ONE CONSTRUCTION OF AN AFFINE PLANE OVER A CORPS ¹Phd.Candidate.Orgest ZAKA, ²Prof.Dr.Kristaq FILIPI ¹ Department of Mathematics, Faculty of Technical Science, University of Vlora "Ismail QEMALI", Vlora, Albania. gertizaka@yahoo.com Department of Mathematics, Faculty of Mathematical Engineerin ² Department of Mathematics, Faculty of Mathematical Engineering, Polytechnic University of Tirana, Tirana, Albania. f kristaq@hotmail.com #### **ABSTRACT** In this paper, based on several meanings and statements discussed in the literature, we intend constuction a affine plane about a of whatsoever corps $(\mathbf{K}, \oplus, \odot)$. His points conceive as ordered pairs (α, β) , where α and β are elements of corps $(\mathbf{K}, \oplus, \odot)$. Whereas straight-line in corps, the conceptualize by equations of the type $x \odot a \oplus y \odot b = c$, $a \neq 0_K$ or $b \neq 0_K$ the variables and coefficients are elements of that body. To achieve this construction we prove some theorems which show that the incidence structure $\mathbf{A} = (\mathbf{\Pi}, \Lambda, \mathbf{I})$ connected to the corps \mathbf{K} satisfies axioms A1, A2, A3 definition of affine plane. In all proofs rely on the sense of the corps as his ring and properties derived from that definition. **Keywords:** The unitary ring, integral domain, zero division, corps, incdence structurse, point connected to a corp, straight line connected to a corp, affine plane. ### **Academic Discipline And Sub-Disciplines** Mathematics; Geometric Algebra; Affine Plane. ## 1. INTRODUCTION. GENERAL CONSIDERATIONS ON THE AFFINE PLANE AND THE CORPS In this paper initially presented some definitions and statements on which the next material. Let us have sets Π , Λ , I, where the two first are non-empty. **Definition 1.1:** The incidence structure called a ordering trio $A=(\Pi, \Lambda, I)$ where $\Pi \cap \Lambda = \emptyset$ and $I \subseteq \Pi \times \Lambda$. Elements of sets Π we call points and will mark the capitalized alphabet, while those of the sets Λ , we call blocks (or straight line) and will mark minuscule alphabet. As in any binary relation, the fact $(P, \ell) \in I$ for $P \in \Pi$ and for $\ell \in \Lambda$, it will also mark $P I \ell$ and we will read, point P is incident with straight line ℓ or straight line ℓ there are incidents point P. (See [3], [4], [5], [10], [11], [12], [13], [14], [15]). **Definition 1.2.** ([3], [8], [16]) Affine plane called the incidence structure $A=(\Pi, \Lambda, I)$, that satisfies the following axioms: **A1:** For every two different points **P** and $Q \in \Pi$, there is one and only one straight line $\ell \in \Lambda$, passing of those points. The straight line ℓ defined by points P and Q will mark the PQ. **A2:** For a point $P \in \Pi$, and straight line $\ell \in \Lambda$ such that $(P, \ell) \notin I$, there is one and only one straight line $m \in \mathcal{L}$, passing the point P, and such that $\ell \cap r = \emptyset$. **A3:** In \mathcal{A} here are three non-incident points to a straight line. A1 derived from the two lines different of \mathcal{L} many have a common point, in other words two different straight lines of \mathcal{L} or do not have in common or have only one common point. In affine plane $A=(\Pi, \Lambda, I)$, these statements are true. **Proposition 1.1.** ([3], [5]) In affine plane $A=(\Pi, \Lambda, I)$, there are four points, all three of which are not incident with a straight line (three points are called non-collinear). **Proposition 1.2**. ([3], [6],]) In affine plane $A=(\Pi, \Lambda, I)$, exists four different straight line. **Proposition 1.2.