑋,𝑋𝑛   being its fibre.  Considering the homotopy exact sequence of this 

fibration we get𝜋𝑚  𝑋𝑛 ; ℤ 𝑘ℤ  = 0 for    𝑚 ≤ 𝑛     and  𝜋𝑚  𝑋𝑛 ; ℤ 𝑘ℤ    ≅ 𝜋𝑚  𝑋; ℤ 𝑘ℤ  for   𝑚 > 𝑛.   Thus   𝑢𝑛 ∈ 𝑆𝑛 .     Since   

𝜋1 𝑋𝑛 ; ℤ 𝑘ℤ  = 0   we have a map (lifting)   𝑓𝑖  ∶  𝑋𝑛 →   𝑌𝑖   such that    𝑠𝑖𝑓𝑖 = 𝑢𝑛and the proposition is proved. 

Remark 2.3.  We note that the map𝑢𝑛   ∶   𝑋𝑛 →  𝑋is independent of the index𝑖. 

Proposition 2.4.   For a given object𝑋of the category𝒩 0,   there exists asubset𝑆𝑋of the set  𝑠 ∶  𝑋′ →  𝑋   𝑠 ∈

𝑆𝑛}such that    𝑆𝑋 is an element of theuniverse     𝒰and for each 𝑠 ∶  𝑋′ → 𝑋,   𝑠 ∈  𝑆𝑛 ,   there exists an𝑠 ′ ∶  𝑋′′  →  𝑋in𝑆𝑋and 

a morphism 𝑢 ∶  𝑋′′ → 𝑋′   in 𝒩 0such that  𝑠𝑢 = 𝑠 ′ . 

Proof.   For a given object  𝑋  in 𝒩 0, let 𝑆𝑋  denote the set of morphisms𝑆𝑋 = {𝑠 ∶ 𝑌 →  𝑋 |  𝑠 ∈ 𝑆𝑛 ,   𝑌  is an object of   

𝒩 0}.   We assert that𝑆𝑋   is an element of   𝒰.  For any object  𝑌   of    𝒩 0,   let  𝑆𝑌,𝑋 = {𝑠 ∶ 𝑌 → 𝑋,   𝑠 ∈  𝑆𝑛}.  It is clear 

that𝑆𝑋 =   𝑆𝑌,𝑋𝑌     and   𝑆𝑌,𝑋 =   𝑆𝑛 ∩ 𝑀𝑜𝑟𝒩 0
(𝑌, 𝑋).  Since  𝒩 0  is a small   𝒰-category, 𝑀𝑜𝑟𝒩 0

(𝑌, 𝑋)   belongs to  𝒩 0  and so 

does   𝑆𝑌,𝑋,   being a subset of   𝑀𝑜𝑟𝒩 0
(𝑌, 𝑋).  Therefore, the set    𝑆𝑋, being a union of sets all belonging to   𝒰  and 

indexed by the objects    𝑌   of  𝒩 0   (which is  a subset of   𝒰)  is itself in   𝒰.In view of Proposition 2.2 and Remark 2.3, 
there exists a lifting   𝑓𝑠 ∶  𝑋𝑛  → 𝑌   of   𝑢  such that   𝑠𝑓𝑠 =  𝑢𝑛where   𝑠 ∈ 𝑆𝑋  is arbitrary,  𝑢𝑛   is the map as constructed in 

Proposition 2.2.  This completes the proof of the Proposition 2.4.                                                                                   

Corollary 2.5.𝑢𝑛  ∈  𝑆𝑛and with respect to any𝑠 ∈  𝑆𝑋,     𝑢𝑛has couniversal property. 

3.   Existence of Adams cocompletion in 𝓝 𝟎. 

Since the category  𝒩 0as stated above is neither complete nor small, the dual of Theorem 2.6 [7]   nan not be used to 

show the existence of Adams cocompletion of an object in the category𝒩 0  with respect to the set of morphisms   𝑆𝑛 .The 

following theorem shows that under certain conditions the Adams cocompletion of an object in the category   𝒩 0   always 
exists; the theorem is  essentially the dual of Theorem 4.7  [1] and dual of Theorem 3.8 [2] (it is also a generalization of the 
dual of the  Theorem in [7]). 

