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ABSTRACT 

A generalisation,  f-norm, of the concept of norm as defined in Functional Analysis is introduced.  The norm of x is 

 times the norm of x .  In the definiton of the  f-norm, this requirement is relaxed, so that the f-norm of x  is )(f  

times the f-norm of x , where f is a function satisfying certain properties, which are presented. Examples of f-norms are 

given, the metric induced by an f-norm is considered and results concerning continuity of certain functions obtained.  Sets 
that are convex with respect to an f-norm are studied.  Limits with respect to the  f-norm are also considered.  
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1.  INTRODUCTION 

The concept of norm is fundamental in Mathematics and various types of norm are used according to the requirements in 
different areas.  It is well known that norms have been used extensively in the study of functions.  New types of norm 
continue to be introduced periodically. Urbanski [7] gave a generalization of the Koshi-Shimogaki and Amemiya’s norm 

defined in a modular space over a field with valuation.  Lee and Verleysen [2] considered a generalization of the pL norm 

suitable for time-series data with particular regard for the temporal structure.  Ramsey and Silverman [4] and Roni, 
Delannay, Conan-Guez and Verleysen [5] also took the temporal structure of data into account.  Hatami [1] studied 
generalizations of Gower’s norm, which are defined in terms of integrals. He obtained conditions on the structure of 
integrals which corresponds to norm functions.  Matkowski [3] gave some results about a functional which becomes the 

normpL  under certain conditions.  

One of the conditions that a norm must satisfy is that the norm of x be equal to x . In this paper, we introduce a 

generalization of the concept of norm, namely, the f-norm, which eliminates the strict requirement that the norm of x be 

equal to the modulus of lambda times the norm of x.  We require instead that the norm of x be equal to a function f of 

lambda times the norm of x. We present some properties of this function, provide examples of f-norms, consider the metric 
introduced by an f-norm and obtain results concerning continuity of certain functions.  Many of the results presented in this 
paper are generalizations of known results about norms.  In some cases, the proofs in this paper are quite similar to proofs 
of corresponding results about norms, but in other cases, the proofs presented here are significantly different.  Basically, 
our purpose is to consider how results that are given with respect to the usual norm may be modified when the norm is 
replaced by the f-norm. 

2. Definitions and Notations 

Notation 2.1.  ₵ represents the set of complex numbers and   represents the set of real numbers. 

Definition 2.2.  An f-norm on a real or complex linear space  is a non-negative real-valued function   on with the 

following properties: 

(I)                     xxx ,00)(  

(II)                     xRxfx  and ),()(   

(III)                 yxyxyx ,),()()(   

where f is a continuous, real-valued monotone-increasing function on the non-negative real numbers such that the 
gradient of f is positive and non-increasing. 

Notation 2.3.  (c.f. page 54, III, Simmons [6]). Let   be an f-norm on a space  , and let   

                   yxyxyx ,),(),(   

Definition 2.4. (c.f. page 24, Yosida [8]) Let )(x be an f-norm on X, c be any positive number and  

                  .1,},)({  nnncxXxM cn   

(i)  cM is called convex if cMyx , and 10   cMyx  )1(   

(ii)  cM is called k-convex if cMyx , and 10   kcMyx  )1(   

(iii)  cM is called balanced if  cMx and 1  cMx  

(iv)  cM is called absorbing if for any .0, 1

cMxXx  
 

Notation 2.5.  (c.f. page 30, Yosida [8])  Given an f-norm  and the induced metric  , the convergence    

0),(lim 


xxn
n


 
on an  f-normed space X will be denoted by xxn

n



lim  and we say that  nx  converges 

strongly to x.  
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3. Properties of the function f 

Theorem 3.1.  If  is an f norm with respect to a function f, then  f must satisfy the condition  

             0,,),()()(   Rfff
 

Proof.     

    0 and 0,R, and 0),()()(   xxxxxx . 

Therefore        )()()()()()( xfxfxf    

Therefore           )()()(  fff       

Theorem 3.2. 0)0( f  

Proof.      For )()0()0(,0 xfxxx    

Therefore               0)()0( xf   

Therefore                  )0(f 0    

Theorem 3.3.  1)1( f  

Proof.  )()1(,0For xxx    

Therefore              )()()1( xxf    

Therefore                  1)1( f    

Theorem 3.4.   .1,)(  aaaaf  

Proof.  Suppose that bbf )(  for some 1 bb .  Let A be the point (1,1) and B be the point  .)(, bfb    

Then gradient of AB .1
1

1

1

1)(












b

b

b

bf
 

Hence there exists some value bcc 1 ,and the gradient of the graph of )(xfy   at the point  )(, cfc = 

gradient of AB >1. 

