ONE CONSTRUCTION OF AN AFFINE PLANE OVER A CORPS

${ }^{1}$ Phd.Candidate.Orgest ZAKA, ${ }^{2}$ Prof.Dr.Kristaq FILIPI
${ }^{1}$ Department of Mathematics, Faculty of Technical Science, University of Vlora "Ismail QEMALI", Vlora, Albania. gertizaka@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Mathematical Engineering, Polytechnic University of Tirana, Tirana, Albania.
f_kristaq@hotmail.com

Abstract

In this paper, based on several meanings and statements discussed in the literature, we intend constuction a affine plane about a of whatsoever corps ($\mathbf{K}, \oplus, \bigcirc$). His points conceive as ordered pairs (α, β), where α and β are elements of corps (K, \oplus, \bigcirc). Whereas straight-line in corps, the conceptualize by equations of the type $\mathrm{x} \odot \mathrm{a} \oplus \mathrm{y} \odot \mathrm{b}=\mathrm{c}, \mathrm{a} \neq 0_{\mathrm{K}}$ or $\mathrm{b} \neq 0_{\mathrm{K}}$ the variables and coefficients are elements of that body. To achieve this construction we prove some theorems which show that the incidence structure $\mathrm{A}=(\Pi, \Lambda, \mathrm{I})$ connected to the corps K satisfies axioms A 1 , A 2 , A 3 definition of affine plane. In all proofs rely on the sense of the corps as his ring and properties derived from that definition.

Keywords: The unitary ring, integral domain, zero division, corps, incdence structurse, point connected to a corp, straight line connected to a corp, affine plane.

Academic Discipline And Sub-Disciplines

Mathematics; Geometric Algebra; Affine Plane.

1. INTRODUCTION. GENERAL CONSIDERATIONS ON THE AFFINE PLANE AND THE CORPS

In this paper initially presented some definitions and statements on which the next material.
Let us have sets Π, Λ, I, where the two first are non-empty.
Definition 1.1: The incidence structure called a ordering trio $\mathrm{A}=(\Pi, \Lambda, \mathrm{I})$ where $\Pi \Omega \Lambda=\varnothing$ and $\mathrm{I} \subseteq \Pi \times \Lambda$.
Elements of sets Π we call points and will mark the capitalized alphabet, while those of the sets Λ, we call blocks (or straight line) and will mark minuscule alphabet. As in any binary relation, the fact $(P, \ell) \in I$ for $P \in \Pi$ and for $\ell \in \Lambda$, it will also mark P I ℓ and we will read, point P is incident with straight line ℓ or straight line ℓ there are incidents point P.
(See [3], [4], [5], [10], [11], [12], [13], [14], [15]).
Definition 1.2. ([3], [8], [16]) Affine plane called the incidence structure $A=(\Pi, \Lambda, I)$, that satisfies the following axioms:
A1: For every two different points \mathbf{P} and $\mathbf{Q} \in \Pi$, there is one and only one straight line $\ell \in \Lambda$, passing of those points.
The straight line ℓ defined by points P and Q will mark the $P Q$.
A2: For a point $\mathbf{P} \in \Pi$, and straight line $\ell \in \Lambda$ such that $(P, \ell) \notin I$, there is one and only one straight line $\mathbf{m} \in \mathcal{L}$, passing the point P, and such that $\ell \cap \mathrm{r}=\boldsymbol{\varnothing}$.

A3: In \mathcal{A} here are three non-incident points to a straight line.
A1 derived from the two lines different of \mathcal{L} many have a common point, in other words two different straight lines of \mathcal{L} or do not have in common or have only one common point.
In affine plane $\mathrm{A}=(\Pi, \Lambda, \mathrm{I})$, these statements are true.
Proposition 1.1. ([3], [5]) In affine plane $\mathrm{A}=(\Pi, \Lambda, \mathrm{I})$, there are four points, all three of which are not incident with a straight line (three points are called non-collinear).
Proposition 1.2. ([3], [6],]) In affine plane $A=(\Pi, \Lambda, I)$, exists four different straight line.
Proposition 1.2. ([3], [8]) In affine plane $\mathrm{A}=(\Pi, \Lambda, \mathrm{I})$, every straight line is incident with at least two different points.
Proposition 1.3. ([3], [9]) In affine plane $\mathrm{A}=(\Pi, \Lambda, \mathrm{I})$, every point is incidents at least three of straight line.
Proposition 1.4. ([3]) On a finite affine plane $A=(\Pi, \Lambda, I)$, every straight line contains the same number of points and in every point the same number of straight line passes. Furthermore, there is the natural number $n \in \mathbb{N}, \mathrm{n} \geq 2$, such that:

1) In each of straight line $\boldsymbol{\ell} \in \mathcal{L}$, the number of incidents is points with him is n.
2) For every point $\mathbf{P} \in \mathcal{P}$, of affine plane $A=(\Pi, \Lambda, I)$, it has exactly $n+1$ straight line incident with him.
3) In a finite affine plane $\mathrm{A}=(\Pi, \Lambda, I)$, there are exactly n^{2} points.
4) In a finite affine plane $A=(\Pi, \Lambda, I)$, there are exactly $n^{2}+n$ straight line.