Theorem  3.1.Let    𝒰    be a fixed Grothendieck universe.  Let     𝒞  be the category defined as follows :  the objects 

of    𝒞     are connected based    nilpotent spaces  whose underlying sets are elements of   𝒰;   the morphisms of   𝒞   are 

based homotopy classes of based-point preserving maps between such based nilpotent spaces. Let   𝑆   be a family of 

morphisms of     𝒞   admitting a calculus of right fractions and satisfying the following axioms of compatibility with products : 

(P)    If   𝑠𝑖 ∶  𝑋𝑖  →  𝑌𝑖 lies in  𝑆   for each   𝑖 ∈ 𝐼,   where the index      set   𝐼     is an  element of     𝒰,   then  

 𝑠𝑖

𝑖∈𝐼

 ∶   𝑋𝑖 →  𝑌𝑖

𝑖∈𝐼𝑖∈𝐼

 

           lies in  𝑆. 

Assume that the family    𝑆   and the object   𝑋  of   𝒞   satisfy the condition : 

(∗)There exists a subset   𝑆𝑋   of the set   𝑠 ∶  𝑋′  →  𝑋    𝑠 ∈ 𝑆}such that   𝑆𝑋   is   an element of the universe   𝒰    and for 

each   𝑠 ∶  𝑋′  →  𝑋, 𝑠 ∈ 𝑆,  there exist an   𝑠 ′   ∶   𝑋′′  →   𝑋    in   𝑆𝑋  and a morphism    𝑢 ∶  𝑋′′  → 𝑋′  of    𝒞  rendering 

the following diagram is commutative : 

𝑋′
𝑠
→ 𝑋

𝑢 ↑             ↗ 𝑠 ′

𝑋′′

 

Then the Adams cocompletion   𝑋𝑆  of   𝑋  does exist. 

As remarked by Adams of page 34 of [2] this result remains valid if 𝒞  is the homotopy category of 0-connected based 

nilpotent spaces (whose underlying sets belong to  𝒰). It is to be emphasized that condition (∗) is essential in order to be 

able to apply E.H. Brown’s representability theorem to prove this result. 

From the Propositions 2.1, 2.2  and   2.4 and Remark2.3, we note that the conditions of Theorem 3.1 are satisfied and so 
by Theorem 1.2,  we obtain the following theorem. 

Theorem  3.2.  Every object𝑋of the category𝒩 0  has an Adams cocompletion𝑋𝑆𝑛
with respect to the set of 

morphisms𝑆𝑛and there exists a morphism𝑒𝑛  ∶   𝑋𝑆𝑛
→   𝑋 in𝑆 

𝑛which is couniversal with respect to morphisms in𝑆𝑛 . 
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Proposition 3.3.  The morphism𝑒𝑛 :  𝑋𝑆𝑛
 →   𝑋 as constructed in Theorem3.2is in𝑆𝑛 . 

Proof.   The proof follows from the dual of Theorem 1.3   [4].  We take  𝑆𝑛
1 =  𝛼 ∶  𝑋 →  𝑌   𝑖𝑛  𝒩 0 𝛼∗ ∶  𝜋𝑚  𝑋; ℤ 𝑘ℤ   →

 𝜋𝑚  𝑌; ℤ 𝑘ℤ  is a monomorphism for   𝑚 ≥ 𝑛}  and 𝑆𝑛
2 = {𝛼 ∶ 𝑋 →  𝑌  𝑖𝑛  𝒩 0   |   𝛼∗ ∶  𝜋𝑚  𝑋; ℤ 𝑘ℤ   →  𝜋𝑚  𝑌; ℤ 𝑘ℤ                                                                             

is an epimorphism for   𝑚 ≥ 𝑛 + 1}.   Clearly   (a) 𝑆𝑛 = 𝑆𝑛
1 ∩ 𝑆𝑛

2  and  (b)  𝑆𝑛
1    and     𝑆𝑛

2    satisfy all  conditions of  Theorem 

1.2;  hence 𝑒 ∈ 𝑆𝑛 . This completes the proof of the Proposition 3.3.                

