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Abstract

Getting acquainted with the theory of stochastic processes we can read the following statement: "In the ordinary
axiomatization of probability theory by means of measure theory, the problem is to construct a sigma-algebra of
measurable subsets of the space of all functions, and then put a finite measure on it". The classical results for limited
stochastic and intensity matrices goes back to Kolmogorov at least late 40-s. But for some infinity matrices the sum of
probabilities of all trajectories is less than 1.

Some years ago | constructed physical models of simulation of any stochastic processes having a stochastic or an
intensity matrices and | programmed it. But for computers | had to do some limitations - set of states at present time had to
be limited, at next time - not necessarily. If during simulation a realisation accepted a state out of the set of limited states -
the simulation was interrupted. | saw that | used non-quadratic, half-infinity stochastic and intensity matrices and that the
set of trajectories was bigger than for quadratic ones. My programs worked good also for stochastic processes described
in literature as without probability space. | asked myself: did the probability space for these experiments not exist or were
only a set of events incompleted? This paper shows that the second hipothesis is true.

Keywords: Markov process; Intensity matrix; Caratheodory theorem in measure theory; Probability space for
stochastic processes
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1 Introduction

For each continuous-time discrete value stochastic process we can define instantaneous probability rates. That idea is
used by biologists [9], [6] and it corresponds to the intensity of probability used in the theory of stochastic processes. For a
continuous-time discrete value stochastic Markov process it can be defined as a right differential coefficient of the
conditional probability of change from one state to another.

Let ((X)iqor)> P,o(€2)) be continuous-time discrete value stochastic process with Markov property, where:

X, :[0,T) >W are random variables, W is a set of events, o({2) is o -algebra on Q, P:o() —[0.1] is

probability, T >0, and T can be equal to o0, W is a finite or numerable set of states. The states in W can be
numbered by integers, so W = (E,)

neN -

Forall t and 7 > 0 we can calculate a conditional probability (state-transition probability) in period [t, t+ Z') :

I:)k,n (t,t+2') = P{X = En | xt T Ek} (1)

t+r

where E, eW and E, €W are states.

Then we can define the instantaneous probability rate of the change of the state En to Ek attime 1 as equal to:

P, (tt+
P ,(1)= lim Palttre) ¥..'(07) for k #n @
>0t T
or
P.(tt+7)-1 o
P/ (1) = lim ok ) =% '(0%) for k=n 3)
r—0"

where W, ,(z) = B, ,(t,t+7). The function P/ isequalto [0,T)>t— ¥, ,'(0") eN.

For all standard continuous-time discrete value stochastic processes those limits are presented. For homogenous
processes functions t — Pk n'(t) are constant and for many processes (described diurnal or seasonal fluctuations of

probability) those functions are continuous. For the proofs of theorems in this article you will need only their integrability
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and the limitations during the limited time-periods.

Instantaneous probability rates can have values greater than 1 (but always non-negative for K#n and non-positive for
k=n ) and they are measured by 1/year, 1/h, 1/s etc. According to the property:

zpk,n(t,Hr):lforallt,r>0andn @
k

that is equivalent to

P (tt+7 P (tt+7)-1
> n )+ n ) =0 forallt,r>0andn )
K T T
instantaneous probability rates fit the condition:
D P, (t)=0 foralltand n (6)
k

For every time T we can consider a matrix (finite or infinite) of instantaneous probability rates: [F’k n ' (t)]k nen - Itis awell-

known intensity matrix [11], [1] or state-transition matrix [7], [12] used by mathematicians to create Kolmogorov equations.
In this article such a matrix will be treated differently. This matrix is a based object creating probability space for Markov
stochastic processes.

The aim of this paper is to prove that for all matrices of integrability functions [ f,  (t)], .., limited on each time period

[0,T] (T <o0), non-negative for kK # N and non-positive for K =N, which satisfy the condition Zk f. (t)=0 for
all t and N we can construct a probability space for a continuous-time discrete value stochastic Markov process whose
instantaneous probability rates B '(t) are equaltothe f,  (t).

2 Half-infinite stochastic and intensity matrices
A modelling of Markov stochastic processes is an important branching in theoretical biology [5], [3]. But in biology
stochastic and intensities matrices are defined by functions Pk’n'('[) given by mathematical formulas of t, k and N, so

the matrices have infinite rows and columns. In the other hand the simulation of this processes are provided by finite,
assumed maximal time or by shorter time, if k shows an impossible state. The maximal possible state are always assumed
- sometimes it is a subjectively assumed number in computer programme, sometimes it is maximal integer understanding
by computers.

