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ABSTRACT 

In this paper, based on several meanings and statements discussed in the literature, we intend constuction a affine plane 
about a of whatsoever corps (𝐊,⊕,⊚).  His points conceive as ordered pairs  α, β , where α and  β are elements of corps 

(𝐊,⊕,⊚).  Whereas straight-line  in corps, the conceptualize by equations of the type x ⊚ a ⊕ y ⊚ b = c, a ≠ 0K or b ≠ 0K 

the variables and coefficients are elements of that body. To achieve this construction  we prove some theorems which 

show that the incidence structure =(, , ) connected to the corps K satisfies axioms A1, A2, A3 definition of affine 

plane. In all proofs rely on the sense of the corps as his ring and properties derived from that definition. 

Keywords: The unitary ring, integral domain, zero division, corps, incdence structurse, point connected to a corp, 

straight line connected to a corp, affine plane. 
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1. INTRODUCTION. GENERAL CONSIDERATIONS ON THE AFFINE PLANE AND THE 
CORPS 

In this paper initially presented some definitions and statements on which the next material. 

Let us have sets , , , where the two first are non-empty.  

Definition 1.1: The incidence structure called a ordering trio =(, , ) where  ∩=Ø  and  ⊆  × . 

Elements of sets  we call points and will mark the capitalized alphabet, while those of the sets , we call blocks (or 

straight line) and will mark minuscule alphabet. As in any binary relation, the fact (P, ℓ ) ∈    for P ∈  and for ℓ ∈ , it will 

also mark P  ℓ and we will read, point P is incident with straight line ℓ or straight line ℓ  there are incidents point P. 

(See [3], [4], [5], [10], [11], [12], [13], [14], [15]). 

Definition 1.2. ([3], [8], [16]) Affine plane called the incidence structure =(, , ), that satisfies the following axioms: 

A1: For every two different points P and Q ∈ , there is one and only one straight line ℓ∈, passing of those points. 

The straight line ℓ defined by points P and Q will mark the PQ. 

A2:  For a point P ∈, and straight line ℓ ∈   such that (P, ℓ ) ∉ ,  there is one and only one straight line 𝐦 ∈ 𝓛, passing 

the point P, and such that  ℓ ∩ r = Ø. 

A3: In 𝓐 here are three non-incident points to a straight line. 

A1 derived from the two lines different of 𝓛  many have a common point, in other words two different straight lines of  𝓛 or 

do not have in common or have only one common point. 

In affine plane =(, , ), these statements are true. 

Proposition 1.1. ([3], [5])  In affine plane =(, , ), there are four points, all three of which are not incident with a 

straight line (three points are called non-collinear). 

Proposition 1.2. ([3], [6],])  In affine plane =(, , ), exists four different straight line. 

Proposition 1.2. ([3], [8])  In affine plane =(, , ), every straight line is incident with at least two different points. 

Proposition 1.3. ([3], [9])  In affine plane =(, , ), every point is incidents at least three of straight line. 

Proposition 1.4. ([3]) On a finite affine plane =(, , ), every straight line contains the same number of points and 

in every point the same number of straight line passes. Furthermore, there is the natural number n ∈ ℕ,  n ≥2,  such that: 

1) In each of straight line 𝓵 ∈ 𝓛, the number of incidents is points with him is n. 

2) For every point 𝐏 ∈  𝓟, of affine plane =(, , ), it has exactly n + 1 straight line incident with him. 
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3) In a finite affine plane =(, , ), there are exactly  n
2
 points. 

4) In a finite affine plane =(, , ), there are exactly  n
2
 +n straight line. 

The number n in Proposition 1.4, it called order of affine plane =(, , ), it is distinctly that the less order a finite affine 

plane, is n = 2.  In a such affine plane it is with four points and six straight lines, shown in Fig.1. 
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Definition 1.3. ([1]). The ring called structures (B,⊕,⊚), that has the properties: 

1) structure  B,⊕ ,  is an abelian group; 

2) The second action  ⊚ It is associative ; 

3) The second action ⊚ is distributive of the first operation of the first ⊕. 