** ([3], [8]) In affine plane $A=(\Pi, \Lambda, I)$, every straight line is incident with at least two different points. **Proposition 1.3.** ([3], [9]) In affine plane $A=(\Pi, \Lambda, I)$, every point is incidents at least three of straight line. **Proposition 1.4**. ([3]) On a finite affine plane $A=(\Pi, \Lambda, I)$, every straight line contains the same number of points and in every point the same number of straight line passes. Furthermore, there is the natural number $n \in \mathbb{N}$, $n \ge 2$, such that: - 1) In each of straight line $\ell \in \mathcal{L}$, the number of incidents is points with him is n. - 2) For every point $P \in \mathcal{P}$, of affine plane $A=(\Pi, \Lambda, I)$, it has exactly n+1 straight line incident with him. 3) In a finite affine plane $A=(\Pi, \Lambda, I)$, there are exactly n^2 points. 4) In a finite affine plane $A=(\Pi, \Lambda, I)$, there are exactly $n^2 + n$ straight line. The number n in Proposition 1.4, it called order of affine plane $A=(\Pi, \Lambda, I)$, it is distinctly that the less order a finite affine plane, is n=2. In a such affine plane it is with four points and six straight lines, shown in Fig.1. **Definition 1.3. ([1]).** The ring called structures (B, \oplus, \odot) , that has the properties: - 1) structure (B, \oplus) , is an abelian group; - 2) The second action ① It is associative; - 3) The second action \odot is distributive of the first operation of the first \oplus . In a ring (B, \oplus, \odot) also included the action deduction – accompanying each (a, b) from B, sums $$a \oplus (-b)$$ well $$a \oplus (-b) = a - b$$ **Proposition 1.5** ([1], [7]). In a unitary ring (B, \oplus, \odot) , having more than one element, the unitary element 1_B is different from 0_B . **Definition 1.4** ([1], [2]). Corp called rings (K, \oplus, \odot) that has the properties: - 1) K is at least one element different from zero. - 2) $K^* = K \{0_K\}$ it is a subset of the stable of K about multiplication; - **3)** (K*, ⊚) is a group. THEOREM 1.1. ([2]) If (K, \oplus, \odot) is the corp, then: - 1) it is the unitary element (is the unitary ring); - 2) there is no zero divisor (is integral domain); - 3) They have single solutions in K equations $a \odot x = b$ and $x \odot a = b$, where $a \ne 0_K$ and b are two elements what do you want of K. # 2. TRANSFORMS OF A INCIDENCE STRUCTURES RELATING TO A CORPS IN A AFFINE PLANE **Definition 2.1.** Let it be (K, \oplus, \odot) a corps. A ordered pairs (α, β) by coordinates $\alpha, \beta \in K$, called point connected to the corp K. Sets K^2 of points associated with corps K mark Π . **Definition 2.2.** Let be a, b, c∈K.. Sets $$\ell = \{(x, y) \in K^2 \mid x \odot a \oplus y \odot b = c, a \neq 0_K \text{ or } b \neq 0_K \}$$ (1) called the straight line associated with corps K. Equations $x \odot a \oplus y \odot b = c$, called equations of the straight line ℓ . Sets of straight lines connected to the body K mark Λ . It is evidently that $$\Pi \cap \Lambda = \emptyset$$. **Definition 2.3.