Stochastic and intensities matrices of these processes are half-infinite. They have a form: [Pk,n.]ke[O,K],ne[O,oo] . All finite
matrices [R, '] np.xj can be extended to half-infinite by assumption B, ,*(t) =0 if N> K. The set of realisations of
these processes includes all time-depended functions [0,t) >W , where if t < {2« then the last state of the realisation

is an impossible state.

Although half-infinite stochastic and intensity matrices give the impression of unnecessary mathematical entities, this
paper shows that all continuous-time discrete value stochastic processes with Markov property defined by half-infinite
intensity matrices have a correct defined probability spaces as Kolmogorov conception. These probability spaces allow to
define a probability space for all (finite or infinite) intensity matrices and for infinite time period.

3 General theorem

For all matrices of integrability functions [ f, | (t)], 4o k}nepo. - Where K can be finite or infinite, which satisfy the

following condition:

Viek ¥ nak Vicpor) f.(t)=0 (7)

vksKvte[O,T) fk,k t) <0 (8)

V1 csTmso Viek Viep] fk,k t>-M 9)

vte[o,T)vksK ka,n (t)=0 (10)
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a correct probability space (€, 0(€2),P) for a continuous-time discrete value stochastic Markov process whose

instantaneous probability rates B '(t) are equaltothe f,  (t) can be constructed.

The states in W noted as Ek can be assumed. In set of these states the natural or unnatural order can be defined
(Eo <E <---<E(< -++) to form a matrix with columns and rows named by E,, E,, ---. The state E, is a
maximal possible state and for all K > K the states E, are impossible. The half-infinite matrix [ f, | (t)]yq0 k1neo

can be labelled by (E, < E, <---<E )x(E, <E, <---<E, <--).

4 The construction of probability space for half infinite matrices and T <oo
4.1 Set of events Q

We can consider time-depended, step functions (constant on for a finite or countable number of intervals):
(DZ[O,T) —>W and their graphs on the coordinate system (Fig.1). We will consider functions constant on left closed

intervals [tl,tz) . Such a function will be called the realization of the forming of a stochastic process. All those realizations

form aset Q).

+ Cg=Eku
E|{ - :
Cy :
Eg - C, — Cc
G1I il CS 1 T
EE - r— —y T
| p— y——F)
E4 — C'1 : —— GE
o — . Cs
E2 — — GS ——
2 Cs
ED T T T T T T T T T T T 1
time T

Figure 1: Two exemplary realizations.

States defined by names of rows or columns of matrix [ f,  (t)], , are labelled by E . But for each realization we have a

sequence of states successively appearing in this function. This sequence will be noted as (Ci)i:0 ...

4.2 Basis B of o(Q)

Let (Ai)izl,Z,--- be a finite or infinite sequence of time left-closed intervals such that A; ﬂAj = for 1 # | and
UAi =[0,S] for S<T . Such a sequence of intervals will be called the covering of interval [0,S) . A case that this
sequence has one or more focusing points is not excluded. Let Co be the initial state at to =0 and (Ci)izl,z,--- be any

sequence of states from W. A case that C; =C,,, is not excluded. We assume that C, is fixed, the same for all
realizations.

Definition 1 The base set formed by the covering (A;)i-; ,..., of [0,S) and the sequence of states (C;)i_, ,..., is

z

a set of all realizations @ € Q) which satisfy the following conditions:

. ift<s
1. foreach A, thereis S€ A, thatfor t € A; ¢(t)= )
C, Iift=s
2. all states (C;),_,...,; are possible,
3.if S <T, the last state Cg is impossible,
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4.if S=T the last state C; is possible.

Two realizations are contained in the same base set if the sequences of states of both realizations are the same and only
times of change from one state to another are a little different (Fig.2).

(?ﬁ_lzlfmn
Fi = ot
> |:|:|:|
E E e 1!
d ,-Ela 7] %.'.%
E M E c1|| M| ! I:::fl
&1 CE .'|'|:| 'E-_'ll-ﬁ C
e Cy M- y 3
By G, roeeieieleiet Esm
11| —— 11|11
Ez_ | !II:I:|| Ez_
2 4
Eug,.la_\_lg,l.-lg,lg, T A- 1 EUﬁglﬁl.-lﬁlg,l 1
2 334tim§ & T {As Ejdtinﬁﬁe e g T

for all i. For all

For the covering (A,), ... without focusing points we will assume that A; is followed by A,

coverings we can find such a sequence of index that finite number of chosen neighbouring intervals are noted Ai and

A,,; - Therefore, we will use a notation A;, A,,;, ..., A;,, for neighbouring intervals.