The number n in Proposition 1.4, it called order of affine plane $A=(\Pi, \Lambda, I)$, it is distinctly that the less order a finite affine plane, is $\mathrm{n}=2$. In a such affine plane it is with four points and six straight lines, shown in Fig.1.

Fig. 1
Definition 1.3. ([1]). The ring called structures (B, \oplus, \bigcirc), that has the properties:

1) structure (B, \oplus), is an abelian group;
2) The second action \bigcirc It is associative ;
3) The second action © is distributive of the first operation of the first \oplus.

In a ring (B, \oplus, \bigcirc) also included the action deduction - accompanying each (a, b) from B , sums

$$
\mathrm{a} \oplus(-\mathrm{b})
$$

well

$$
a \oplus(-b)=a-b
$$

Proposition 1.5 ([1], [7]). In a unitary ring ($\mathrm{B}, \oplus, \bigcirc$), having more than one element, the unitary element 1_{B} is different from 0_{B}.

Definition 1.4 ([1], [2]). Corp called rings ($\mathrm{K}, \oplus, \bigcirc$) that has the properties:

1) K is at least one element different from zero.
2) $K^{*}=K-\left\{0_{K}\right\}$ it is a subset of the stable of K about multiplication;
3) $\left(K^{*}, \odot\right)$ is a group.

THEOREM 1.1. ([2]) If (K, \oplus, \bigcirc) is the corp, then:

1) it is the unitary element (is the unitary ring);
2) there is no zero divisor (is integral domain);
3) They have single solutions in K equations $a \odot x=b$ and $x \odot a=b$, where $a \neq 0_{K}$ and b are two elements what do you want of K.

2. TRANSFORMS OF A INCIDENCE STRUCTURES RELATING TO A CORPS IN A AFFINE PLANE

Definition 2.1. Let it be (K, \oplus, \odot) a corps. A ordered pairs (α, β) by coordinates $\alpha, \beta \in K$, called point connected to the corp K.
Sets K^{2} of points associated with corps K mark Π.
Definition 2.2. Let be $a, b, c \in K$.. Sets

$$
\begin{equation*}
\ell=\left\{(x, y) \in K^{2} \mid x \odot a \oplus y \odot b=c, a \neq 0_{K} \text { or } b \neq 0_{K}\right\} \tag{1}
\end{equation*}
$$

called the straight line associated with corps K .
Equations $x \odot a \oplus y \odot b=c$, called equations of the straight line ℓ. Sets of straight lines connected to the body K mark Λ. It is evidently that

$$
\Pi \cap \Lambda=\varnothing .
$$

Definition 2.3. Will say that the point $P=(\alpha, \beta) \in \Pi$ is incident to straight line (1), if its coordinates verify equation of ℓ, This means that if it is true equation $\alpha \odot a \oplus \beta \odot b=c$. This fact write down

Defined in this way is an incidence relations

$\mathrm{I} \subseteq \Pi \times \Lambda$,

such that $\forall(P, \ell), \Pi I \Lambda \Leftrightarrow P \in \ell$. So even here, when pionts P is incidents with straight line ℓ, we will say otherwise point P is located at straight line ℓ, or straight line ℓ passes by points P.

It is thus obtained, connected to the corps \mathbf{K} a incidence structure $A=(\Pi, \Lambda, I)$. Our intention is to study it.
According to (1), a straight line ℓ its having the equation

$$
\begin{equation*}
\mathrm{x} \odot \mathrm{a} \oplus \mathrm{y} \odot \mathrm{~b}=\mathrm{c}, \text { where } a \neq 0_{K} \text { or } b \neq 0_{K} . \tag{2}
\end{equation*}
$$

Condition (2) met on three cases: 1) $a \neq 0_{K}$ and $b=0_{K}$; 2) $a=0_{K}$ and $b \neq 0_{K}$; 3) $a \neq 0_{K}$ and $b \neq 0_{K}$, that allow the separation of the sets Λ the straight lines of its three subsets $\Lambda_{0}, \Lambda_{1}, \Lambda_{2}$ as follows:

$$
\begin{gather*}
\mathcal{L}_{\mathbf{0}}=\left\{\ell \in \mathcal{L} \mid \mathrm{x} \odot \mathrm{a} \oplus \mathrm{y} \odot \mathrm{~b}=\mathrm{c}, \mathrm{a} \neq 0_{\mathrm{K}} \text { and } \mathrm{b}=0_{\mathrm{K}}\right\} \tag{3}\\
\boldsymbol{\mathcal { L }}_{\mathbf{1}}=\left\{\ell \in \mathcal{L} \mid \mathrm{x} \odot \mathrm{a} \oplus \mathrm{y} \odot \mathrm{~b}=\mathrm{c}, \mathrm{a}=0_{\mathrm{K}} \text { and } \mathrm{b} \neq 0_{\mathrm{K}}\right\} \tag{4}\\
\boldsymbol{L}_{\mathbf{2}}=\left\{\ell \in \mathcal{L} \mid \mathrm{x} \odot \mathrm{a} \oplus \mathrm{y} \odot \mathrm{~b}=\mathrm{c}, \mathrm{a} \neq 0_{\mathrm{K}} \text { and } \mathrm{b} \neq 0_{\mathrm{K}}\right\} \tag{5}
\end{gather*}
$$

Otherwise, subset $\mathcal{L}_{\mathbf{0}}$ is a sets of straight lines $\ell \in \mathcal{L}$ with equation

$$
x \bigcirc a=c \text {, where } a \neq 0_{K} \Leftrightarrow x=d \text {, where } d=c \odot a^{-1}
$$

subset $\boldsymbol{L}_{\mathbf{1}}$ is a sets of straight lines $\ell \in \mathcal{L}$ with equation

$$
\mathrm{y} \bigcirc \mathrm{~b}=\mathrm{c} \text {, where } \mathrm{b} \neq 0_{\mathrm{K}} \Leftrightarrow \mathrm{y}=\mathrm{f} \text {, where } \mathrm{f}=\mathrm{c} \odot \mathrm{~b}^{-1}
$$

Whereas subset $\boldsymbol{L}_{\mathbf{2}}$ is a sets of straight lines $\ell \in \mathcal{L}$ with equation

$$
x \odot a \oplus y \odot b=c \text {, where } a \neq 0_{K} \text { and } b \neq 0_{K} \Leftrightarrow y=x \bigcirc k \oplus g
$$

where $\mathrm{k}=\left(-1_{\mathrm{K}}\right) \odot \mathrm{a} \odot \mathrm{b}^{-1} \neq 0_{\mathrm{K}}, \quad \mathrm{g}=\mathrm{c} \odot \mathrm{b}^{-1}$;
Hence the

- a straight line $\ell \in \mathcal{L}_{\mathbf{0}}$ is completely determined by the element $\mathrm{d} \in \mathrm{K}$ such that its equation is $\mathrm{x}=\mathrm{d}$,
- a straight line $\ell \in \mathcal{L}_{\mathbf{1}}$ is completely determined by the element $\mathrm{f} \in \mathrm{K}$ such that its equation is $\mathrm{y}=\mathrm{f}$ and
- a straight line $\ell \in \mathcal{L}_{2}$ is completely determined by the elements $k \neq 0_{K}, g \in K$ such that its equation is $y=x \odot$ $\mathrm{k} \oplus \mathrm{g}$.
From the above it is clear that $\Pi=\left\{\boldsymbol{L}_{\mathbf{0}}, \boldsymbol{L}_{\mathbf{1}}, \boldsymbol{\mathcal { L }}_{\mathbf{2}}\right\}$ is a separation of the sets of straight lines $\boldsymbol{\mathcal { L }}$.
THEOREM 2.1. For every two distinct points $\mathbf{P}, \mathbf{Q} \in \Pi$, there exist only one straight line $\ell \in_{\Lambda}$ that passes in those two points.

Proof. Let $P=\left(p_{1}, p_{2}\right)$ and $Q=\left(q_{1}, q_{2}\right)$. Fact that $P \neq Q$ means

$$
\begin{equation*}
\left(p_{1}, p_{2}\right) \neq\left(q_{1}, q_{2}\right) \tag{6}
\end{equation*}
$$

Based on (6) we distinguish three cases:

1) $p_{1}=q_{1}$ and $p_{2} \neq q_{2}$;
2) $p_{1} \neq q_{1}$ and $p_{2}=q_{2}$;
3) $\mathrm{p}_{1} \neq \mathrm{q}_{1}$ and $\mathrm{p}_{2} \neq \mathrm{q}_{2}$;

Let's be straight line $\ell \in \Lambda$, yet unknown, according to (2), having the equation $\mathrm{x} \odot \mathrm{a} \oplus \mathrm{y} \odot \mathrm{b}=\mathrm{c}$, where $a \neq 0_{K}$ or $b \neq 0_{K}$.