Hence the gradient of this graph >1 for all point of [0,1], and so (1,1) cannot be on the graph.  However, we know that (1,1) 

is on the graph and hence .1,)(  aaaf            

4. The metric induced by the f-norm 

Theorem 4.1       2121 xxxx     (cf Proposition 1, page 23 Yosida [8]) 

Proof.               1221221 xxxxxxx    

Therefore                         (I)  2121 xxxx                     

From Theorem 3.3       1221 )1( xxxx      121 xxf                            

                           12 xx       12 xx        from (I) 

Therefore               2121 xxxx                    

 

The following corollary follows immediately.(cf page 212, Simmons [6]) 

Corollary 4.2.   is continuous. 
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The following theorem is a generalization of a well-known result relating metrics to norms, (cf Simmons [6] page 54) 

Theorem 4.3.    is a metric on  .  

Proof.  satisfies the conditions to be a metric as shown below.  

(1)                    0)(),(  yxyx   

   Also         yxyxyxyx  00)(0),(    

(2)       )(1)])(1[()(),( yxfyxyxyx    

                          )()])(1[()(1 xyyxyxf    

                        ),( xy  

(3)      )()(),( zyyxzxzx    

                         ),(),()()( zyyxzyyx                      

                        

The next two theorems are based on Proposition 4, page 25, Yosida [8].  

Theorem 4.4.  Let be a real or complex linear space and let  be an f-norm on  , and let g be a mapping 

on  given by 

                     yxyxg ),( .  

Then g is a continuous,  - valued mapping on .    

Proof.  Given a fixed point ),,( 11 yx  let ),( 22 yx be a close, variable point.  Then 

                      22112211 ,,,, yxyxyxgyxg     

                   21212211 yyxxyxyx    

Given 0, choose ,0 21    .
2

 and 
2

21





     

Then    121   xx and    221  yy       2211 ,,, yxgyxg  

Hence g is continuous on .  

Theorem 4.5.  If  is an f-normed space with f-norm , then the  -valued mapping given by        

                        xxg  ),(  

is continuous. 

Proof.       2211 ,, xgxg   2211 xx    22121211 xxxx    

         212121 xxx          212121 xxfxf    

Given ,0 and , 11  x , choose ,  and 22 x  
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                 
 1

21
2 x

f



   and  

 2

21
2 




f
xx  . 

Then                       .,, 2211   xgxg       

 

Hence g is continuous.  

5. Examples of f-norms 

Example 5.1. The f-norm described here is similar to the norm on pL spaces (c.f.  Simmons [6], page 215).  Let 

)(SLp
be the set of real-valued, continuous functions g defined on an interval S of the real-numbers 

p
xg )(  is 

integrable over S.  Also, let     

                        
p

S

p
dxxgfg

1

)()(












  , 

where f satisfies the conditions: 

(i) .,),()()(  xxffxf   

(ii) f  is a continuous, real-valued function on the non-negative real numbers 

(iii)  the gradient of f  is non-increasing 

Then   is an f-norm, since 

(I)                    0)(g   00)(  gxgf  

(II)                   
p

S

p
dxxgfg

1

)()(












    
p

S

p
dxxgff

1

)()(












    

                           )()()()(

1

gfdxxgff

p

S

p
 













   

(III)      dxxhxgf
p

S

  )]()([  dxxhxgfxhxgf
p

S

)()()()([
1




  

          dxxhfxgfxhxgf
p

S

)()()]()([
1




  

       

 dxxgfxhxgf
p

S

)()()([
1

   dxxhfxhxgf
p

S

)()()([
1

 

 

         
p

S

pp
dxxhxgf
















 

1

)1(
)()(

p

S

p
dxxgf

1

)]([












  

              
p

S

pp
dxxhxgf
















 

1

)1(
)()(

p

S

p
dxxhf

1

)]([












  
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              from Holder’s Inequality, where ppp  )1(  

Hence         
p

S

p
dxxhxgf

1

)()(












  
p

S

p
dxxgf

1

)(












   
p

S

p
dxxhf

1

)(












   

That is                      )()()( hghg           

Example 5.2.  Let g be a continuous, real-valued function defined on the real numbers, and let the norm of g be given 

by        

                  

b

a

badxxgg .0  where,)()( 2

1



     

Then  

(i)               0)(0)(  xgg  

(ii)               

b

a

dxxgg 2

1

)()(    )()( 2

1

2

1

2

1

gdxxg

b

a

    

(iii)           )( hg     

b

a

b

a

dxxhxgdxxhxg 2

1

2

1

)()()()(  

                         

b

a

b

a

dxxhdxxg 2

1

2

1

)()( = )()( hg    

Hence  is an f-norm, where 2

1

)(  f . 