Sometimes the same base set of realizations can be formed by different coverings and sequences of states. For instance,
the covering:

([tzi 1t2i+1)! [t2i+1’t2i+2))i=0,l,2~

with the sequence of states (C;,C;);_, ,... (realizations don't change states on intervals [ty,,,t5,,) and another
covering

([tzi ’t2i+1)l [t2i+l'0'5(t2i+1 +t2i+2))1 [0'5(t2i+1 +t2i+2)'t2i+2))i:0,1,2~,<-

with the sequence of states (Ci,Ci ) Ci)i:l ,... formed the same base set. But for all base sets there exists only one

#=C.

i+2 - It will be called the

covering (A,;);; ,,.. and sequence of states (C;),, ,..., suchthat C; = C;,; imply C

z i+1

optimal covering.
Definition 2 Basis B is a set of all base sets formed by all possible coverings (A;);-; ... of all possible intervals
[0,S) <[0,T) and all sequences of states (C;);-, ,....-

B is a subset of 2 (all subsets of (). Basis B is required to define o -algebra on () as minimal o -algebra

consisting B, but in this paper the construction of ¢ -algebra for probability space is a little different. It is similar to
construction of Lebesgue measure domain [8], [10], [2], [4].

For any A and B from B such that ANB = the set AMB eB because if A is formed by optimal covering

(A})o1 ... and the sequence of states (C*)_;, . and B is formed by the optimal covering (A),_,, . and the
sequence of states (C°)i-, ,.. (ANB = onlyif C* =C? =C; foralli), then ANB is formed by the covering

(A° ﬂA?)i:l’Z’__ and the sequence of states (C;,C;,C,1)i-1,....

For A and B from B formed by finite optimal coverings (noted as (A?)izl,z,m and (A?)i=l,2,~~ respectively) and the

same sequences of states (C;);_; ,... there exists a finite sequence of disjoint sets (D, ), ,... from B such that
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A-B= UDi. Set D, is formed by the covering (A NA? |, AM N AZ, A? mA|'3+1)i:1,2;.. and sequence of states

(GGt Ci,2 )imrn,.. where (C,,C,,,",C,L,") €{(C,,C,;,C,L0), (C,CLCL). (CLCLC)Y

The properties of: AeB and BeB impy AnBeB, AeB and B €B imply that existed some D, €B that
A—-B = JD, mean that B is a semi-ring on Q [8].

4.3 Base function Pon B

For any interval [t;,1,) =[0,S) <[0,T) and any pair of states E, , E where kK <K', we can calculate:

exp(ffnyn(x)dx) if k=n

b
'[2 X 12
[ ()exp([ i, (s)ds+ [ f,,(s)ds)ldx (11)
tl tl X
if k#nand n<K

[Tt Oexp ([ fi i (5)ds)ldx

4

PEk Ep (t,.t,)=

if k#n and n>K

If t =1, then the integrals are equalto 0. It means thatif A=0 then P ¢ (A)=1andif A=0 and Nn#Kk, then
Pe e (4)=0.

Theorem 1 For any E, and E, and t€[0,T) the function [0,0) 57 — PEk e (t,t+7) has the following
'n
properties:

1. its values are in interval [0,1]
2. itis not decreased for K # N and not increased for K = n

3.if 7 — 0, then this function tends to 1 for K =N andittendsto 0 for K # n

4. ZPEk'En(t,t-l-T)Sl forall K, t and 7.
n

Proof. Properties 2 and 3 resuit from the assumptions that f_ (t) are non-positive, and f,  are non-negative for

kK #n, and from the properties of the exponent function and integrals. Property 1 results from point 4. Therefore, only
point 4 must be proved.11

For each K # N we have:

t+7 X
Pe e (tt+7)< [[f, ,o(] T, (5)ds)ldx (12)
t t
So:
t+r X
2 Pe e, (L T) < j [§fk,nequ f i (s)ds)]dx = 13)
t+7 X t+7 d X
{ [~ fi e j fi (S)ds)]dx = — j - e J fi (S)ds)]dx =
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t+r

—exp( [ f, () +1=—P ¢ ([t.t+7))+1

According to this inequality the theorem 1 point 4 is truthful.
Definition 3 The base function P:B —[0,1] is a function which for all base sets A formed by the covering

(A;)i=1 ,,.. and sequence of states (C,);_; ,... is equal to:

P(A) = HPCi Ci (a) (14)
Theorem 2 The definition of base function P is good.