Consider the case 1) $p_{1}=q_{1}$ and $p_{2} \neq q_{2}$. From the fact $P, Q \in \ell$ we have:

$$
\left\{\begin{array} { l }
{ p _ { 1 } \odot a \oplus p _ { 2 } \odot b = c } \\
{ q _ { 1 } \odot a \oplus q _ { 2 } \odot b = c }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
p_{1} \odot a \oplus p_{2} \odot b=c \\
p_{1} \odot a \oplus p_{2} \odot b=q_{1} \odot a \oplus q_{2} \odot b
\end{array}\right.\right.
$$

But $p_{1}=q_{1}$ and $p_{2} \neq q_{2}$, so, from the fact that (K, \oplus) is abelian group, by Definition 1.4 , we get

$$
\left\{\begin{array} { c }
{ \mathrm { p } _ { 1 } \odot \mathrm { a } \oplus \mathrm { p } _ { 2 } \odot \mathrm { b } = \mathrm { c } } \\
{ \mathrm { p } _ { 2 } \odot \mathrm { b } = \mathrm { q } _ { 2 } \odot \mathrm { b } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\mathrm{p}_{1} \odot \mathrm{a} \oplus \mathrm{p}_{2} \odot \mathrm{~b}=\mathrm{c} \\
\left(\mathrm{p}_{2}-\mathrm{q}_{2}\right) \odot \mathrm{b}=0_{\mathrm{K}}
\end{array}\right.\right.
$$

From above, according to Theorem 1.1, corps K is complete ring, so with no divisor 0_{K}, results

$$
\left\{\begin{array} { c }
{ \mathrm { p } _ { 1 } \odot \mathrm { a } \oplus \mathrm { p } _ { 2 } \odot \mathrm { b } = \mathrm { c } } \\
{ \mathrm { b } = 0 _ { \mathrm { K } } }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\mathrm{p}_{1} \odot \mathrm{a}=\mathrm{c} \\
\mathrm{~b}=0_{\mathrm{K}}
\end{array}\right.\right.
$$

From this
a) if $p_{1}=0_{\mathrm{K}}$, we get

$$
\left\{\begin{array} { c }
{ 0 _ { \mathrm { K } } \odot \mathrm { a } = \mathrm { c } } \\
{ \mathrm { b } = 0 _ { \mathrm { K } } (\mathrm { a } \neq 0 _ { \mathrm { K } }) }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\mathrm{c}=0_{\mathrm{K}} \\
\mathrm{~b}=0_{\mathrm{K}}\left(\mathrm{a} \neq 0_{\mathrm{K}}\right)
\end{array}\right.\right.
$$

According to this result, equation (2) takes the form $\mathrm{x} \odot \mathrm{a}=0_{\mathrm{K}}$, where $\mathrm{a} \neq 0_{\mathrm{K}}$, otherwise

$$
\begin{equation*}
x=0_{\mathrm{K}} \tag{7}
\end{equation*}
$$

(since, being a $\neq 0_{K}$, it is element of group (K^{*}, \odot), so $x \odot a=0_{K} \Leftrightarrow x=0_{K} \odot a^{-1} \Leftrightarrow x=0_{K}$).
b) if $p_{1} \neq 0_{K}$, and p_{1} is element of group (K^{*}, \odot), exists p_{1}^{-1}, that get the results:

$$
\left\{\begin{array}{c}
a=p_{1}^{-1} \odot c \\
b=0_{K}\left(a \neq 0_{K}\right)
\end{array}\right.
$$

under which, equation (2) in this case take the form

$$
\begin{equation*}
\mathrm{x} \odot \mathrm{p}_{1}^{-1} \odot \mathrm{c}=\mathrm{c}, \text { where } \mathrm{a} \neq 0_{\mathrm{K}} \Leftrightarrow \mathrm{x} \odot \mathrm{p}_{1}^{-1}=1_{\mathrm{K}} \Leftrightarrow \mathrm{x}=\mathrm{p}_{1} \tag{7'}
\end{equation*}
$$

Here it is used the right rules simplifying in the group (K^{*}, \odot), with $\mathrm{c} \neq 0_{K}$, because $a=p_{1}^{-1} \odot c$ and $a \neq 0_{K}$.
For two cases (7) and (7') notice that, when $\mathrm{p}_{1}=\mathrm{q}_{1}$ and $\mathrm{p}_{2} \neq \mathrm{q}_{2}$, there exists a unique straight line ℓ with equation $x=d$ of the form (3^{\prime}), so a line $\ell \in \Lambda_{0}$.
Case 2) $p_{1} \neq q_{1}$ and $p_{2}=q_{2}$ is an analogous way and achieved in the conlusion and in this case there exists a unique straight line ℓ with equation $y=f$ of the form (4'), so a line $\ell \in \Lambda_{1}$.