** Will say that the point $P=(\alpha,\beta) \in \Pi$ is incident to straight line (1), if its coordinates verify equation of ℓ , This means that if it is true equation $\alpha \odot a \oplus \beta \odot b = c$. This fact write down P∈ {. Defined in this way is an incidence relations #### $I \subseteq \Pi \times \Lambda$, such that $\forall (P, \ell), \Pi I \Lambda \Leftrightarrow P \in \ell$. So even here, when pionts P is incidents with straight line ℓ , we will say otherwise point P is located at straight line ℓ , or straight line ℓ passes by points P. It is thus obtained, connected to the corps **K** a incidence structure $A=(\Pi, \Lambda, I)$. Our intention is to study it. According to (1), a straight line ℓ its having the equation $$x \odot a \oplus y \odot b = c$$, where $a \neq 0_K$ or $b \neq 0_K$. (2) Condition (2) met on three cases: 1) $a \neq 0_K$ and $b = 0_K$; 2) $a = 0_K$ and $b \neq 0_K$; 3) $a \neq 0_K$ and $b \neq 0_K$, that allow the separation of the sets Λ the straight lines of its three subsets Λ_0 , Λ_1 , Λ_2 as follows: $$\mathcal{L}_{\mathbf{0}} = \{ \ell \in \mathcal{L} \mid \mathbf{x} \odot \mathbf{a} \oplus \mathbf{y} \odot \mathbf{b} = \mathbf{c}, \ \mathbf{a} \neq \mathbf{0}_{\mathbf{K}} \ \mathbf{and} \ \mathbf{b} = \mathbf{0}_{\mathbf{K}} \}; \tag{3}$$ $$\mathcal{L}_{1} = \{ \ell \in \mathcal{L} \mid \mathbf{x} \odot \mathbf{a} \oplus \mathbf{y} \odot \mathbf{b} = \mathbf{c}, \ \mathbf{a} = \mathbf{0}_{\mathbf{K}} \ \text{and} \ \mathbf{b} \neq \mathbf{0}_{\mathbf{K}} \}; \tag{4}$$ $$\mathcal{L}_2 = \{ \ell \in \mathcal{L} \mid x \odot a \oplus y \odot b = c, \ a \neq 0_K \text{ and } b \neq 0_K \}. \tag{5}$$ Otherwise, subset \mathcal{L}_0 is a sets of straight lines $\ell \in \mathcal{L}$ with equation $$x \odot a = c$$, where $a \neq 0_K \Leftrightarrow x = d$, where $d = c \odot a^{-1}$; (3') subset \mathcal{L}_1 is a sets of straight lines $\ell \in \mathcal{L}$ with equation $$y \odot b = c$$, where $b \ne 0_K \Leftrightarrow y = f$, where $f = c \odot b^{-1}$; (4') Whereas subset \mathcal{L}_2 is a sets of straight lines $\ell \in \mathcal{L}$ with equation $$x \odot a \oplus y \odot b = c$$, where $a \neq 0_K$ and $b \neq 0_K \Leftrightarrow y = x \odot k \oplus g$; (5') where $k = (-1_K) \odot a \odot b^{-1} \neq 0_K$, $g = c \odot b^{-1}$; Hence the - a straight line $\ell \in \mathcal{L}_0$ is completely determined by the element $d \in K$ such that its equation is x = d, - a straight line $\ell \in \mathcal{L}_1$ is completely determined by the element $f \in K$ such that its equation is y = f and - a straight line $\ell \in \mathcal{L}_2$ is completely determined by the elements $k \neq 0_K, g \in K$ such that its equation is $y = x \odot k \oplus g$. From the above it is clear that $\Pi = \{\mathcal{L}_0, \mathcal{L}_1, \mathcal{L}_2\}$ is a separation of the sets of straight lines \mathcal{L} . **THEOREM 2.1.** For every two distinct points P, Q $\in \Pi$, there exist only one straight line $\ell \in \Lambda$ that passes in those two points. **Proof**. Let $P=(p_1, p_2)$ and $Q=(q_1, q_2)$. Fact that $P \neq Q$ means $$(p_1, p_2) \neq (q_1, q_2).$$ (6) Based on (6) we distinguish three cases: - 1) $p_1 = q_1 \text{ and } p_2 \neq q_2$; - 2) $p_1 \neq q_1$ and $p_2 = q_2$; - 3) $p_1 \neq q_1 \text{ and } p_2 \neq q_2;$ Let's be straight line $\ell \in \Lambda$, yet unknown, according to (2), having the equation $\mathbf{x} \odot \mathbf{a} \oplus \mathbf{y} \odot \mathbf{b} = \mathbf{c}$, where $a \neq 0_K$ or $b \neq 0_K$. Consider the case 1) $p_1 = q_1$ and $p_2 \neq q_2$. From the fact P, $Q \in \ell$ we have: $$\begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ q_1 \odot a \oplus q_2 \odot b = c \end{cases} \Leftrightarrow \begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ p_1 \odot a \oplus p_2 \odot b = q_1 \odot a \oplus q_2 \odot b \end{cases}$$ But $p_1 = q_1$ and $p_2 \neq q_2$, so, from the fact that (K, \bigoplus) is