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ABSTRACT

The aim of this paper is to give some extensions Hardy integral inequalities for sum and product of several functions and
their analogues inequalities on finite interval. Some direct consequences are established. Also a partial answer of an open
problem posed by Sroysang is obtained.
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1. INTRODUCTION

In 1920, Hardy (see [1]) presented the following inequality

+00

f (@)p dx < (ﬁ)p T £P (x)dx, (1.1)
0 0

X

F(x) = f f(t)dt.

0

where f >0, p > 1 and

p
The constant (ppj) is the best possible. This inequality is important in mathematical analysis and its applications.

In 1964, Levinson (see [2],[3]) presented the following analogue of Hardy’s integral inequality on finite interval[a, b]

b b
F(x)\® p
j (Q> dx < (L) f £ (x)dx, (1.2)
X -1
a a
where0 <a<b < +o,f>0, p>1and
F(x) = f f(t)dt.
0
In 2006, Bougoffa (see [4]) prove the following theorem about Hardy’s integral inequality for several functions.
Theorem 1.1.Letf;,f,, -, fbe nonnegative integrable functions. DefineF(x) = fax fi (t)dt, where k = 1,2, -+, i.
Then for p > 1, we have
7 FLG0F200 -+ GOy i
X X) oe- i X i p
f ( — ) dx < (p%l) J (F,(0) + £, () + -+ £,(0)Pdx. (1.3)
0

The main purpose of this paper is to give several extensions Hardy integral inequalities for sum and product of several
functions and their analogues inequalities on finite interval [a, b] using Levinson’s integral inequality (1.2). Some direct
consequences are established. Special case obtained give a partial answer of an open problem posed by Sroysang in
2014(see [3]).

2. MAIN RESULTS

Throughout this section, functions are assumed to be integrable. Let
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F(x) = f(i fi(t)) dt, Gx) = f(i gi(t)) dt. (2.1)
0 i=1 0 i=1

Now, we are in position to prove the following theorem for sum of several functions.

Theorem 2.1.Let0 <Y, f < ¥™, g and X, ginonidentically zero, for all x € [0, +oo[. Define F(x), G(x) by (2.1). Then

+oo too
FP(x) p—q \P ¢ B
Of G0 = (m) Of @71 (dx, (2.2)

where @(x) = x(ZL; g(x) +Gx), p—q>1, p>0.

Proof.Let 0 < Y, f; < Y™, g; and X2, g;nonidentically zero, for all x € [0, +o[. Then, for all p > 0, 0 < FP(x) < GP(x).By
using inequality (1.1) we get

+o0 +oo +oo o
_Fp ® GP(x) G*(x) P p—q \P ¢ B
bf GI(%) dx < Of Ga (x) ———dx Of ( " > dx < (m> Of QP9 (x)dx,

whereG*(x) = xG(x) and o(x) =xQ2; gx) +G6Gx), p—q>1, p>0.m

Analogue of Theorem 2.1 on finite interval [a,b],0 < a < b < + is as follows.

Theorem 2.2.Let0 <YL, f; < ¥™, g and X, g;nonidentically zero, for all x € [a,b],0 < a < b < +oo. Define F(x), G(x)
by (2.1). Then

b

b
B oo

a a

where @(x) = x(Z; g(x) +Gx), p—q>1, p>0.

Proof.Let0 <X, fi < XM, g and X2, g;nonidentically zero, for all x € [a,b],0 < a <b < +o. Then, forallp >0, 0 <
FP(x) < GP(x).By using inequality (1.2) we get

[ acs [0 [(C0) " aes (258 forrcom

where G*(x) = xG(x) and @(x) =xQ2,gx) +G6x), p—q>1 p>0.m

Let
Fr(x) = f(;( f(Odt, G(x) = f(;( gr(t)dtandk =1,2,---,n. 2.4)

Now, we are in position to prove the following theorem for product of several functions.