In a ring (B,⊕,⊚) also included the action deduction  –  accompanying each (a, b) from B, sums 

a ⊕  −b  

well  

a ⊕  −b = a − b 

Proposition 1.5 ([1], [7]). In a unitary ring (B,⊕,⊚), having more than one element, the unitary element  1B   is different 

from 0B . 

Definition 1.4 ([1], [2]). Corp called rings (K,⊕,⊚) that has the properties: 

1) K is at least one element different from zero. 

2) K⋇ = K −  0K  it is a subset of the stable of K about multiplication; 

3)  K⋇, ⊚  is a group. 

THEOREM 1.1. ([2]) If (𝐊,⊕,⊚) is the corp, then: 

1) it is the unitary element (is the unitary ring); 

2) there is no zero divisor (is integral domain); 

3) They have single solutions in K equations 𝐚⊚ 𝐱 = 𝐛  and 𝐱⊚ 𝐚 = 𝐛, where 𝐚 ≠ 𝟎𝐊 and 𝐛 are two elements 

what do you want of 𝐊. 

2. TRANSFORMS OF A INCIDENCE STRUCTURES RELATING TO A CORPS IN A 
AFFINE PLANE 

Definition 2.1. Let it be (𝐊,⊕,⊚) a corps. A ordered pairs (α, β) by coordinates α, β ∈K, called  point connected to 

the corp K. 

Sets K
2
 of points associated with corps K mark . 

Definition 2.2. Let be a, b, cK.. Sets 

                               ℓ = {(x, y) K
2
 | x⊚a⊕y⊚b=c, a ≠ 0K  or  b ≠0K }                                              (1) 

called the straight line associated with corps K. 

Equations x⊚a⊕y⊚b=c,  called equations of  the straight line  ℓ. Sets  of straight lines connected to the body K mark . It 
is evidently that  

=. 

Definition 2.3. Will say that the point  P=(,β)   is incident to straight line  (1), if its coordinates verify equation of  ℓ, 

This means that if it is true equation  α⊚a⊕β⊚b=c. This fact write down  



                                                                                                                                                                                                                                                                                                                                                                
I S S N  2 3 4 7 - 1 9 2 1   

                           V o l u m e  1 2  N u m b e r  5                                                                                                                                                                                                                    
J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6202 | P a g e                                   c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

A p r i l  2 0 1 6                                                  w w w . c i r w o r l d . c o m  

P∈ ℓ. 

Defined in this way is an incidence relations 

 ⊆ , 

such that (P, ℓ),   P ℓ. So even here, when pionts P is incidents with straight line ℓ, we will say otherwise point P is 
located at straight line ℓ, or straight line ℓ passes by points P. 

It is thus obtained, connected to the corps K a incidence structure =(, , ). Our intention is to study it. 

According to (1), a straight line ℓ its having the equation 

x ⊚ a ⊕ y ⊚ b = c, where 0a K or 0b K .                                                       (2) 

Condition (2) met on three cases: 1) 0a K  and 0b K ; 2) 0a K  and 0b K ; 3) 0a K  and 0b K , that allow the 

separation of the sets   the straight lines of its three subsets 0, 1, 2 as follows: 

𝓛𝟎 =  ℓ ∈ ℒ |x ⊚ a ⊕ y ⊚ b = c,   a ≠ 0K  and  b = 0K ;                                                        (3) 

𝓛𝟏 =  ℓ ∈ ℒ |x ⊚ a ⊕ y ⊚ b = c,   a = 0K  and  b ≠ 0K ;                                                      (4) 

𝓛𝟐 =  ℓ ∈ ℒ |x ⊚ a ⊕ y ⊚ b = c,   a ≠ 0K  and  b ≠ 0K .                                                        (5) 