Proof. we must prove that for the optimal covering (A, ), ,... and the sequence of states (C;);—,,... and another

covering (A});_; ,... and the sequence of states (C/);_, ,... forming the same base set, we have:

HPCi Cin (A' ) = HPCI, Ci (A:) =

The same base set can be formed by (A;)iZ;,... with (C;)i_ ... and (A})i_,... with (C[)_, ,. . if for some M all

A=A for  all i<m and C,=C/ for al i<m and A, =AL+AL and
Cm = Cm+l T Cr,n 0 Cr'n+1 = Cr'n+2 = Ek' Then:
Per e (4 )Pc;ml,c;mz (4)= Pe, &, (4 )PEk Ey (4)= (16)
exp([ fi ()dX)exp( [ i, (x)dx) =
Ai Ai+1

op( | 09 = ([T, (D) =P ¢ (A,)

AjUA
The value of P for the base set is the same as the value for its optimal covering. So the P is a well-defined function.
Theorem 3 Base function P has the following properties:
1. P(A) <1
2.1f Ac B, then P(A) < P(B).

3. If UA1 €B and ANA; =D forall i # j then P(UAI): ZP(AI)
i=1 i=1 i=1
Proof. The property 1 is obvious because all PEk E (A) are non-negatiwe and less than 1.
n

Let B be formed by the optimal covering (A?)i=l,2,~~' and the sequences of states Ci21,2,~~~ .Let AecB and ACB.
Then there exists a covering (AQ’A?Z’A%)isz;-- and the sequence of states (Cif’Ci:"Cig)i:l,Z;-- forming set A
such that:
1. AP = A/a UA/?Z UA/?3 forall I,
2. CiA = Cﬁl and CiA = CiA = CiB then forall i >1.
1 2 3
Sometimes A} =& or AL, = .

it Py = E and CP = E, and A7 =[t;,1,) and A} =[t;,y,) and A7 =[y,,t,) then if k = n):
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(A) =P ¢ (&)= (17

cB cB

T[ fen (x)exp(JX'fKk (s)ds +If f. . (s)ds)]dx =

yjl[ f, o (X)exp( j o (S)ds+ j f..(s)+ j f. . (s)ds)Jdx +
yf[fkn(x)exp( j . (S)ds+ j f,  (s)ds+ j f. . (s)+ j f. . (s)ds)]dx +

j[fkn(x)exp<jfkk(s)ds+jfkk(s)ds+ann(s)ds>]dx>

2] Y Y2

exp(jfkk(xmx) j[fkn(x)exp<jfkk(s>ds+jfnn<s>ds)]dx exp(jfnn(x)dx)—

Y Y1 Y1 Y2

_PCACA( |1)P CA(A )PA A(A|)

|2)PCA CA(AA) These formulas are true for all i, so

If K=n then F’Ci1 B(AB) P CA(All)PACA(A
P(A) < P(B)

Let base sets A and B are disjoint and A\ B €B. We can make an assumption that the sets A and B are formed
by optimal coverings (A¢)i:1,2;.. and (A?)izl,z,--- , and the sequences of states (CiA)i:1,2‘... and (CiB)i:l’Z’___

respectively. Then, the sets A and B are disjoint and A B is a base set from B if and only if:

1. A? = A? forall i,
2. C* =CP® foramostall i (exceptany j and j+1)
3. Number | exists, such that A; and A, are adjacent, and

a) CA —CB —CB—E andCA—CA el

j+1 j+1

or

b) CA, =CF=CP=E, and CA, =C®=C®, =E,

j+1 j+1
forany N =K.
Cases a) and b) are symmetrical, so only a) will be proved.