Theorem 2.3.Let 0 < f, < g, for all k= 1,2,---,n,gxnonidentically zero for all for all x € [0, +o][. Define F,(x),Gc(x) by
(2.4). Then

+o0 n

+o00
(ITg=1 Fe ()P p—q \Pd
RTINS o) Of (Z

k=1

p—q
Px (X)> dx, (2.5)

where @ (x) = nxg, (x)G 1 (x) + GE(x) forallk = 1,2,--,n, p—q > 1, p > 0.

Proof.Let 0 < f, < gy forallk = 1,2,---,n, gynonidentically zero for all for all x € [0, +oo[. Then, forallp >0, 0 <
(IMp=; F ()P < (ITR=; G (x))P. By using Theorem 1.1 we get

too oo, p p—q
(TTh; Fi())P (Hk 1G GO ( )
———dx < Y (x) d

s e =] M eco)™ f H )

+oo p—q

= To <W)% dx < (n(p - 1) P q f (Zn: q)k(x)) dx,
0 =

0
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where @, (x) = x¥,(x) = xG} (x) = fox @(®dt, forallk =1,2,-++,n
After differentiation we get ¢ (x) = nxgy (x)GE(x) + G (x) forallk =1,2,--,n, p—q>1, p > 0. ]
Analogue of Theorem 2.3 on finite interval [a, b],0 < a < b < +x is as follows.

Theorem 2.4.Let 0 < f; < g, for all k =1,2,---,n, g,nonidentically zero for all for all x € [a,b],0 < a < b < +. Define

Fi (), G (x) by (2.4). Then
H b —q
(ITk=1 Fie (x))P p q
J (= GGt = (n(p q_l) f (Z <pk(x)) dx, (2.6)

where @ (x) = nxg, (x)GF 1 (x) + GE(x) forallk =1,2,--,n, p—q>1, p > 0.

Proof.Let 0 < f, < g forall k = 1,2,---,n, g,nonidentically zero for all for all x € [a,b],0 < a < b < +00. Then, for all
p>0,0<(It.; F ()P < ([1¢-; G (x))P.By using Theorem 1.1and inequality (1.2)we get

b b
(i Fie ()P iz G ()"
J M= G GO = J W, GG = f (ﬂ i 00) dx
’ [T @ (x) p g 2/ p—q
k=1 Pr X
f< ) o= (n(p q—1) !(;‘Pk(’c)> dx,
where @, (x) = x¥, (x) = xG} (x) = fo 0p(O)dt, forall k = 1,2,-,n

After differentiation we get ¢ (x) = nxgy (x)GE*(x) + G (x) forallk =1,2,--,n, p—q>1, p > 0. ]

Remark?2. 5.Special case: Theorem 2.3 for k = 1 has the following form

+oo

pP—q _
) f P71 (x)dx, (2.7)
0

+o00
FP —
f 1q(x)dxs< p—q
G (x) p—q-—1

where ¢;(x) =xg1(x) + Gi(x), p—q>1, p>0.

This is a partial answer of an open problem posed by Sroysang in 2014 (see [3]).

Analogue inequality on finite interval[a, b],0 < a < b < 4o, is as follows.

b b
FP(x) p q f
dx < P=4 (x)dx, (2.8)
af 6" (x) p q- 1 ) ”

where ¢, (x) = xg1(x) + G(x), p—q > 1, p > 0.Use Theorem 2.4 for k = 1.

Next, we give some direct consequences of Theorems 2.1,2.2,2.3and 2.4.

3. APPLICATIONS
Corollary3.1.Let0 < Y, f; < 3™, g; and Y2.7-, g;nonidentically zero, for all x € [0, +oo[. Define F(x), G(x) by (2.1). Then

+o00
Of (FOGG)) dx < (szf -

2p+°°2
P (x)dx, (3.1
) Ofw (dx, (3.)

where ¢(x) = x(X g;(x)) + G(x) and p > %
Proof.Let ¢ = —p and use Theorem 2.1. [
Analogue inequality of Corollary 3.1 on finite interval [a, b], is as follows.