abelian group, by Definition 1.4, we get $$\begin{cases} p_1 \circledcirc a \oplus p_2 \circledcirc b = c \\ p_2 \circledcirc b = q_2 \circledcirc b \end{cases} \Leftrightarrow \begin{cases} p_1 \circledcirc a \oplus p_2 \circledcirc b = c \\ (p_2 - q_2) \circledcirc b = 0_K \end{cases}$$ From above, according to Theorem 1.1, corps K is complete ring, so with no divisor 0_K , results $$\begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ b = 0_K \end{cases} \Leftrightarrow \begin{cases} p_1 \odot a = c \\ b = 0_K \end{cases}$$ From this **a)** if $p_1 = 0_K$, we get $$\begin{cases} 0_{K} \odot a = c \\ b = 0_{K} (a \neq 0_{K}) \end{cases} \Leftrightarrow \begin{cases} c = 0_{K} \\ b = 0_{K} (a \neq 0_{K}) \end{cases}$$ According to this result, equation (2) takes the form $x \odot a = 0_K$, where $a \neq 0_K$, otherwise $$x = 0_K \tag{7}$$ (since, being $a \neq 0_K$, it is element of group (K^*, \odot) , so $x \odot a = 0_K \Leftrightarrow x = 0_K \odot a^{-1} \Leftrightarrow x = 0_K$). **b)** if $p_1 \neq 0_K$, and p_1 is element of group (K^*, \odot) , exists p_1^{-1} , that get the results: $$\begin{cases} a = p_1^{-1} \odot c \\ b = 0_K (a \neq 0_K) \end{cases}$$ under which, equation (2) in this case take the form $$x \odot p_1^{-1} \odot c = c$$, where $a \neq 0_K \Leftrightarrow x \odot p_1^{-1} = 1_K \Leftrightarrow x = p_1$ (7') Here it is used the right rules simplifying in the group $(K^*$, $\circledcirc)$, with $c \neq 0_K$, because $a = p_1^{-1} \circledcirc c$ and $a \neq 0_K$. For two cases (7) and (7') notice that, when $p_1 = q_1$ and $p_2 \neq q_2$, there exists a unique straight line ℓ with equation x = dof the form (3'), so a line $\ell \in \Lambda_0$. Case 2) $p_1 \neq q_1$ and $p_2 = q_2$ is an analogous way and achieved in the confusion and in this case there exists a unique straight line ℓ with equation y = f of the form (4'), so a line $\ell \in \Lambda_1$. Consider now the case 3) $p_1 \neq q_1$ and $p_2 \neq q_2$. From the fact P, Q $\in \ell$ we have: $$\begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ q_1 \odot a \oplus q_2 \odot b = c \end{cases} \Leftrightarrow \begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ p_1 \odot a \oplus p_2 \odot b = q_1 \odot a \oplus q_2 \odot b \end{cases}$$ (8) The second equation can be written in the form $$(p_1 - q_1) \odot a = (q_2 - p_2) \odot b$$, that bearing $a \neq 0_K$ and $b \neq 0_K$ (9) Regarding to the coordinates of point P we distinguish these four cases: a) $p_1 = 0_K = p_2$. This bearing $q_1 \neq 0_K$ and $q_2 \neq 0_K$. In this conditions (8) take the form $$\begin{cases} c = 0_K \\ a = -q_1^{-1} \odot q_2 \odot b \end{cases}.$$ According to this result, equation (2) take the form $x \odot (-q_1^{-1} \odot q_2 \odot b) \oplus y \odot b = 0_K$, where , according (9), $b \neq 0_K$. So, by the properties of group we have: $$[x \circledcirc (-q_1^{-1} \circledcirc q_2) \oplus y] \circledcirc b = 0_K \Leftrightarrow -x \circledcirc (q_1^{-1} \circledcirc q_2) \oplus y = 0_K \circledcirc b^{-1} \Leftrightarrow$$ $$y = x \circledcirc (q_1^{-1} \circledcirc q_2), \text{ where } q_1^{-1} \circledcirc q_2 \neq 0_K$$ $$(10)$$ **b)** $p_1 = 0_K \neq p_2$. This bearing $q_1 \neq 0_K$. In this conditions, system (8) take the form $$\begin{cases} p_2 \odot b = c \\ q_1 \odot a = q_1^{-1} \odot (p_2 - q_2) \odot b \end{cases}.