Consider now the case 3) $p_{1} \neq q_{1}$ and $p_{2} \neq q_{2}$. From the fact $P, Q \in \ell$ we have:

$$
\left\{\begin{array} { l }
{ p _ { 1 } \odot a \oplus p _ { 2 } \odot b = c } \tag{8}\\
{ q _ { 1 } \odot a \oplus q _ { 2 } \odot b = c }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
p_{1} \odot a \oplus p_{2} \odot b=c \\
p_{1} \odot a \oplus p_{2} \odot b=q_{1} \odot a \oplus q_{2} \odot b
\end{array}\right.\right.
$$

The second equation can be written in the form

$$
\begin{equation*}
\left(p_{1}-q_{1}\right) \odot a=\left(q_{2}-p_{2}\right) \odot b, \text { that bearing } a \neq 0_{K} \text { and } b \neq 0_{K} \tag{9}
\end{equation*}
$$

Regarding to the coordinates of point P we distinguish these four cases:
a) $\mathrm{p}_{1}=0_{K}=\mathrm{p}_{2}$. This bearing $q_{1} \neq 0_{K}$ and $q_{2} \neq 0_{K}$. In this conditions (8) take the form

$$
\left\{\begin{array}{c}
c=0_{K} \\
a=-q_{1}^{-1} \odot q_{2} \odot b
\end{array} .\right.
$$

According to this result, equation (2) take the form $x \odot\left(-q_{1}^{-1} \odot q_{2} \odot b\right) \oplus y \bigcirc b=0_{K}$, where, according (9), $b \neq 0_{K}$. So, by the properties of group we have:

$$
\begin{gather*}
{\left[x \odot\left(-q_{1}^{-1} \odot q_{2}\right) \oplus y\right] \odot b=0_{K} \Leftrightarrow-x \odot\left(q_{1}^{-1} \odot q_{2}\right) \oplus y=0_{K} \odot b^{-1} \Leftrightarrow} \\
y=x \odot\left(q_{1}^{-1} \odot q_{2}\right), \text { where } q_{1}^{-1} \odot q_{2} \neq 0_{K} \tag{10}
\end{gather*}
$$

b) $\mathrm{p}_{1}=0_{K} \neq \mathrm{p}_{2}$. This bearing $q_{1} \neq 0_{K}$. In this conditions, system (8) take the form

$$
\left\{\begin{array}{c}
p_{2} \odot b=c \\
q_{1} \odot a=q_{1}^{-1} \odot\left(p_{2}-q_{2}\right) \odot b
\end{array} .\right.
$$

-This result, give the equation (2) the form $x \odot\left[q_{1}^{-1} \odot\left(p_{2}-q_{2}\right)\right] \odot b \oplus y \odot b=c$, where besides $c \neq 0_{K}$, by (9), the $b \neq 0_{K}$. So, by the properties of group we have:
$x \odot\left[\mathrm{q}_{1}^{-1} \odot\left(p_{2}-q_{2}\right)\right] \odot b \oplus y \odot b=c \Leftrightarrow\left[x \odot q_{1}^{-1} \odot\left(p_{2}-q_{2}\right) \oplus y\right] \odot b=c \Leftrightarrow$

$$
\begin{gather*}
{\left[x \odot q_{1}^{-1} \odot\left(p_{2}-q_{2}\right) \oplus y\right] \odot p_{2}^{-1} \odot c=c \Leftrightarrow\left[x \odot q_{1}^{-1} \odot\left(p_{2}-q_{2}\right) \oplus y\right] \odot p_{2}^{-1}=1_{K} \Leftrightarrow} \\
x \odot\left[q_{1}^{-1} \odot\left(p_{2}-q_{2}\right)\right] \oplus y=p_{2} \Leftrightarrow \\
y=x \odot\left[q_{1}^{-1} \odot\left(p_{2}-q_{2}\right)\right] \oplus p_{2}, \quad \text { where } q_{1}^{-1} \odot\left(p_{2}-q_{2}\right) \neq 0_{K} \tag{11}
\end{gather*}
$$

c) $\mathrm{p}_{1} \neq 0_{K}=\mathrm{p}_{2}$. This bearing $q_{2} \neq 0_{K}$, and the system (8) take the form

$$
\left\{\begin{array}{c}
p_{1} \odot a \oplus p_{2} \odot b=c \\
\left(p_{1}-q_{1}\right) \odot a=\left(q_{2}-p_{2}\right) \odot b
\end{array} .\right.
$$

In a similar way b) it is shown that equation (2) take the form

$$
\begin{equation*}
y=x \odot\left[\left(q_{1}-p_{1}\right)^{-1} \odot q_{2}\right] \oplus p_{1} \odot\left(p_{1}-q_{1}\right)^{-1} \odot q_{2} \text { where }\left(q_{1}-p_{1}\right)^{-1} \odot q_{2} \neq 0_{K} . \tag{12}
\end{equation*}
$$

d) $\mathrm{p}_{1} \neq 0_{K}$ and $\mathrm{p}_{2} \neq 0_{K}$. We distinguish four subcases:
\mathbf{d}_{1}) $\mathrm{q}_{1}=0_{K}=\mathrm{q}_{2}$. From the system (8) we have

$$
\left\{\begin{array}{l}
p_{1} \odot a \oplus p_{2} \odot b=c \\
q_{1} \odot a \oplus q_{2} \odot b=0_{K}
\end{array} \Rightarrow c=0_{K} \text { and } a=-p_{1}^{-1} \odot p_{2} \odot b\right.
$$

