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ABSTRACT 

The purpose of this paper is to investigate the use of rational Chebyshev (RC) functions for solving higher-order linear 
ordinary differential equations with variable coefficients on a semi-infinite domain using new rational Chebyshev 
collocation points.  This method transforms the higher-order linear ordinary differential equations and the given conditions 
to matrix equations with unknown rational Chebyshev coefficients. These matrices together with the collocation method 
are utilized to reduce the solution of higher-order ordinary differential equations to the solution of a system of algebraic 
equations. The solution is obtained in terms of RC series. Numerical examples are given to demonstrate the validity and 
applicability of the method. The obtained numerical results are compared with others existing methods and the exact 
solution where it shown to be very attractive and maintains better accuracy. 
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1- INTRODUCTION 

The well-known Chebyshev polynomial of first kind )( xTn [1] are orthogonal with respect to the weight-function 

  21/1 xxw   on the interval [-1, 1], and the recurrence relation is 

              
                                              nxTxTxxTxxTxT nnn 1)()(2)(,)(,1)( 1110    

These polynomials have many applications in numerical analysis, and a lot of studies are devoted to show the merits of 
them in various ways. One of the applications of Chebyshev polynomials is the solution of ordinary differential equations 
with boundary conditions [1, 2]. Many studies are considered on the interval [-1, 1] in which Chebyshev polynomials are 
defined. Therefore, this limitation causes a failure of the Chebyshev approach in the problems that are naturally defined on 
larger domains, especially including infinity. Under a transformation that maps the interval [-1,1] into a semi-infinite domain 

),,0[  Boyd [3, 4].  Also Parand et al. [5, 6],  Sezer et al. [7, 8] and Ramadan et al. [9, 10] successfully applied spectral 

methods to solve problems on open semi-infinite intervals. In their studies, the basis functions called rational Chebyshev 

functions )(xRn  and defined by 
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The advantage of this method is applied spectral method to solve problems on semi-infinite intervals and deals directly 
with infinite boundary without singularities. 

3- Properties of the rational Chebyshev (RC) functions            

The rational Chebyshev functions are orthogonal in the interval ),,0[   with respect to the weight function 

))1((1)( tttw  and can be determined with the aid of the recurrence formulae 

    (2)         
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If we use the expression  
x

-x
 v=

1

1


in the RC function (2), we have 

                                  
TCxVxR )()(                                                                    (3) 

where R (x) and V (x) are matrices of the form:  

                                   )(...)()()( 10 xRxRxRxR N   

                                   )(...)()()( 10 xvxvxvxV N  

and 
TC is a matrix with its inverse given by 
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In this case, we are going to use the last row for odd values of N, and the second row from below of matrix 
1C . 
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  For example, in the cases N = 3 and N = 4, the matrix C becomes 




















































80801

04030

00201

00010

00001

                                    , 

4030

0201

0010

0001

CC  

Consequently, the
th

j  derivative of the matrix )(xR , can be obtained as 
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4.  Problem statement 

The form of higher-order linear non-homogeneous differential equations with variable coefficients in semi-infinite domain is 



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)( ),()()(          ,0  x                                               (5) 

with the mixed conditions 
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where the )(xPk  and )(xf  are continuous functions on the interval ),,0[   j

k

ij bd   , and i  are appropriate constants 

or jb  may tends to  . 

Now, we consider that the approximate solution )(xyN  to the exact solution )(xy  of Eq. (5) as 
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substituting the relation (4) into expression (8), we have the the scheme of the (k)th-order derivative of the solution 

function )(xyN  of the higher-order differential equations as 

     A,(x)CV(x)y T(k)(k)
N                                                                         (9)                             

5. Fundamental matrix relation based on collocation points 

Let us define the collocation points, so that ,0  ix  as 
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and at the boundaries         ,0,,0 0  NxxNii since the RC functions are convergent at one both boundaries 

 , the appearance of infinity in the collocation points does not cause a loss in the method. 

Then, we substitute the collocation points (10) into Eq. (5) to obtain 
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The system (11) can be written in the matrix form  
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By putting the collocation points ix  in (9), we have the system 
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And the fundamental matrix will be in the form 
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Next the corresponding matrix form for the condition can be written as follows 
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5- Main Results 

The fundamental matrix Eq. (14) for Eq. (5) corresponds to a system of (N+1) algebraic equations for the (N+1) unknown 

coefficients .,...,, 10 Naaa   

One writes Eq. (14) in short form as:  

                                       WA=F or [W; F]                                                           (16) 

so that 
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We can obtain the matrix form for the mixed conditions (6), by means of Eq. (2), briefly, as 
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Now, the solution of Eq. (5) under the conditions (6) can then be obtained by replacing the rows of matrices (17) by the 
any m rows of the matrix (16), we get the required augmented matrix 
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If rank ,1]
~
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 NWrankW F then we can write the matrix equation (16) as:  

F
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and therefore the coefficients na  ; n =0, 1,…, N  are uniquely determined by Eq.(18)  

6- Test Examples 

Example 1 

Let us consider the following two point boundary value problem [9] 
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For this example we have, 
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Then, for N = 2, the collocation points are   

                               ,0,1, 210  xxx   

and the fundamental matrix equation of problem is   

                             FVPVPVP  ACCC TTT }{ )2(
2

)1(
1

)0(
0   

Following the procedure in Section (5), we find the matrix in (18) for N = 2 as: 
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Therefore, we find the solution 
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which is the exact solution of Example 1. 