$$ -This result, give the equation (2) the form $x \odot [q_1^{-1} \odot (p_2 - q_2)] \odot b \oplus y \odot b = c$, where besides $c \neq 0_K$, by (9), the $b \neq 0_K$. So, by the properties of group we have: $$x \odot [q_1^{-1} \odot (p_2 - q_2)] \odot b \oplus y \odot b = c \Leftrightarrow [x \odot q_1^{-1} \odot (p_2 - q_2) \oplus y] \odot b = c \Leftrightarrow$$ $$[x \odot q_1^{-1} \odot (p_2 - q_2) \oplus y] \odot p_2^{-1} \odot c = c \Leftrightarrow [x \odot q_1^{-1} \odot (p_2 - q_2) \oplus y] \odot p_2^{-1} = 1_K \Leftrightarrow$$ $$x \odot [q_1^{-1} \odot (p_2 - q_2)] \oplus y = p_2 \Leftrightarrow$$ $$y = x \odot [q_1^{-1} \odot (p_2 - q_2)] \oplus p_2, \quad \text{where } q_1^{-1} \odot (p_2 - q_2) \neq 0_K \tag{11}$$ c) $p_1 \neq 0_K = p_2$. This bearing $q_2 \neq 0_K$, and the system (8) take the form $$\begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ (p_1 - q_1) \odot a = (q_2 - p_2) \odot b \end{cases}.$$ In a similar way b) it is shown that equation (2) take the form $$y = x \odot [(q_1 - p_1)^{-1} \odot q_2] \oplus p_1 \odot (p_1 - q_1)^{-1} \odot q_2 \text{ where } (q_1 - p_1)^{-1} \odot q_2 \neq 0_K.$$ (12) **d)** $p_1 \neq 0_K$ and $p_2 \neq 0_K$. We distinguish four subcases: $\mathbf{d_1}$) $\mathbf{q_1} = \mathbf{0}_K = \mathbf{q_2}$. From the system (8) we have $$\begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ \Rightarrow c = 0_K \text{ and } a = -p_1^{-1} \odot p_2 \odot b \end{cases}$$ After e few transformations equation (2) take the form $$y = x \odot (p_1^{-1} \odot p_2), \text{ where } p_1^{-1} \odot p_2 \neq 0_K$$ (13) $\mathbf{d_2}$) $\mathbf{q_1} = \mathbf{0}_K \neq \mathbf{q_2}$. From the system (8) we have $$\begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ p_1 \odot a \oplus p_2 \odot b = q_2 \odot b \end{cases} \Rightarrow q_2 \odot b = c \Rightarrow c = 0_K$$ and $a = p_1^{-1} \odot (q_2 - p_2) \odot b$, where $b = q_2^{-1} \odot c$. After e few transformations equation (2) take the form $$y = x \odot [p_1^{-1} \odot (p_2 - q_2)] \oplus q_2$$, ku $p_1^{-1} \odot (p_2 - q_2) \neq 0_K$ (14) $\textbf{d}_{\textbf{3}}$) $\textbf{q}_{\textbf{1}} \neq \textbf{0}_{\textit{K}} \ = \textbf{q}_{\textbf{2}}.$ In this conditions (8) bearing $$\begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ p_1 \odot a \oplus p_2 \odot b = q_1 \odot a \end{cases} \Rightarrow q_1 \odot a = c \Rightarrow c \neq 0_K$$ And $b = p_2^{-1} \odot (q_1 - p_1) \odot a$, where $a = q_1^{-1} \odot c$. After e few transformations equation (2) take the form $$y = x \odot [q_1^{-1} \odot (p_1 - q_1) \odot p_2] \oplus q_1 \odot (q_1 - p_1)^{-1} \odot p_2$$, where $q_1^{-1} \odot (p_1 - q_1) \odot p_2 \neq 0_K$ (15) **d₄**) $q_1 \neq 0_K$ and $q_2 \neq 0_K$. If $c=0_K$ system (8) have the form $$\begin{cases} p_1 \odot a \oplus p_2 \odot b = 0_K \\ p_1 \odot a \oplus p_2 \odot b = q_1 \odot a \oplus q_2 \odot b \end{cases}.$$ After e few transformations results that the equation (2) have the form $$y = x \odot [q_1^{-1} \odot (p_1 - q_1)^{-1} \odot (p_2 - q_2)], \text{ where } q_1^{-1} \odot (p_1 - q_1)^{-1} \odot (p_2 - q_2) \neq 0_K$$ (16) If $c \neq 0_K$, system (8), by multiplying both sides of his equations with c^{-1} , this is transform as follows: $$\begin{cases} p_1 \odot a \oplus p_2 \odot b = c \\ p_1 \odot a \oplus p_2 \odot b = q_1 \odot a \oplus q_2 \odot b \end{cases} \Longleftrightarrow \begin{cases} p_1 \odot a_1 \oplus p_2 \odot b_1 = 1_K \\ p_1 \odot a_1 \oplus p_2 \odot b_1 = q_1 \odot a_1 \oplus q_2 \odot b_1 \end{cases}$$ From this equation (2) take the form $$y = x \odot [(p_1 - q_1)^{-1} \odot (p_2 - q_2)] \oplus b_1^{-1}$$, where $(p_1 - q_1)^{-1} \odot (p_2 - q_2) \neq 0_K$ (17) As conclusion, from the four cases (14), (15), (16) and (17), we notice that, when $p_1 \neq q_1$ and $p_2 \neq q_2$, there exists an unique straight line ℓ with equation $y = x \odot k \oplus g$ of the form (5'), so a line $\ell \in \Lambda_2$. **THEOREM 2.2.