Otherwise, subset 𝓛𝟎 is a sets of straight lines ℓ ∈ ℒ with equation 

x ⊚ a = c, where a ≠ 0K ⟺ x = d, where d = c ⊚ a−1;                                                (3′) 

subset 𝓛𝟏  is a sets of straight lines ℓ ∈ ℒ with equation 

y ⊚ b = c, where b ≠ 0K ⟺ y = f, where f = c ⊚ b−1;                                                       (4′) 

Whereas subset 𝓛𝟐 is a sets of straight lines ℓ ∈ ℒ with equation  

x ⊚ a ⊕ y ⊚ b = c, where  a ≠ 0K  and  b ≠ 0K ⟺ y = x ⊚ k ⊕ g;               (5′) 

where    k =  −1K ⊚ a ⊚ b−1 ≠ 0K ,   g = c ⊚ b−1; 

Hence the 

 a straight line ℓ ∈ 𝓛𝟎  is completely determined by the element d ∈ K such that its equation is  x = d,  

 a straight line ℓ ∈ 𝓛𝟏    is completely determined by the element f ∈ K such that its equation is  y = f and 

 a straight line ℓ ∈ 𝓛𝟐 is completely determined by the elements k ≠ 0K , g ∈ K such that its equation is  y = x ⊚
k ⊕ g.  

From the above it is clear that Π =  𝓛𝟎,𝓛𝟏,𝓛𝟐  is a separation of the sets of straight lines   𝓛.  

THEOREM 2.1. For every two distinct points  P,  Q    ,  there exist only one straight line    that passes 

in those two points. 

Proof. Let P=(p1, p2) and Q=(q1, q2). Fact that P ≠ Q means  

(p1, p2) ≠ (q1, q2).                                                                             (6) 

Based on (6) we distinguish three cases:  

1) p1 =  q1  and  p2 ≠  q2; 

2) p1 ≠  q1  and  p2 = q2; 

3) p1 ≠  q1  and  p2 ≠ q2; 

Let’s be straight line   , yet unknown, according to (2), having the equation x ⊚ a ⊕ y ⊚ b = c, where 0 Ka or 

0 . Kb   

Consider the case 1) p1 =  q1  and  p2 ≠  q2. From the fact P,  Q    we have: 

 

p1 ⊚ a ⊕ p2 ⊚ b = c

q1 ⊚ a ⊕ q2 ⊚ b = c

 ⟺  

p1 ⊚ a ⊕ p2 ⊚ b = c

p1 ⊚ a ⊕ p2 ⊚ b = q1 ⊚ a ⊕ q2 ⊚ b

  

But p1 = q1   and  p2 ≠ q2,  so, from the fact that (K,⊕) is abelian group, by Definition 1.4, we get  
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p1 ⊚ a ⊕ p2 ⊚ b = c

p2 ⊚ b = q2 ⊚ b

 ⟺  

p1 ⊚ a ⊕ p2 ⊚ b = c

 p2 − q2 ⊚ b = 0K

  

From above, according to Theorem 1.1, corps K is complete ring, so with no divisor 0K , results  

 

p1 ⊚ a ⊕ p2 ⊚ b = c

b = 0K

 ⟺  

p1 ⊚ a = c

b = 0K

  

From this 

a) if  p1 = 0K , we get  

 

0K ⊚ a = c

b = 0K   a ≠ 0K 

 ⟺  

c = 0K

b = 0K   a ≠ 0K 

  

. 