Example 2  

Whittaker’s equation eigenproblem [3] 
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where   is the eigenvalue is a special case of  Whittaker’s equation. The exact solution is  )(15.0 yxLey n
x  where  

0,  nn     is an integer where
1
nL is the associated Laguerre polynomial of first order and degree n.   

In special case ,1  Whittaker’s equation take a form  
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the exact solution is 
xexy 5.0)(   with 0)(,1)0(  xyy  when x . 

We applied the RC collocation method and solved this problem.  In Table 1, 2 the resulting values for N = 12, 30 and 50 

using the present method together with the exact values of 
xexy 5.0)(   are tabulated. The error decreases when the 

integer N is increased. The computing of the norms 2L and L in interval ]4,0[x given in Table 3 where  
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In addition the absolute errors for various N are plotted in Fig.1. 

Table 1    Comparison between Exact solution and approximate solutions obtained by present method for )(xy of 

Example 2 

x Exact solution Present method 
N=12 

Present method 

N=30 

Present method 

N=50 

0 1 1 1 1 

0.2 0.904837418 0.904841460 0.904837421 0.904837355 

0.8 0.670320046 0.670350945 0.670320040 0.670319999 

1.2 0.548811636 0.548736621 0.548811594 0.548811597 

1.8 0.406569659 0.406632096 0.406569500 0.406569632 

2.2 0.332871083 0.333023241 0.332871381 0.332871061 

2.8 0.246596963 0.246624962 0.246596581 0.246596946 

3.2 0.201896517 0.201767625 0.201897064 0.201896505 

3.8 0.149568619 0.149258878 0.149568646 0.149568608 

4.2 0.122456428 0.122090995 0.122455511 0.122456423 

4.8 0.090717953 0.090341728 0.090717443 0.090717944 
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Table 2   Comparison between absolute error functions obtained by present method for 

)(xy of Example 2 for N=12, 30 and 50 

x 
12e  30e  50e  

0 0 0 0 

0.2 4.04215e-006 3.02671e-009 6.25568e-008 

0.8 3.08992e-005 5.12635e-008 4.60875e-008 

1.2 7.50144e-005 4.20386e-008 3.85997e-008 

1.8 6.24372e-005 1.59395e-007 2.71621e-008 

2.2 1.52157e-004 2.97549e-007 2.24228e-008 

2.8 2.79987e-005 3.82429e-007 1.74667e-008 

3.2 1.28892e-004 5.46065e-007 1.25714e-008 

3.8 3.09741e-004 2.70375e-008 8.62534e-009 

4.2 3.65432e-004 9.17214e-007 5.30536e-009 

4.8 3.76224e-004 5.09952e-007 8.83256 e-009 

 

Table 3 comparing the 2L and L in interval ]4,0[x  

N 
2L  L  

12 5.37104e-006 3.43829e-004 

30 1.66144e-011 7.18677e-007 

50 1.40474e-015 6.58175e-008 

 

 

Example 3 

Laguerre eigenproblem [3] 

                          0)()()1()(  xyxyxxyx 
 

has the exact eigensolutions 
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Fig.1  the absolute errors for N = 12, 30 and 50 
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where )(xLn  are the usual Laguerre polynomials and the boundary conditions are   

" natural" at both endpoints where 1)(,1)0(  xyy  when x  

Following the procedures in the previous examples, we obtain the solution for N =2 of this equation when ,0 in the 

form    001A . 

Therefore, we find the solution ,1)( xy which is the exact eigensolution of Example 3. 

7- Conclusion 

 In this paper a rational Chebyshev (RC) collocation method is investigated. The definition of the RC functions with new 
collocation points introduced to solve higher-order linear ordinary differential equations with variable coefficients in semi-
infinite interval. The proposed differential equations and the given conditions were transformed to matrix equation with 
unknown RC coefficients.  This technique is considered to be a modification of the similar presented in [7-10]. On the other 
hand, the RC functions approach deals directly with infinite boundary without singularities. This variant for our method 
gave us freedom to solve differential equations with boundary conditions tends to infinity. In addition, an interesting feature 
of this method is to find the analytical solutions if the equation has an exact solution that is a rational functions. Illustrative 
examples are used to demonstrate the applicability and the effectiveness of the proposed technique. The method can be 
extended for the case of systems of linear differential equations with variable coefficients which is under investigation by 
the authors. 
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