After e few transformations equation (2) take the form

$$
\begin{equation*}
y=x \odot\left(p_{1}^{-1} \odot p_{2}\right), \text { where } p_{1}^{-1} \odot p_{2} \neq 0_{K} \tag{13}
\end{equation*}
$$

d_{2}) $q_{1}=0_{K} \neq q_{2}$. From the system (8) we have

$$
\left\{\begin{array}{c}
p_{1} \odot a \oplus p_{2} \odot b=c \\
p_{1} \odot a \oplus p_{2} \odot b=q_{2} \odot b
\end{array} \Rightarrow q_{2} \odot b=c \Rightarrow c=0_{K}\right.
$$

and $a=p_{1}^{-1} \odot\left(q_{2}-p_{2}\right) \odot b$, where $b=q_{2}^{-1} \odot c$.
After e few transformations equation (2) take the form

$$
\begin{equation*}
y=x \odot\left[p_{1}^{-1} \odot\left(p_{2}-q_{2}\right)\right] \oplus q_{2}, \text { ku } p_{1}^{-1} \odot\left(p_{2}-q_{2}\right) \neq 0_{K} \tag{14}
\end{equation*}
$$

$\left.\mathrm{d}_{3}\right) \mathrm{q}_{1} \neq 0_{K}=\mathrm{q}_{2}$. In this conditions (8) bearing

$$
\left\{\begin{array}{c}
p_{1} \odot a \oplus p_{2} \odot b=c \\
p_{1} \odot a \oplus p_{2} \odot b=q_{1} \odot a
\end{array} \Rightarrow q_{1} \odot a=c \Rightarrow c \neq 0_{K}\right.
$$

And $\quad b=p_{2}^{-1} \odot\left(q_{1}-p_{1}\right) \odot a$, where $a=q_{1}^{-1} \odot c$.
After e few transformations equation (2) take the form

$$
\begin{equation*}
y=x \odot\left[q_{1}^{-1} \odot\left(p_{1}-q_{1}\right) \odot p_{2}\right] \oplus q_{1} \odot\left(q_{1}-p_{1}\right)^{-1} \odot p_{2}, \text { where } q_{1}^{-1} \odot\left(p_{1}-q_{1}\right) \odot p_{2} \neq 0_{K} \tag{15}
\end{equation*}
$$

$\left.\mathbf{d}_{4}\right) \mathrm{q}_{1} \neq 0_{K}$ and $\mathrm{q}_{2} \neq 0_{K}$. If $\mathrm{c}=0_{K}$ system (8) have the form

$$
\left\{\begin{array}{c}
p_{1} \odot a \oplus p_{2} \odot b=0_{K} \\
p_{1} \odot a \oplus p_{2} \odot b=q_{1} \odot a \oplus q_{2} \odot b
\end{array} .\right.
$$

After e few transformations results that the equation (2) have the form

$$
\begin{equation*}
y=x \odot\left[q_{1}^{-1} \odot\left(p_{1}-q_{1}\right)^{-1} \odot\left(p_{2}-q_{2}\right)\right], \quad \text { where } q_{1}^{-1} \odot\left(p_{1}-q_{1}\right)^{-1} \odot\left(p_{2}-q_{2}\right) \neq 0_{K} \tag{16}
\end{equation*}
$$

If $\mathrm{c} \neq 0_{K}$, system (8), by multiplying both sides of his equations with c^{-1}, this is transform as follows:

$$
\left\{\begin{array} { c }
{ p _ { 1 } \odot a \oplus p _ { 2 } \odot b = c } \\
{ p _ { 1 } \odot a \oplus p _ { 2 } \odot b = q _ { 1 } \odot a \oplus q _ { 2 } \odot b }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
p_{1} \odot a_{1} \oplus p_{2} \odot b_{1}=1_{K} \\
p_{1} \odot a_{1} \oplus p_{2} \odot b_{1}=q_{1} \odot a_{1} \oplus q_{2} \odot b_{1}
\end{array}\right.\right.
$$

From this equation (2) take the form

$$
\begin{equation*}
y=x \odot\left[\left(p_{1}-q_{1}\right)^{-1} \odot\left(p_{2}-q_{2}\right)\right] \oplus b_{1}^{-1}, \text { where }\left(p_{1}-q_{1}\right)^{-1} \odot\left(p_{2}-q_{2}\right) \neq 0_{K} \tag{17}
\end{equation*}
$$

As conclusion, from the four cases (14), (15), (16) and (17), we notice that, when $p_{1} \neq q_{1}$ and $p_{2} \neq q_{2}$, there exists an unique straight line ℓ with equation $y=x \odot k \oplus g$ of the form (5'), so a line $\ell \in \Lambda_{2}$.