4.A primary decomposition of a 0-connected based nilpotent space.  

Now we obtain the primary decomposition of a 0-connected based nilpotent space with the help of the set of morphisms   
𝑆𝑛  as described below. In fact the different stages of the Cartan-Whitehead decomposition of a 0-connected nilpotent 

space are the Adams cocompletions of the space with respect to the sets of morphisms    𝑆𝑛 .  In the process, starting from 

a 0-connected based nilpotent space  𝑋  we get a tower of spaces,  

⋯ →  𝑋𝑛+1

𝜃𝑛+1
   𝑋𝑛  → ⋯ → 𝑋1

𝜃1
→ 𝑋0 

and the direct limit of this tower gives us a space which in some sense is the Cartan-Whitehead decomposition of  𝑋. First 

we prove the following proposition. 

Proposition  4.1.𝑋𝑛 ,  as constructed in the proof of    Proposition   2.2,  is homotopically equivalent to 𝑋𝑆𝑛
,  as 

constructed in  Theorem3.2. 

Proof.  By the couniversal property of  𝑢𝑛 ∶  𝑋𝑛  → 𝑋  we have a  map   𝑠 ∶     𝑋𝑛    →  𝑋𝑆n
such that  𝑒𝑛𝑠 =  𝑢𝑛 .  By the 

couniversal property of    𝑒𝑛 ∶  𝑋𝑆𝑛
 → 𝑋  we have a map  𝑡 ∶  𝑋𝑆𝑛

 →   𝑋𝑛    such that  𝑢𝑛𝑡 =  𝑒𝑛 .  Thus𝑢𝑛 =  𝑒𝑛𝑠 =  𝑢𝑛𝑡𝑠implies 

that  𝑡𝑠 =  1𝑋𝑛
and 𝑒𝑛 =  𝑢𝑛 𝑡 =  𝑒𝑛𝑠𝑡implies  that  𝑠𝑡 =  1𝑋𝑆𝑛

and the required homeomorphism between    𝑋𝑛   and   𝑋𝑆𝑛
   is 

obtained.  This completes the proos of Proposition 4.1. 

Theorem 4.2.  Let   𝑋be a    0-connected based   nilpotent space. Then for   𝑛 ≥ 3,   there exist   0-connected based 

nilpotent spaces     𝑋𝑛 , maps𝑒𝑛 :  𝑋𝑛   →   𝑋  andfibrations  𝜃𝑛+1   ∶  𝑋𝑛+1   →    𝑋𝑛such that 

(a) 𝑒𝑛 ∗  ∶    𝜋𝑚  𝑋𝑛 ; ℤ kℤ   →   πm (X; ℤ kℤ )is an isomorphism form > 𝑛andπm Xn ; ℤ kℤ  = 0form ≤ n, 

(b) en+1 = en ∘ θn+1. 

Proof.  For each integer   n ≥ 3,   let    Xn    be the   Sn-completion of    X   and    en  ∶  Xn   →   X   be the canonical map 

as stated in Theorem 3.1.  Since   en ∈ Sn ⊂ Sn+1,   it follows from the couniversal property of  en+1  that there exists a 

unique morphism  θn+1 ∶   Xn+1   →   Xn   such that  en+1 = en ∘ θn+1,    i.e., the following diagram is commutative: 

 

θn+1

Xn+1

en +1
   X

↓             ↗ en

Xn

 

The maps   θn    can of course be replaced by fibrations in the usual manner. Since en   ∈   Sn , en∗
 ∶     πm Xn ; ℤ kℤ    →

   πm (X; ℤ kℤ )is an isomorphism for  m > 𝑛;  it is already proved in Proposition 2.2  that  πm Xn ; ℤ kℤ  = 0   for  m ≤ n.   

This completes the proof of the Theorem 4.2.                                                                               
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