Let A, =[t,,t,) and A,,; =[t,,t;). Then:

P e (A UA) = j [ ()exp( j fix (S)ds+ j fo.0(5)ds)]lx a8)

Ll 4
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f[ f . (X)exp (j f (s)ds+ ffn’n (s)ds + ffn’n (s)ds)]dx +
b k1 X

t

tJZ.[ fin (X)exp (tJ% fex(s)ds+ j(.fk,k (s)ds+ tj3 fon(s)ds)]dx =

1} 1} t X

[T 00|, ()05 + [ 1, (s)ds k- exp([ ., (s)cs) +
Y Y X

t

xp([ T (9199)- [T, (Ve ([, (s + [, (s)ds)Iex =
tl X

b4 )

PEk,En (Aj)PEn,En (Aj+1) + PEk,Ek (Aj)PEk,En (Aj+l)

S0:
P(AUB) = H F)ci ,ci+1(Ai)' PEk,En (A VA= (19)
i#],1#j+1
H F)ci ,Ci+l(Ai ) PEk,En (Aj )PEn,En (Aj+1 )+ H Pci ,Ci+l(Ai ) PEk,Ek (Aj )PEk Ep (Aj+l ):
i i j+1 [EREIENE
P(A)+P(B)

The same calculations can be made for countable number of the sets A which a state E, transits to E  on

neighbouring intervals [t;,S;,).[S;,S;,) .. and S; , —>1;,;.

Let U A, = A eB for disjoint base sets A. Let A be formed by optimal covering (A;);_, ,... and sequence of states

m=1

(Ci,Ci11:Ci, )izt 5. For each interval A; the sets A can be choosen, wehich intervals of transition C; ; to C; are

adjacent. For two different intervals Ai :
1. ATZ = A, forallm, or

2. A}, are disjoint and UA;sz =A4.
m

m m m.
For all possible sequences of coverings A?Z,AZ?Z,Ag?’Z,--- there exists A, such that A, = A7, . Otherwise

there would be a realization which would belong to A and would not belong to U Am . It means that:

P(A) = :l_A[Z:F)ki,ki (Arlnl) I:)ki,ni (Arin,z)l:)ni,ni (Ar|n3) = (20)
i=1 m
ZHPki,ki (Arin,1)Pki,ni (Ar?,z)Pni,ni (A7) = ZP(An)
m i=1 m
where C, = Eki and C,, = Eni .
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Basis B and base function P satisfy all of the assumption of Caratheodory’s theorem [8], [10], [2], [4]. It means that
function P”: 2% —[0,0) such that:

P'(D) = inf{> P(A); A <B,D<| JA} @
i=1 i=1
is an outer measure. A set of subsets satisfaying Caratheodory condition:
B={De2%V, ,P(A) =P (AnD)+P'(A-D)}
is a o -algebra and restriction P™ to B is a measure. Moreother for base set AcB: P"(A) = P(A).
The set E is a O -algebra for the created probability space. Measure P ZE —> [0,00) will be noted P

4.4 Measure P is the probability

P satisfies all properties of measures but we don,t know if it is probability, i.e. |3(Q) =1. Base set B doesn,t include

the set of all realizations €. It isn’t a sum of finite or countable numbers of sets from B . A simple proof that |3(Q) =1
doesn't exist.

Theorem 4 Let Q_ be a set of all realizations in 2 which have an infinite number of changes of states from C; to
C., (C, #C.,,) during time [0,T) (they don't finish before time T). Then P (€2) =0.

i+1
Proof. A realization from Q has an infinite number of changes of states if the sequence of moments of this change has
a focusing point. For each such realization we can find a covering ([W,_y,W,)),_, ,... such that W, € Q (set of rational

numbers) and in each interval this realization changes the states. Let 5| =W, —W,_, . For a state from QOO the product

Hi:lé‘i = 0 and for any finite number M also l_li:ll\/lé‘i =0.

Let A be a set from B formed by covering ([W,_,,W;));_, ,... and sequence of states (C;),.,,.. Let M be a
maximum value of all functions — f, | (t) oninterval [0,T]. Such M exists due to assumption (9). M is greater than
the maximum value of each function f, ~—on the inteval [0,T) because for kK#n f, (t)>0 and

Zn¢k fin() ==fi () <-M.

According to theorem 1 (point 4):
ZPEK,En (Tw_y,w)) <1- PEk,En (Tw;;,w)) = (22)

n=k

1-exp(- [ fi, (0)dt) <1-exp(-M3) < M5

Wi_1

So:

P(A)<]Ms =0 (23)

i=1

The countable sum of all sets from B formed by all coverings ([W,_;,W,)),-, ,... isalso equal 0.
P isameasureso P(Q-Q_)=P(Q)-P(Q,)=P(Q). The set Q—Q_ will be noted Q.

