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Abstruct:  

we use fractional power series method (FPSM) to solve some linear or nonlinear fractional differential equations . 

Compared to the other method, the FPSM is more simple, derect and effective. 
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1. Introduction  

Many phenomena in applied sciences and engineering can be decribed successfully by using fractional order differential 

equation [1-7]. But fractional order differential equations are usually hard to solve analytically and exact solution are rather 

difficult to be obtained. So it is very important to find efficient  methods for solving these equations.  

Various researchers have introduced new methods in the literature. These methods include variational iteration method 

(VIM) [1], homotopy perturbation method (HPM) [2], homotopy analysis method (HAM) [3],  DGJ method [5], Adomian 

decomposition method (ADM) [4], and other methods [7].  

In this paper, we will use fractional power series method (FPSM) [10] to solve some fractional differential equations. 

Compared to the above method, the FPSM is more simple and effective. 

2. Basic definitions 

Definition 1.( [6] )  A  power series representation of the form  
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where 0 1 ,m m m N       and 0t t  is called a fractional power series (FPS) about 0t , where t  is a 

variable and nc  are the coeffients of the series.  

Definition 2. ( [7] ) The fractional derivative of ( )f x  in Caputo sense is defined as  
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for 1 , , 0.m m m N x       

I n addition, we also need the following property: 
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Theorem 1. ([6]) Suppose that the FPS 
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  has radius of convergence 0R  . If ( )f t  is a function defined 

by 
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 on 0 t R  , then for 1m m    and 0 t R  , we have: 
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3. Illustrative examples 

In this section, the applicability of FPSM shall be demonstrated by two test examples. 

3.1 Example 1 

First, we consider the fractional telegraph equation in the form [8]: 
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                             (4) 

with the initial conditions  

                              (0, ) tu t e , (0, ) 0.xu t                           (5) 

Where 1 2   is a parameter describing the order of the fractional space derivative. To apply FPSM , suppose that the 

solution of (4) takes the form: 
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Using (5), we have 0 ( ) ta t e .  Next we determine the ( ) ( 1,2, ).ka t k    

From Theorem 1, we obtain 
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On the other hand,  
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Substituting (6), (7), (8) and (9) into (4), and comparing the coefficients of x  in the both side, we get 
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Thus we obtain the solution 
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The exact solution to (4) when 2   is given as: 

                             ( , ) cos .tu x t e hx  

3.2 Example 2 

 Now, we consider the fractional Riccati equation that is frequently encountered in optimal control problem [7]: 

             
2( ) 2 ( ) ( ) 1, 0 1, 0 1,D u t u t u t t                          (10) 

with the initial condition (0) 0.u   

To apply FPSM , we suppose that the solution of (4) takes the form: 
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Using the initial condition (0) 0u  , we have 0 0a  .  Next we determine the ( 1,2, ).ka k    

By Theorem 1, we get 
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Substitute (11) and (12) into (10), yields that: 
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The equating of the coefficients of 
kt   in both side of (13), leads to the following: 
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and so on. 

Thus the solution can be obtained. For example, when 0.5  , we have the solution as  
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which agrees with the results of this problem obtained in [7]. 

4. Conclusion 

we have used  FPSM to solve some linear or nonlinear fractional differential equations . Compared to the other method, 

the FPSM is more simple, derect and effective. 

References 

1. He J H. Variational iteration method–a kind of non-linear analytical technique: some examples[J]. 

International journal of non-linear mechanics, 1999, 34(4): 699-708. 

2. He J H. Homotopy perturbation method: a new nonlinear analytical technique[J]. Applied Mathematics and 

computation, 2003, 135(1): 73-79. 

3. Liao S. Beyond perturbation: introduction to the homotopy analysis method[M]. CRC press, 2003. 

4. Adomian G. A review of the decomposition method in applied mathematics[J]. Journal of mathematical 

analysis and applications, 1988, 135(2): 501-544. 

5. Sari M, Gunay A, Gurarslan G. A solution to the telegraph equation by using DGJ method[J]. International 

Journal of Nonlinear Science, 2014, 17(1): 57-66. 

6. El-Ajou A, Arqub O A, Zhour Z A, et al. New results on fractional power series: theories and applications[J]. 

Entropy, 2013, 15(12): 5305-5323. 

7. Elsaid A. Fractional differential transform method combined with the Adomian polynomials[J]. Applied 

Mathematics and Computation, 2012, 218(12): 6899-6911. 

8. Cascaval R C, Eckstein E C, Frota C L, et al. Fractional telegraph equations[J]. Journal of Mathematical 

Analysis and Applications, 2002, 276(1): 145-159. 