THEOREM 2.2. For a point $\mathbf{P} \in \Pi$ and a straight line $\ell \in \Lambda$ such that $P \notin \ell$ exists only one straight line $\mathbf{r} \in$ Λ passing the point P, and such that $\ell \cap r=\varnothing$.

Proof. Let it be $\boldsymbol{P}=\left(p_{1}, p_{2}\right)$. We distinguish cases:
a) $p_{1}=0_{K}$ and $p_{2}=0_{K}$;
b) $p_{1} \neq 0_{K}$ and $p_{2}=0_{K}$;
c) $p_{1}=0_{K}$ and $p_{2} \neq 0_{K}$;
d) $p_{1} \neq 0_{K}$ and $p_{2} \neq 0_{K}$;

The straight line, still unknown r, let us have equation

$$
\begin{equation*}
x \odot \alpha \oplus y \odot \beta=\gamma, k u \quad \alpha \neq 0_{K} \text { ose } \beta \neq 0_{K} \tag{18}
\end{equation*}
$$

For straight line ℓ, we distinguish these cases: 1) $\ell \in \mathcal{L}_{0}$; 2) $\ell \in \mathcal{L}_{\mathbf{1}}$; 3) $\ell \in \mathcal{L}_{2}$
Case 1) $\ell \in \mathcal{L}_{0}$. In this case it has equation $\mathrm{x}=d$.
The fact that $P=\left(p_{1}, p_{2}\right) \notin \ell$, It brings to $p_{1} \neq d$. But the fact that $\ell \cap r=\emptyset$, it means that there is no point $Q \in \mathcal{P}$, that $Q \in \ell$ and $Q \in r$, otherwise is this true

$$
\begin{equation*}
\forall Q \in \mathcal{P}, Q \notin \ell \cap r . \tag{19}
\end{equation*}
$$

In other words there is no system solution

$$
\left\{\begin{array}{c}
x=d \neq p_{1} \tag{19'}\\
x \odot \alpha \oplus y \odot \beta=\gamma
\end{array}\right.
$$

since $P \in r$, that brings

$$
\begin{equation*}
p_{1} \odot \alpha \oplus p_{2} \odot \beta=\gamma, \text { where } \alpha \neq 0_{K} \text { and } \beta \neq 0_{K} \tag{20}
\end{equation*}
$$

In case a) $p_{1}=0_{K}$ and $p_{2}=0_{K}$, from (20) it turns out that $\gamma=0_{K}$,
Then equation (18) take the form

$$
x \odot \alpha \oplus y \odot \beta=0_{K}, \text { where } \alpha \neq 0_{K} \text { or } \beta \neq 0_{K}
$$

- If $\alpha \neq 0_{K}$ ore $\beta=0_{K}$, equation (18) take the form

$$
x \odot \alpha=0_{K} \Leftrightarrow x=0_{K}
$$

Determined so a straight line r with equation $x=0_{K}$, that passing point $P=\left(0_{K}, 0_{K}\right)$, for which the system (19') no solution, after his appearance:

$$
\left\{\begin{array}{c}
x=d \neq 0_{K} \\
x=0_{K}
\end{array}\right.
$$

- If $\alpha=0_{K}$ or $\beta \neq 0_{K}$, equation (18) take the form

$$
y \odot \beta=0_{K} \Leftrightarrow y=0_{K}
$$

that defines a straight line r_{1}. In this case system (19') take the form

$$
\left\{\begin{array}{c}
x=d \neq 0_{K} \\
y=0_{K}
\end{array},\right.
$$

which solution point $\mathrm{Q}=\left(\mathrm{d}, 0_{\mathrm{K}}\right) \in \ell \cap \mathrm{r}_{1}$. This proved that straight line r_{1} It does not meet the demand $\ell \cap \mathrm{r}_{1}=\emptyset$.

- If $\alpha \neq 0_{\mathrm{K}}$ ose $\beta \neq 0_{\mathrm{K}}$, equation (18) take the form

$$
y \odot \beta=-x \odot \alpha \Leftrightarrow y=x \odot\left(-\alpha \odot \beta^{-1}\right)
$$

that defines a straight line r_{2}. In this case system (19') take the form

$$
\left\{\begin{array}{c}
x=d \neq 0_{K} \\
y=x \odot\left(-\alpha \odot \beta^{-1}\right)
\end{array}\right.
$$

which solution point $R=\left(d,-d \odot \alpha \odot \beta^{-1}\right) \in \ell \cap r_{2}$. Also straight line r_{2} it does not meet the demand $\ell \cap r_{1}=\emptyset$. In this way we show that, when $\ell \in \mathcal{L}_{\mathbf{0}}$ exist just a straight line r , whose equation is

$$
\mathrm{x}=0_{\mathrm{K}}
$$

that satisfies the conditions of Theorem.
Conversely proved Theorem 2.2 is true for cases 2) $\ell \in \mathcal{L}_{\mathbf{1}}$ dhe 3) $\ell \in \mathcal{L}_{2}$.