Theorem 5 P(Q,) <1
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T
Proof. Let m be a natural number and 5m :Z—m. Let ‘I’m be a sum of all base sets formed by covering

[0,6,).[0,.,20,),--,[(2" =1)8.,,T) (for realizations finishing at time S : [0, 5,.),[5,,,25,,),+-,[ ]S, S) where |
is a maximal integer which j5m < S) and different sequences of states. Each realization which has a finite number of

changes of states belongs to any set from any ‘Pm .
Because ¥, =W, =--- and U::;Pm =Q, So:

P(Q,) = lim P(¥,) (24)

m—o0

All realizations formed by covering [0,0,,),[5,,,20,,),---,[(2" —1)3,,,S) can be noted as a chain of states. For
instance C; —C, —---— Cy is a set of all realization which have a state C; at time 1J,, and the state C, is
changed to C,,; in time [i0,,,(1+1)J,,). We will note as C; - C, —---— C, = a set of all realization which

have the same sequence of states to time i5m and after this time they have all possible chains of states.
P(C,»C = —C, =)= (25)
P(UOC0 —>C—>->C, —E)=
n=

2M_2

[1R, e 0, G+ D8I R e (@7 -D)i5, 28,) <

2M_2

H F)ci Ci+l (i5,,(+1)5,)

according to theorem 1, point 4. Using mathematical induction we can prove that for any j -

A i1
P(C,»C,—>C;=)<] R (06, (i+1)5,) (26)
i=0
In the end:
P(C,=) <> R ¢ (05,)<1 @7)
n=0

But {C, =0} =P, soforany m P (¥, )<L1.itmeans that limm_ . P(¥,)<1.Dueto (24) P(Q,) <1.
Theorem 6 P(Q,)>1

Proof. Asin proof of theorem 5 we mark that 5m = 2—m for any number m, ‘Pm is a sum of all base sets formed by

covering [0,6,,),[5,,,20,,),-..,[(2" =1)5,,,T). M be afinite number that for any n: f,  (t) > —M . Such number

exists due to assumption (9). The proof of theorem 4 shows that M greater than all f, (t) for t€[0,T] and k #n.
So:

P ¢ (5, (i+1)5,) = (28)
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(i+1)s, (i+1)5,

j fyon (X)EXD( jfkk(s>ds+ j fy i (s)ds)dx >

(|+1)é

j fyn (X)EXD( j fi (S)d8)exp(-M[(i +1)8,, — x])dx >
(|+1)5

exp(-Ms,) j fin (X)exp( jfkk(s>ds>dx

because €Xp(—M (i +1)J,, — Mx) > exp(—Mo,,) forall X €[id,,,(1+1)3,,) .

Then:
QP e (i6,,(+1)5,) 2 (29)
n=k
(|+1)5
exp(-M&,) | kan<x>exp( j fi  (s)ds)dx =
i5, k=n
(|+1)5
—exp(-Ms,) | f, (exp( jfkk(s)ds)dx—
|b |b
(i+1)3, q %
- —-MSJ, — f ds)dx =
exp(-M3,) j dxeXp(iJ i (s)ds)alx
(i+1)d,
exp(-MS)[L-ep( [ f (5)ds)]
i&m
and:
D P e (8, (i+1)5,) 2 (30)
(i+1)8, (i+1)8,
exp(-M3,)[1-exp( [ i, (S)ds)l+exp( [ fi, (s)ds) =
i5m i5m
(i+1)s,,
exp(—Mo,,) +[1-exp(-Mo,, ) ]exp( _[ f (s)ds) >
i§m

exp(—Mo,,) +[1-exp(—MJ,, ) Jexp(—MJ,,) = 2exp(—MJ,, ) —exp(—2Mo,)

Above inequolities are true if all realizations, also finishing before time T due to last state E,_ for L > K, are taken into
account.

Function 2Z — z° increase in interval [—00,1] and always 1> exp(—X) >1—X. So:

2exp(-M3, ) —exp(—2M3, ) = 2(1- M5, ) — (1- MS, )2 =1— (M3, )°

The finished inequality has the following form:

(1)
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SP. ¢ (5, (+1)8,) 21-(M5,)? @)

n

Using the same notation for C; — C; —---— C, = as in proof of theorem 5, we can note:

P(C,»C,»—C, =)=P(JC,>C,—>—>C, —E)= (33)

2M_2

H PCi Cis1 (I5m ’ (I +l)5m)(zpc m - En ((2m _l)5m 12m5m )) 2

2M_2

(1-(M5)) [P, o, , (16, (1 +1)5,)

Using mathematical induction we can prove that for any j

_ s
P(C, »C > —>C;=)2(1-(M5,))* TP ¢ (6,,(+1)5,) (34)
i=0

In the end:

P(¥,) = P(C, =)= (1-(M5,)")*" (35)
Because of: O, = Lm ;

2

= MT m

P(¥,)> (1—(273)2 (36)
This inequality is true for all k, so:

E - MT)? ,m MT)?