According to this result, equation (2) takes the form x ⊚ a = 0K, where a ≠ 0K, otherwise 

    x = 0K                                      (7) 

(since, being a ≠ 0K , it is element of group (K⋇ , ⊚), so  x ⊚ a = 0K ⟺ x = 0K ⊚ a−1 ⟺ x = 0K). 

b) if  p1 ≠ 0K , and  p1  is element of group (K⋇ , ⊚),  exists  p1
−1, that get the results: 

 
a = p1

−1 ⊚ c

b = 0K   a ≠ 0K 

  

under which, equation (2) in this case take the form  

x ⊚ p1
−1 ⊚ c = c, where a ≠ 0K ⟺  x ⊚ p1

−1 = 1K ⟺  x = p1                      (7') 

Here it is used the right rules simplifying in the group (K⋇ , ⊚),  with  c ≠ 0𝐾, because 𝑎 = 𝑝1
−1 ⊚ 𝑐 and  𝑎 ≠ 0𝐾 .  

For two cases (7) and (7') notice that, when  p1 = q1  and  p2 ≠  q2, there exists a unique straight line   with equation 𝑥 = 𝑑 

of the form (3'), so a line  0. 

Case 2) 𝑝1 ≠ 𝑞1 and 𝑝2 = 𝑞2  is an analogous way and achieved in the conlusion and in this case there exists a unique 

straight line   with equation 𝑦 = 𝑓 of the form (4'), so a line  1. 

Consider now the case 3) p1 ≠  q1  and  p2 ≠ q2. From the fact P,  Q    we have: 

 

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚ 𝑏 = 𝑐

𝑞1 ⊚𝑎⊕ 𝑞2 ⊚𝑏 = 𝑐

 ⟺  

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 𝑐

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚ 𝑏 = 𝑞1 ⊚𝑎⊕ 𝑞2 ⊚𝑏
.                                        (8)   

The second equation can be written in the form 

 𝑝1 − 𝑞1 ⊚ 𝑎 =  𝑞2 − 𝑝2 ⊚ 𝑏,  that bearing 𝑎 ≠ 0𝐾  and  𝑏 ≠ 0𝐾                                        (9) 

Regarding to the coordinates of point P we distinguish these four cases:  

a) p1 = 0K =p2. This bearing 1 0 Kq and 2 0 Kq . In this conditions (8) take the form 

 

𝑐 = 0𝐾

𝑎 = −𝑞1
−1 ⊚𝑞2 ⊚𝑏

.   

According to this result, equation (2) take the form 𝑥 ⊚  −𝑞1
−1 ⊚ 𝑞2 ⊚𝑏 ⊕ 𝑦⊚ 𝑏 = 0𝐾 , where , according (9), 𝑏 ≠ 0𝐾. So, 

by the properties of group we have: 

 𝑥 ⊚  −𝑞1
−1 ⊚𝑞2 ⊕ 𝑦 ⊚ 𝑏 = 0𝐾 ⟺−𝑥⊚  𝑞1

−1 ⊚𝑞2 ⊕ 𝑦 = 0𝐾 ⊚𝑏−1 ⟺ 

𝑦 = 𝑥 ⊚  𝑞1
−1 ⊚ 𝑞2 , where 𝑞1

−1 ⊚ 𝑞2 ≠ 0𝐾                           (10) 

b) p1 = 0K
 p2. This bearing 1 0 . Kq  In this conditions, system (8) take the form 

 

𝑝2 ⊚𝑏 = 𝑐

𝑞1 ⊚𝑎 = 𝑞1
−1 ⊚  𝑝2 − 𝑞2 ⊚ 𝑏

 . 
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−This result, give the equation (2) the form 𝑥 ⊚  𝑞1
−1 ⊚  𝑝2 − 𝑞2  ⊚ 𝑏 ⊕ 𝑦⊚ 𝑏 = 𝑐, where besides 0 , Kc  by (9), the 

0 . Kb  So, by the properties of group we have: 