Corollary3.2.Let0 < Y, f; < X", g; and Y/L, g;nonidentically zero, for all x € [a,b],0 < a < b < +o. Define F(x), G(x)
by (2.1). Then

2p b
) j(pZP (x)dx, (3.2)

a

b
2
f (F)G(0)) dx < (Zp —
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where @(x) = x(Q%; g:(x)) + G(x) and p > %
Proof.Let ¢ = —p and use Theorem 2.2. ]

Corollary3.3.Let 0 < f;, < gy for all k = 1,2,-+-,n, g,nonidentically zero for all for all x € [0, +o[. Define F, (x), G, (x) by
(2.4). Then

+o0

n +o0 n 2
| (ﬂFk(x)Gk(x))pde(%)zp | (Zwk(x)>pdx.<3.3)
k=1 0 k=1

0
where ¢, (x) = nxg, (x)GEF 1 (x) + G (x) forallk = 1,2,---,nand p > %
Proof.Let ¢ = —p and use Theorem 2.3. [ ]

Corollary3.4.Let f, > 0 for all k = 1,2,-+-,n,and for all x € [0, +o[. Define F,(x) by (2.4). Then
2p +o0 n 2p

s 2
f (ﬂF"(")) dx < <n(2zzap—1))p Of (;‘Pk(x)> dx, (3.4)

where ¢ (x) = nxf, ()FF 1 (x) + Fr(x) forall k = 1,2,--,nand p > E'
Proof.Letf, = g,forall k = 1,2,---,n and use Corollary3.3. u

Corollary3.5.Let0< f, = f < g = g, forall k = 1,2,---,n, gnonidentically zero for all for all x € [0, +oo[.Define

Fx) = f FOdt, G = f g(o)dt.
0 0

Then

+0o0 +oo
FP(0)\" p—q \P7? 7
af (Gq(x)> dxs(m) Of @rT(x)dx, (3.5)

where ¢(x) = nxg(x)6™" 1(x) + G*"(x), p—q>1, p > 0.

Proof.Let0 < fi, = f < g = g forall k = 1,2,---,n, gnonidentically zero for all for all x € [0, +o[. Then F,(x) = F(x) and
G, (x) = G(x)for all k = 1,2,---,n.Using Theorem 2.3, inequality (3.5) follows. m

Remark3. 6.Inequality (3.5) is a generalization of inequality (2.7).
Analogues inequalities for Corollaries 3.3, 3.4 and 3.5 on finite interval are as follows.

Corollary3.7.Let 0 < f;, < g, for all k =1,2,--+,n, g,nonidentically zero for all for all x € [a,b],0 < a < b < +. Define
Fp, (x), G, (x) by (2.4). Then

2p

b n 14 Zp b
| ( Fk<x)ck(x>> ax < ( (2 =) | (Zm(x)) dx, (3.6)

where ¢ (x) = nxg; (x)GE*(x) + G (x) forall k = 1,2,--,nand p > %
Proof.Let ¢ = —p and use Theorem 2.4. [

Corollary3.8.Let f, > 0 forall k = 1,2,---,n and for all x € [a, b],0 < a < b < +. Define F, (x) by (2.4). Then

2p 2p

b, n L b
!(HFk(@) dx < (%) p!(kz_l (pk(x)) dx, (3.7)

where ¢, (x) = nxfi, (X)FP 1 (x) + F}(x) forallk = 1,2,--,nand p > %
Proof.Let f;, = g,forall k = 1,2,---,n and use Corollary3.7. ]

Corollary3.9.Let0 < f, = f < g = g, forall k = 1,2,---,n, gnonidentically zero for all x € [a,b],0 < a < b < +0.Define

X

F(x) = | f(t)dt, G(x) = | g(t)dt.
| |
Then
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’ b
;1[ GZEB) = (%)p—q ! PP9(x)dx, (3.8)

where @(x) = nxg(x)G"1(x) + G"(x), p—q>1, p> 0.

Proof.Let0 < fy =f< g =g, forallk =1,2,---,n,gnonidentically zero for all x € [a,b],0 < a < b < +.Then F(x) = F(x)
and Gy (x) = Gx)for all k = 1,2, ---,n.Using Theorem 2.4, inequality (3.8)holds. m
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