P(@0)= lim P(%,) > lim (1 "0 = ep(- im 7T =1 @

Theorems 4, 5 and 6 have shown that measure P is the probability for the half-infinite matrix [ f, , (t)]; , and finite time

T. The finiteness of K is significant in both proofs 4 and 6 (the existence of M < oo that is grather than all fk’n ('[) ).

5 The construction of probability space for the infinite matrix or/and T = o

A set of events Q includes all the functions ¢ :[0,T) —W which are constant on intervals [t;,t;,,). The T can be
equal to infinity, but for each T <oo the () consists also all step functions ¢Z[O,T) —>W  such that
limet (p(t) = E_ or such limits exist in the subset of values of @ . Such function will be called realizations and will be

noted C, _>C'1 —)Ct2 —> ..., where CO,Ctl,CtZ... are succesive states in realizations, t,t,,... are times of

transition the state C, to C;, C, to C,, ---.

For any K<oo and T <o let Q'T< be a set of realizations formed by the half-finite submatrix

[fen ()01, .m0 Of the given infinite matrix and finite time T. Between ) and € there is a natural surjection
that every step function ¢ assigns the same function truncated to the interval [0, T), or/and states from the set

{Eo B B

Let g:Q —> QF be afunction such that:
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1. 9(C, —)Ctl—>Ct2 —)...)=C0—)Ctl—>Ct2—>...—>CS where S<T and t, , >T if all
CO’Ctl’CtZ’--wCs belongs to set {E,, E,,---, E, }

2. 9(C, —)Ct1 —)Ct2 —..)=C, —)Ctl —>Ct2 —...—>C; ifall CO,Ctl,Ctz,...,C&1 belongs to set
{E,.E,,--,E(} and C e{E\.;, Ex.,...} and S<T.
Probabilitic structure on Q? showed in subsections 4.1-4.4 will be noted

(QF, o (QF), P") . we can transfer it to 2° using function g.

Definition 4 probabilistic space of K and T limits on set of events € is a space (Q, 5(Q), P.) where:

1 o(Q) ={g (A Ac (@) )
2. B (g7 (A) =R (A)
The base set in probabilistic space of K and T limits is formed by coverings of [0, Min{S,T}) and the sequence of

states C,, Ctl , Ct2 ...Cs and after the time MIn{S,T} the realizations in the base set can be run in all possible ways

(Fig.3). Probability of this set is equal to:

POrW= [ Pre ()

t; <Min{S T}

and states occurring after the time MIN{S, T} are omitted.

- - e
K7 ] K L AN
s Co 11, bt

Ee c, ™ Eo ¢ PR 1| e
£l mpeesn S oBrousririn 1t Rt
EIC 1 5 ||{|:?IIIIII E_I: C '|I”| J .
Bl ©, rresses o e T
Exrf i s o= et
2 4 o e

Eo AT A, TAaTAT Az T A; T A 1 Eg ATAT A AT Az T Ag | |

|
time T time S T

Figure 3: Realizations included in the same base set of K and T limits formed by sequence of intervals (Ai )i=1,2

and sequence of states (Ci)izl 2 -

For different K and T  the sequence of probability spaces (€2, o(Q2), F_’TK) satisfy the following conditions:

1.if K<N orfand T <S then o(QF) c o(QF),

2.if K< N orfand T < S then ﬁ(A) = @(A) forall Ae o (Q).

Definition 5 A o -algebraon Q is a set:

o(@ = JUo(@h)

T>0K>0
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Probability on the o(Q2) is a function:

P(A)=PX(A) if Aca(QX)

where (Q, a(QF), P") is a probability space of K and T limits.