THEOREM 2.3. In the incidence structure $\mathrm{A}=(\Pi, \Lambda, \mathrm{I})$ connected to the corp K , there exists three points not in a straight line.

Proof. From Proposition 1.5, since the corp K is unitary ring, this contains 0_{K} and $1_{\mathrm{K}} \in \mathrm{K}$, such that $0_{\mathrm{K}} \neq 1_{\mathrm{K}}$. It is obvious that the points $P=\left(0_{K}, 0_{K}\right), Q=\left(1_{K}, 0_{K}\right)$ and $R=\left(0_{K}, 1_{K}\right)$ are different points pairwise distinct \mathcal{P}. Since $P \neq \mathrm{Q}$, and $0_{K} \neq 1_{\mathrm{K}}$, by the case 2) of the proof of Theorem 2.1, results that the straight line $P Q \in \mathcal{L}_{1}$, so it have equation of the form $y=f$. Since $P \in P Q$ results that $f=0_{K}$. So equation of $P Q$ is $y=0_{K}$. Easily notice that the point $R \notin P Q$.

Three Theorems 2.1, 2.2, 2.3 shows that an incidence structure $\mathrm{A}=(\Pi, \Lambda, I)$ connected to the corp K , satisfy three axioms A1, A2, A3 of Definition 1.2 of an afine plane. As consequence we have

THEOREM 2.4. An incidence structure $A=(\Pi, \Lambda, I)$ connected to the corp K is an afine plane connected with that corp.

REFERENCES

[1] Kristaq Filipi (2015). Algjebra Abstrakte. Botimi I. Shtepia Botuese Migeralb. Tiranë. ISBN 978-9928-07-147-7..
[2] Kristaq Filipi (2015). Algjebra dhe Gjeometria. (Ribotim). Shtepia Botuese Edlora Tiranë. ISBN 978-9928-4270-0-7.
[3] F. SADIKI (2015). Modele Strukturash Algjebrike Ternare Në Gjeometrinë Projektive. Disertacion Për Marrjen E Gradës Shkencore "Doktor". Tiranë.
[4] Francis Borceux (2014). An Axiomatic Approach to Geometry(Geometric Trilogy I\&II). Springer International Publishing Switzerland. ISBN 978-3-319-01729-7.
[5] Marcel Berger (1987). Geometry I. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-11658-5.
[6] Marcel Berger (1987). Geometry II. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-17015-0.
[7] Nathan Jacobson (1953). Lectures in Abstract Algebra. Volume II. Linear Algebra. ISBN 0-387-90123-X SpringerVerlag New York Heidelberg Berlin.
[8] David Hilbert (1900). Les principes fondamentaux de la géométrie. Paris, Gauthier-Villars, Imprimeur-Libraire.
[9] George A. Jennings (1994). Modern Geometry with Applications. Springer-Verlag New York, Inc. ISBN 0-387-94222X Springer-Verlag New York Berlin Heidelberg.
[10] Rey Casse (2006). Projective Geometry: An Introduction. Published in the United States by Oxford University Press Inc., New York. ISBN 0-19-929885-8.
[11] Agustí Reventós Tarrida (2011). Affine Maps,Euclidean Motions and Quadrics. Springer-Verlag London Dordrecht Heidelberg New York.ISBN 978-0-85729-709-9.
[12] K.W. Gruenberg and A. J. Weir (1977). Linear Geometry (2nd Edition). (Graduate texts in mathematics ; vol 49). Springer-Verlag, New York Inc. ISBN 0-387-90227-9.
[13] F. Buekenhout, (Editors)(1995). HANDBOOK OF INCIDENCE GEOMETRY. Elsevier Science B.V. ISBN: 0444 88355 X .
[14] Elisabeth Kuijken (2003). A Study of Incidence Structures and Codes related to Regular Two-Graphs. Proefschrift voorgelegda an de Faculteit Wetenschappen tot het behalen van de graad van Doctor in de Wetenschappen richting Wiskunde.
[15] Ivan Kolář (1966). Geometric structure with Hilbert's axioms of incidence and order. Institute of Mathematics AS CR.Časopis oro pěstování matematiky, roc, Praha
[16] Michele Audin (2002). Geometry. Institut de Recherche Mathematique Avancee, Universite Louis Pasteur et CNRS, 7 rue Rene Descartes, 67084 Strasbourg cedex, France.
[17] G.Eric Moorhouse. (2007) Incidences Geometry.