 𝑥 ⊚  q1
−1 ⊚  𝑝2 − 𝑞2  ⊚ 𝑏 ⊕ 𝑦⊚ 𝑏 = 𝑐 ⟺  𝑥 ⊚ 𝑞1

−1 ⊚  𝑝2 − 𝑞2 ⊕ 𝑦 ⊚ 𝑏 = 𝑐 ⟺ 

 𝑥 ⊚ 𝑞1
−1 ⊚  𝑝2 − 𝑞2 ⊕ 𝑦 ⊚ 𝑝2

−1 ⊚ 𝑐 = 𝑐 ⟺  𝑥 ⊚ 𝑞1
−1 ⊚  𝑝2 − 𝑞2 ⊕ 𝑦 ⊚ 𝑝2

−1 = 1𝐾 ⟺ 

𝑥 ⊚  𝑞1
−1 ⊚  𝑝2 − 𝑞2  ⊕ 𝑦 = 𝑝2 ⟺ 

𝑦 = 𝑥 ⊚  𝑞1
−1 ⊚  𝑝2 − 𝑞2  ⊕ 𝑝2,    where  𝑞1

−1 ⊚  𝑝2 − 𝑞2 ≠ 0𝐾                  (11) 

c) p1   0K = p2. This bearing 2 0 , Kq  and the system (8) take the form 

 

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚ 𝑏 = 𝑐

 𝑝1 − 𝑞1 ⊚ 𝑎 =  𝑞2 − 𝑝2 ⊚ 𝑏
.  

In a similar way b)  it is shown that equation (2) take the form   

𝑦 = 𝑥 ⊚   𝑞1 − 𝑝1 
−1 ⊚ 𝑞2 ⊕ 𝑝1 ⊚  𝑝1 − 𝑞1 

−1 ⊚ 𝑞2  where  𝑞1 − 𝑝1 
−1 ⊚𝑞2 ≠ 0𝐾  .                     (12) 

d) p1   0K  and  p2
  0K . We distinguish four subcases:  

d1 ) q1 = 0K = q2. From the system (8) we have 

 

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 𝑐

𝑞1 ⊚𝑎⊕ 𝑞2 ⊚𝑏 = 0𝐾

 ⟹ 𝑐 = 0𝐾 and  𝑎 = −𝑝1
−1 ⊚𝑝2 ⊚𝑏 

After e few transformations equation (2) take the form  

𝑦 = 𝑥 ⊚  𝑝1
−1 ⊚𝑝2 , where 𝑝1

−1 ⊚𝑝2 ≠ 0𝐾         (13) 

d2 ) q1 = 0K
  q2. From the system (8) we have 

 

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 𝑐

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 𝑞2 ⊚𝑏

 ⟹ 𝑞2 ⊚ 𝑏 = 𝑐 ⟹ 𝑐 = 0𝐾 

and 𝑎 = 𝑝1
−1 ⊚  𝑞2 − 𝑝2 ⊚ 𝑏,  where 𝑏 = 𝑞2

−1 ⊚ 𝑐. 

After e few transformations equation (2) take the form  

𝑦 = 𝑥 ⊚  𝑝1
−1 ⊚  𝑝2 − 𝑞2  ⊕ 𝑞2, ku 𝑝1

−1 ⊚  𝑝2 − 𝑞2 ≠ 0𝐾                                           (14) 

d3 ) q1  0K  =q2. In this conditions (8) bearing 

 

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 𝑐

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 𝑞1 ⊚𝑎

 ⟹ 𝑞1 ⊚𝑎 = 𝑐 ⟹ 𝑐 ≠ 0𝐾 

And   𝑏 = 𝑝2
−1 ⊚  𝑞1 − 𝑝1 ⊚ 𝑎, where 𝑎 = 𝑞1

−1 ⊚ 𝑐. 

After e few transformations equation (2) take the form 

𝑦 = 𝑥 ⊚  𝑞1
−1 ⊚  𝑝1 − 𝑞1 ⊚ 𝑝2 ⊕ 𝑞1 ⊚  𝑞1 − 𝑝1 

−1 ⊚𝑝2, where 𝑞1
−1 ⊚  𝑝1 − 𝑞1 ⊚ 𝑝2 ≠ 0𝐾                     (15) 

       d4 ) q1  0K   and q2  0K . If  c= 0K system (8) have the form 

 

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 0𝐾

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 𝑞1 ⊚𝑎⊕ 𝑞2 ⊚𝑏

 . 