** For a point P $\in \Pi$ and a straight line $\ell \in \Lambda$ such that $P \notin \ell$ exists only one straight line $r \in \Lambda$ Λ passing the point P, and such that $\ell \cap r = \emptyset$. Proof. Let it be $P = (p_1, p_2)$. We distinguish cases: - **a)** $p_1 = 0_K$ and $p_2 = 0_K$; - **b)** $p_1 \neq 0_K$ and $p_2 = 0_K$; - **c)** $p_1 = 0_K$ and $p_2 \neq 0_K$; - **d)** $p_1 \neq 0_K$ and $p_2 \neq 0_K$; The straight line, still unknown r, let us have equation $$x \odot \alpha \oplus y \odot \beta = \gamma, ku \quad \alpha \neq 0_K \text{ ose } \beta \neq 0_K$$ (18) For straight line ℓ , we distinguish these cases: 1) $\ell \in \mathcal{L}_0$; 2) $\ell \in \mathcal{L}_1$; 3) $\ell \in \mathcal{L}_2$ **Case 1)** $\ell \in \mathcal{L}_0$. In this case it has equation x = d. The fact that $P = (p_1, p_2) \notin \ell$, It brings to $p_1 \neq d$. But the fact that $\ell \cap r = \emptyset$, it means that there is no point $Q \in \mathcal{P}$, that $Q \in \ell$ and $Q \in r$, otherwise is this true $$\forall Q \in \mathcal{P}, Q \notin \ell \cap r. \tag{19}$$ In other words there is no system solution $$\begin{cases} x = d \neq p_1 \\ x \odot \alpha \oplus y \odot \beta = \gamma \end{cases}$$ (19') since $P \in r$, that brings $$p_1 \odot \alpha \oplus p_2 \odot \beta = \gamma$$, where $\alpha \neq 0_K$ and $\beta \neq 0_K$ (20) In case **a)** $p_1 = 0_K$ and $p_2 = 0_K$, from (20) it turns out that $\gamma = 0_K$, Then equation (18) take the form $$x \odot \alpha \oplus y \odot \beta = 0_K$$, where $\alpha \neq 0_K$ or $\beta \neq 0_K$ If $\alpha \neq 0_K$ ore $\beta = 0_K$, equation (18) take the form $$x \odot \alpha = 0_K \Leftrightarrow x = 0_K$$ Determined so a straight line r with equation $x = 0_K$, that passing point $P = (0_K, 0_K)$, for which the system (19') no solution, after his appearance: $$\begin{cases} x = d \neq 0_K \\ x = 0_K \end{cases}$$ If $\alpha = 0_K$ or $\beta \neq 0_K$, equation (18) take the form $$y \odot \beta = 0_K \Leftrightarrow y = 0_K$$ that defines a straight line r_1 . In this case system (19') take the form $$\begin{cases} x = d \neq 0_K \\ y = 0_K \end{cases}$$ which solution point $Q=(d,0_K)\in\ell\cap r_1$. This proved that straight line r_1 It does not meet the demand $\ell\cap r_1=\emptyset$. If $\alpha \neq 0_K$ ose $\beta \neq 0_K$, equation (18) take the form $$y \odot \beta = -x \odot \alpha \Leftrightarrow y = x \odot (-\alpha \odot \beta^{-1})$$ that defines a straight line r₂. In this case system (19') take the form $$\begin{cases} x = d \neq 0_K \\ y = x \odot (-\alpha \odot \beta^{-1}) \end{cases}$$ which solution point $R = (d, -d \odot \alpha \odot \beta^{-1}) \in \ell \cap r_2$. Also straight line r_2 it does not meet the demand $\ell \cap r_1 = \emptyset$. In this way we show that, when $\ell \in \mathcal{L}_0$ exist just a straight line r, whose equation is $$x = 0_{\kappa}$$ that satisfies the conditions of Theorem. Conversely proved Theorem 2.2 is true for cases 2) $\ell \in \mathcal{L}_1$ dhe 3) $\ell \in \mathcal{L}_2$. **THEOREM 2.3.