(Q,5(Q), P) is a probability space created by infinite matrices of functions f..(t) and t €[0,00). This probability
space has following property: if A Q) suchthat A={@; @(t) = E, } forany K and t. Then time t can be treated as
t =0 in probability space on set Q. , ={@|; ., ¢(t) = E,}, where @/, is a restriction ¢ to [t,0). The
construction of the probability space on this set is the same. It will be noted: (€2 .y (€2 .,)): B ..)) - This probability

space limited by time T only will be noted: (€ ), (€2 1)), |3[th)) :
For all sets A={g; p(t,) = Ekl,go(tz) = Ekz,---q)(S) = Ekz} is true:

P(A) = F_>[o,r1](A|[o,t1))F_)[t1,t2](A|[t1,t2))"'IS[S—l,S](A|[s-1,S]) (38)
where A|[ti 1) is a set of restricting realizations.

6 Stochastic process defined by the probability space
(Q,5(Q),P) s a probability space of events, which changed in time. But if we put: X, : Q3 @ —> @(t) €W then
X, is a random variable and (X)o7, is a stochastic process with probability space (€2, 5(€2), P). This is a

stochastic process defined by matrix [ f, ()], -
Stochastic process defined by matrix [ f,  (t)], , has Markov property. This is a simple conclusion of equation (38).

At the end, the last theorem will be proved.

Theorem 7 For any K, n and t the instantaneous probability rate of stochastic process defined by matrix
[f. (O], areequaito B '(t) = f_ (t)

Proof. P{X,,. =E,| X, =E}=P{X, =E, and X,,. =E, }P{X, =E} =

t+z

F_)[O,t){xt = Ek}F—)[t,H—r){Xt =E, and X, = En}/IS[O,t){Xt =E}=

t+r

F_)[t,t+r){xt =E, and X,,, = En}

Let A be aset of realizations form €, ., such that a state E, transits to E, during time [t,t+7) . Let A,
be a set of realizations such thet Ek transits to any state and this state transits to En during time [t,t —l—r) . Generally

A is a set of realizations statrting from E, and finishing to E, after I transitions.
{X,=E, and X, =E }=JA (39)
i
The sets A are disjoint, so:
P{X, =EandX,, =E}=>P(A) (40)
i

It show that:
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R (t.t+7) =Y P(A) (41)
i

But for 1> 2 it can be proved that |im,_o |3(A1) = 0 (this is a derivation of product of equations converging to 0 ). So

for K # N the function ¥, (7) = R, (t,t+7) has the derivation in 0 equal to:

t+7 X t+r

Wi, (0) = fa(exp([ Ty (s)ds+ [ £, (s)ds)dx]'(0) = 42)

= fn (t)EXp(j.fk,k (S)ds+jfn,n (s)ds) = f, ,(©)

Similarly:

t+r

W, (07) =[exp( [, ()] (07) = 43)

t+r t

=[] £ 0O (0" )exp ([ ., () = f, . (1)

7 Conclusion

The true value of the work is to describe the detailed construction of a probability space in which the events are
realizations of the stochastic process. Equations (11) and (14) allow calculating the probability of occurrence of a given
type of realization of a stochastic process during the simulation. It is a skill comparable to the possibility of calculating the
volume of a cube, what allows calculation of the volume of other geometric solids.

Probability space exists for all discrete stochastic processes with Markov property. It exists also for processes (xt)te[O,T)
which are calculating for processes (Yt)te[O,T) with Markov property by formula )(t = F(Yt) where F is a some

unction. For instance, the events o maybe a form £ =(Nn;,N,,- -, and function F may have a formula
function. For i h f (Ye)iepry maybe aform E =(n;,Ny,--+,n,) and function F mayh formul
k
= ) N, . Process may not have Markov property but it has the same probability space than
F(E _NEE. X o) have Mark but it has th babili h
(Yt)te[o,T)- The class of these processes is very broad.

Continuous time-discrete value stochastic processes are often defined with the use of the Kolmogorov equations. The
relation between the system of Kolmogorov equations and the matrix of instantaneous probability rates fk’n (t) is very
easy: if

@ :[0T)>t > P{X, =E, }<[01],
then:

d

@ o0
L= f. ()P, ().
= 2 09,0

After reading this article it is easy to understand why sometimes ZnCDn <1. Function (I)(t) can be defined only for

realization surviving to time t. The Kolmogorov equations are defined only on the part of events belonging to €2 . For all t
the set of realizations which interrupt or approach the infinity before time 1 is infinite. For some matrices [ f, , (t)], , the

probability of this set is greater than 0 and equal to l—ZnCDn ).

The existence of Kolmogorov equations isn’t sufficient for the existence of probability of continuous time Markov stochastic
processed of discrete values. Just consider the matrix of the functions [ f, | (t)], , non-differentiable at any point.
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