After e few transformations results that the equation (2) have the form 

𝑦 = 𝑥 ⊚  𝑞1
−1 ⊚  𝑝1 − 𝑞1 

−1 ⊚  𝑝2 − 𝑞2  ,      where  𝑞1
−1 ⊚  𝑝1 − 𝑞1 

−1 ⊚  𝑝2 − 𝑞2 ≠ 0𝐾                      (16) 

If  c 0 K , system  (8) , by multiplying both sides of his equations with 
1

c ,  this is transform as follows: 
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𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 𝑐

𝑝1 ⊚𝑎⊕ 𝑝2 ⊚𝑏 = 𝑞1 ⊚𝑎⊕ 𝑞2 ⊚ 𝑏

 ⟺  

𝑝1 ⊚𝑎1 ⊕ 𝑝2 ⊚ 𝑏1 = 1𝐾

𝑝1 ⊚𝑎1 ⊕𝑝2 ⊚𝑏1 = 𝑞1 ⊚𝑎1 ⊕ 𝑞2 ⊚𝑏1

  

From this equation (2) take the form 

𝑦 = 𝑥 ⊚   𝑝1 − 𝑞1 
−1 ⊚  𝑝2 − 𝑞2  ⊕ 𝑏1

−1, where   𝑝1 − 𝑞1 
−1 ⊚  𝑝2 − 𝑞2 ≠ 0𝐾                                             (17)  

As conclusion, from the four cases (14), (15), (16)  and (17), we notice that, when  p1 ≠ q1  and  p2 ≠  q2, there exists an 

unique straight line   with equation  𝑦 = 𝑥 ⊚ 𝑘 ⊕ 𝑔 of the form (5'), so a line  2. 

THEOREM 2.2. For a point P     and a straight line     such that P   exists only one straight line  r

  passing the point P, and such that  . r  

Proof. Let it be 𝑷 =  𝑝1, 𝑝2 . We distinguish cases: 

a)  𝑝1 = 0𝐾 and  𝑝2 = 0𝐾;  

b)  𝑝1 ≠ 0𝐾 and 𝑝2 = 0𝐾; 

c)  𝑝1 = 0𝐾 and 𝑝2 ≠ 0𝐾; 

d)  𝑝1 ≠ 0𝐾 and 𝑝2 ≠ 0𝐾;  

The straight line, still unknown 𝑟, let us have equation 

𝑥 ⊚ 𝛼 ⊕ 𝑦⊚ 𝛽 = 𝛾, 𝑘𝑢  𝛼 ≠ 0𝐾  𝑜𝑠𝑒  𝛽 ≠ 0𝐾                                                        (18) 

For straight line  ℓ, we distinguish these cases:  1) ℓ ∈ 𝓛𝟎; 2) ℓ ∈ 𝓛𝟏; 3) ℓ ∈ 𝓛𝟐  

Case 1) ℓ ∈ 𝓛𝟎. In this case it has equation x = 𝑑. 

The fact that 𝑃 =  𝑝1, 𝑝2 ∉ ℓ, It brings to 𝑝1 ≠ 𝑑. But the fact that ℓ ∩ 𝑟 = Ø, it means that there is no point 𝑄 ∈ 𝒫, that 

𝑄 ∈ ℓ and 𝑄 ∈ 𝑟, otherwise is this true 

                       ∀𝑄 ∈ 𝒫,𝑄 ∉ ℓ ∩ 𝑟.                                                                     (19) 

In other words there is no system solution 

 