** In the incidence structure $A=(\Pi, \Lambda, I)$ connected to the corp K, there exists three points not in a straight line. Proof. From Proposition 1.5, since the corp K is unitary ring, this contains 0_K and $1_K \in K$, such that $0_K \neq 1_K$. It is obvious that the points $P = (0_K, 0_K)$, $Q = (1_K, 0_K)$ and $R = (0_K, 1_K)$ are different points pairwise distinct \mathcal{P} . Since $P \neq Q$, and $0_K \neq 1_K$, by the case 2) of the proof of Theorem 2.1, results that the straight line $PQ \in \mathcal{L}_1$, so it have equation of the form y = f. Since $P \in PQ$ results that $f = 0_K$. So equation of PQ is $y = 0_K$. Easily notice that the point PQ is Q and Q and Q are the proof of Q is Q and Q are the point Q and Q are the point Q and Q are the point Q are the point Q and Q are the proof of Q are the point Q and Q are the proof of Q are the point Q and Q are the point Q are the point Q and Q are the point and Q are the point Q and Q are the point Q and Q are the point Three Theorems 2.1, 2.2, 2.3 shows that an incidence structure $A=(\Pi, \Lambda, I)$ connected to the corp K, satisfy three axioms A1, A2, A3 of Definition 1.2 of an afine plane. As consequence we have **THEOREM 2.4.** An incidence structure $A=(\Pi, \Lambda, I)$ connected to the corp K is an afine plane connected with that corp. ### **REFERENCES** - [1] Kristag Filipi (2015), Algiebra Abstrakte, Botimi I. Shtepia Botuese Migeralb, Tiranë, ISBN 978-9928-07-147-7... - [2] Kristaq Filipi (2015). Algjebra dhe Gjeometria. (Ribotim). Shtepia Botuese Edlora Tiranë. ISBN 978-9928-4270-0-7. - [3] F. SADIKI (2015). Modele Strukturash Algjebrike Ternare Në Gjeometrinë Projektive. Disertacion Për Marrjen E Gradës Shkencore "Doktor". Tiranë. - [4] Francis Borceux (2014). An Axiomatic Approach to Geometry(Geometric Trilogy I&II). Springer International Publishing Switzerland. ISBN 978-3-319-01729-7. - [5] Marcel Berger (1987). Geometry I. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-11658-5. - [6] Marcel Berger (1987). Geometry II. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-17015-0. - [7] Nathan Jacobson (1953). Lectures in Abstract Algebra. Volume II. Linear Algebra. ISBN 0-387-90123-X Springer-Verlag New York Heidelberg Berlin. - [8] David Hilbert (1900). Les principes fondamentaux de la géométrie. Paris, Gauthier-Villars, Imprimeur-Libraire. - [9] George A. Jennings (1994). Modern Geometry with Applications. Springer-Verlag New York, Inc. ISBN 0-387-94222-X Springer-Verlag New York Berlin Heidelberg. - [10] Rey Casse (2006). Projective Geometry: An Introduction. Published in the United States by Oxford University Press Inc., New York. ISBN 0–19–929885–8. - [11] Agustí Reventós Tarrida (2011). Affine Maps, Euclidean Motions and Quadrics. Springer-Verlag London Dordrecht Heidelberg New York. ISBN 978-0-85729-709-9. - [12] K.W. Gruenberg and A. J. Weir (1977). Linear Geometry (2nd Edition). (Graduate texts in mathematics; vol 49). Springer-Verlag, New York Inc. ISBN 0-387-90227-9. - [13] F. Buekenhout, (Editors)(1995). HANDBOOK OF INCIDENCE GEOMETRY. Elsevier Science B.V. ISBN: 0 444 88355 X. - [14] Elisabeth Kuijken (2003). A Study of Incidence Structures and Codes related to Regular Two-Graphs. Proefschrift voorgelegda an de Faculteit Wetenschappen tot het behalen van de graad van Doctor in de Wetenschappen richting Wiskunde. - [15] Ivan Kolář (1966). Geometric structure with Hilbert's axioms of incidence and order. Institute of Mathematics AS CR.Časopis oro pěstování matematiky, roc, Praha - [16] Michele Audin (2002). Geometry. Institut de Recherche Mathematique Avancee, Universite Louis Pasteur et CNRS, 7 rue Rene Descartes, 67084 Strasbourg cedex, France. - [17] G.Eric Moorhouse. (2007) Incidences Geometry.