The following theorem provides with a way to obtain f-norms by choosing the function f in a suitable manner. (c.f. page 
215 Simmons [6]). 

Theorem 5.3.  Let f be a function on the real numbers satisfying the following properties: 

(i)   ,),()()( fff  

(ii)  1)1( f  

(iii)  T he gradient of f 0  

(iv)  The gradient of f is non-increasing. 

(v)          ,,fff ₵ 

Let               1,)(

1

1










 


pf
pn

i

p

ipf  x , where   n ,...,, 21x ₵
n

 

Then pf  is an f-norm. 

Proof.  

(I)      .,...,2,1,00)( nif ipf   x nii ,...,1,0,0  0x     

(II) 
    

pn

i

p

ipf f

1

1

)(








 


 x     
pn

i

p

iff

1

1 







 


  
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                               
pn

i

p

iff

1

1 







 


   )(xf    

(III) Let    n ,...,, 21y  

     )( yxpf   
pn

i

p

iif

1

1 










   
pn

i

p

iif

1

1 







 


  

            
pn

i

p

ii ff

1

1 







 


   
pn

i

p

if

1

1 







 


   
pn

i

p

if

1

1 







 


   

 

          )()( yx pfpf    

Hence pf  is an f-norm.□ 

6. Convex Sets 

The next two theorems are based on Proposition 2, page 24, Yosida [8]. 

Theorem 6.1. Let  be an f-norm on the space X and let c be any positive number.  Then the set  

 1,,)(  nnncxXxM cn   has the following properties: 

(i)  cM0    

(ii)  cc MyxMyx 2)1(10,,    

    (That is, cM  is 2-convex). 

(iii)  ckc MykxkkMyx  )(1 and1,,    

(iv)  cM is balanced. 

(v)  cM is absorbing. 

Proof. 

(i)   c 0)0( .  .0 cM  

(ii)     ])1[()()1( yxyx   )()1()()( yfxf    

                   cff )]1()([   cc 2)11(   

   since f is monotone increasing and so 1)1()(1  ff   

   and similarly  1)1( f      

(iii)       ])[()()()( ykxykx    

                       )()()()( ykfxf   ckff )]()([    

                       kcck  )]([   

    Therefore   kcMykx  )(   

(iv)    .)()()( cxxfx    
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(v)  Given ,Xx  let  be so large that  
)(

1

x

c
f


 

.   

    Then           cx 1  

 

   Therefore   cMx 1 . 

Theorem 6.2.    
 1

,0 1
inf)(


 





 f

c
x

cMx
 

Proof.      cxMx c   11    cxf   )(1 
 1

)(






f

c
x     

and the result follows. 

7. Limits 
The next three theorems are based on Proposition 1, page 31, Yosida [8] 

Theorem 7.1.  In a space with an f-norm  , we have 

                      )(limlim xxxx n
n

n
n

 


 

Proof.  Assume that xxn
n




lim . 

Given              N,0 Nnxxn  ,),(   

             xxxx nn   )(   .,, Nnxxn    

                     )(lim xxn
n

 


    

 

Theorem7.2. xxn
n




lim and 


yyn
n
lim   yxyx nn

n



lim  

Proof.  Assume that  xxn
n




lim and yyn
n




lim
 

Then given  N,0  
2


  xxn  and   Nnyyn  ,

2


 . 

     yxyx nn     yyxx nn     yyxx nn   ., Nn   

  yxyx nn
n




lim   

Theorem 7.3.  


n
n
lim and xxn

n



lim xxnn

n
 


lim ,where n and .nx  

Proof. Assume that  


n
n
lim and xxn

n



lim . 

Then 00 MM n   and .,)( 0 nMx    

Since }{ n converges and f is continuous,   nf   also converges and so  is bounded.  Hence 

  .0 11 nMfM n    
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Let                       10 ,max MMM  . 

Now               
M

f nn
2

0 11


  . 

Also              111 0   nNnN  

and                .
2

0 22
M

xxNnN n


   

Hence  21,max NNNn   

   nnnn xxxx  ,    nnnn xxxx    

                           nnn xxfxf   )(  

                      



M

MM
M 22

 

xxnn
n

 


lim                              
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