𝑥 = 𝑑 ≠ 𝑝1

𝑥 ⊚ 𝛼 ⊕ 𝑦⊚ 𝛽 = 𝛾

 .                                                                      (19’) 

since  𝑃 ∈ 𝑟, that brings 

𝑝1 ⊚𝛼⊕ 𝑝2 ⊚𝛽 = 𝛾, where  𝛼 ≠ 0𝐾  𝑎𝑛𝑑  𝛽 ≠ 0𝐾                                                      (20) 

In case a) 𝑝1 = 0𝐾 and 𝑝2 = 0𝐾, from (20) it turns out that 𝛾 = 0𝐾, 

Then equation (18) take the form 

𝑥 ⊚ 𝛼 ⊕ 𝑦⊚ 𝛽 = 0𝐾, where  𝛼 ≠ 0𝐾  𝑜𝑟  𝛽 ≠ 0𝐾  

 If 𝛼 ≠ 0𝐾  𝑜𝑟𝑒  𝛽 = 0𝐾 , equation (18) take the form 

𝑥 ⊚ 𝛼 = 0𝐾 ⟺ 𝑥 = 0𝐾  

Determined so a straight line 𝑟 with equation 𝑥 = 0𝐾, that passing point 𝑃 = (0𝐾 , 0𝐾), for which the system (19’) no 

solution, after his appearance: 

 

𝑥 = 𝑑 ≠ 0𝐾

𝑥 = 0𝐾

  

 If 𝛼 = 0𝐾  𝑜𝑟  𝛽 ≠ 0𝐾 , equation (18) take the form 

𝑦 ⊚ 𝛽 = 0𝐾 ⟺ 𝑦 = 0𝐾 

that defines a straight line 𝑟1. In this case system (19’) take the form 

 

𝑥 = 𝑑 ≠ 0𝐾

𝑦 = 0𝐾

,  

which solution point Q = (d, 0K) ∈ ℓ ∩ r1. This proved that straight line r1 It does not meet the demand  ℓ ∩ r1 = Ø. 

 If α ≠ 0K  ose  β ≠ 0K , equation (18) take the form 

y ⊚β = −x ⊚α⟺ y = x ⊚  −α⊚ β−1  
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that defines a straight line r2. In this case system (19’) take the form 

 

x = d ≠ 0K

y = x ⊚  −α⊚ β−1 

 , 

which solution point R = (d,−d ⊚α⊚ β−1) ∈ ℓ ∩ r2. Also straight line r2 it does not meet the demand ℓ ∩ r1 = Ø. 

In this way we show that, whenℓ ∈ 𝓛𝟎 exist just a straight line  r, whose equation is 

x = 0K  

that satisfies the conditions of Theorem. 

Conversely proved Theorem 2.2 is true for cases 2) ℓ ∈ 𝓛𝟏 dhe 3) ℓ ∈ 𝓛𝟐 . 

THEOREM 2.3.  In the incidence structure =(, , ) connected to the corp K, there exists three points not in 

a straight line. 

Proof. From Proposition 1.5, since the corp K is unitary ring, this contains 0K  and 1K ∈ K, such that 0K ≠ 1K. It is obvious 

that the points P = (0K , 0K), Q = (1K , 0K) and R = (0K , 1K ) are different points pairwise distinct 𝒫. Since P ≠ Q, and 0K ≠ 1K , 

by the case 2) of the proof of Theorem 2.1, results that the straight line PQ ∈ ℒ1, so it have equation of the form y = f. 
Since P ∈ PQ results that f = 0K .  So equation of PQ is y = 0K . Easily notice that the point R ∉ PQ. 

Three Theorems 2.1, 2.2, 2.3 shows that an incidence structure =(, , ) connected to the corp  K, satisfy three axioms 
A1, A2, A3 of Definition 1.2 of an afine plane. As consequence we have  

THEOREM 2.4.  An incidence structure =(, , ) connected to the corp K  is an afine plane connected with 

that corp. 
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