

ON CJ-TOPLOGICAL SPACES

N. A. Dawood a and S. G. Gasim b

a) Department of Mathematics - College of Education for Pure Science/ Ibn Al –Haitham- University of Baghdad- Iraq.

narjisabduljabbar@yahoo.com

b) Department of Mathematics - College of Education for Pure Science/ Ibn Al –Haitham- University of Baghdad- Iraq.

Suaad.gedaan76@yahoo.com

Abstract. In this paper we introduced new types of spaces as CJ-space and strong CJ-space, also we studied the relationship between them and the relation of them with J-space and strong J-space researched by E.Michael.

AMS Mathematics Subject Classifications (2010): 54A05, 54C10, 54 D05, 54D30

Key words and phrases: CJ- space, strong CJ-space, countably compact space, countably compact map.

Introduction and preliminaries

In 2000 E.Michael [1] introduced the concepts of J-space and strong J-space. A space X is J-space if, whenever $\{A, B\}$ is a closed cover of X with $A \cap B$ compact, then A or B is compact. A space X is strong J-space if every compact $K \subset X$ is contained in a compact $L \subset X$ with $X \setminus L$ is connected. Every strong J-space is J-space, but the converse is not true in general [1]. There is a common generalization of countably-compact space and J-space, this generalization helped us to define new concepts which are CJ-spaces and strong CJ-spaces.

CJ- Spaces and Strong CJ-space

Definition 1.1: A topological space (X, τ) is a CJ- space if, whenever $\{A, B\}$ is a closed cover of X with A \cap B countably compact, then A or B is countably compact.

Definition 1.2: A topological space (X, τ) is a strong CJ-space if every countably compact $K \subset X$ is contained in a countably compact $L \subset X$ with $X \setminus L$ is connected.

Remark 1.3: Every finite space is a CJ-space.

Proposition 1.4: Every countably compact space is a strong CJ-space.

Proof: Let X be a countably compact space and let $K \subset X$ be a countably compact, then X is a countably compact with $K \subset X$ and $X \setminus X = \emptyset$ is connected.

Remark 1.5: The converse of Proposition (1.4) is not true in general. For example; Let us take \mathbb{R}^+ as a subspace of \mathbb{R} with the usual topology which is strong CJ-space, but not countably compact.

Proposition 1.6: Every strong CJ-space is a CJ-space.

Proof: Let X be a strong CJ- space and let $\{A,B\}$ be a closed cover of X with $A \cap B$ countably compact, so there exists a countably compact $L \subset X$ such that $A \cap B \subset L$ and $X \setminus L$ is connected. Therefore $\{A \cap X \setminus L, B \cap X \setminus L\}$ is a disjoint closed cover of $X \setminus L$, but $X \setminus L$ is connected, so $X \setminus L$ must be in $A \cap X \setminus L$ or in $B \cap X \setminus L$, it follows that $X \setminus L \subset A$ or $X \setminus L \subset B$. By complementation we have $A^c \subset L$ or $B^c \subset L$, and since $A \cap B \subset L$, so $A \subset L$ or $B \subset L$. Thus A or B is countably compact. Hence X is CJ-space.

Remark 1.7: The converse of proposition (1.6) is not true in general. For example; Consider the Odd-Even topology defined on the set of natural numbers \mathbb{N} . This topology is generated by the partition $P=\{\{2k-1,2k\}; k\in \mathbb{N}\}$. The only countably compact subsets of \mathbb{N} are the finite subsets, so if we take a closed cover $\{A,B\}$ of \mathbb{N} with $A\cap B$ countably compact, that is mean $A\cap B$ is finite set and since the intersection of any two infinite sets in this space must be an infinite set, so A or B must be finite, that is mean A or B is countably compact. Hence \mathbb{N} is CJ-space.

But $\mathbb N$ is not strong CJ-space since every countably compact subset of $\mathbb N$ is finite and hence its complement is infinite and every infinite subset of $\mathbb N$ is disconnected.

Proposition1.8: Every countably compact space is CJ-space.

Proof: Follows from Propositions (1.4) and (1.6).

Remark 1.9: The converse of Proposition (1.8) is not true in general. For example; Let us take the set of real numbers with the particular point topology τ , such that $\tau = \{U \subseteq \mathbb{R} | 0 \in U \text{ or } U = \emptyset\}$. Then every closed cover of \mathbb{R} must contain \mathbb{R} . Let us take $\{\mathbb{R}, A\}$ as a closed cover of \mathbb{R} with $\mathbb{R} \cap A$ countably compact, but $\mathbb{R} \cap A = A$, so A is countably compact. Hence (\mathbb{R}, τ) is CJ- space.

But this space is not countably compact, since the open cover $C = \{(-n, n); n \in \mathbb{N}\}$ of \mathbb{R} has no finite open subcover.

Proposition1.10: Every topological linear space $X \neq \mathbb{R}$ is a strong CJ-space.

Proof: Let X be any topological linear space and let $K \subset X$ be accountably compact and let $L = \{\alpha x : \alpha \in [0, 1] \text{ and } x \in K\}$, then $K \subset L$ and L is a countably compact subset of X with $X \setminus L$ is connected.

Theorem 1.11: In any metric space (X, d), the following concepts are equivalent:

- i. X is CJ-space.
- ii. X is strong CJ-space.
- iii. X is J-space.
- iv. X is strong J-space.

Proof: Follows from the fact, which token from [2], that if X is any metric space then the following statements are equivalent:

- i. X is compact.
- ii. X is countably compact.

Lemma1.12: If B is a closed non-countably compact subset of any topological space X and $C \subset B$ is countably compact, then there is a closed non-countably compact $D \subset B$ with $D \cap C = \emptyset$.

Proof:Let $\mathfrak A$ be a countably open cover of B with no finite subcover, and let $C \subset B$ be a countably compact, then $\mathfrak A$ is a countable open cover of C. Pick a finite $\mathfrak F \subset \mathfrak A$ covering C. Then $D = B \setminus U \mathfrak F$ is a closed non–countably compact subset of B with $D \cap C = \emptyset$.

Theorem1.13: Let X be any topological space, then the following conditions are equivalent:

- i. X is a CJ-space.
- ii. For any A⊂X with countably compact boundary, cl(A) or cl(X\A) is countably compact.
- iii. If A and B are disjoint closed subsets of X with ∂A or ∂B countably compact, then A or B is countably compact.
- iv. If $K \subset X$ is countably compact, and if w is a disjoint open cover of $X \setminus K$, then $X \setminus W$ is countably compact for some $W \in w$.
- v. Same as (iv), but with card w = 2.

Proof: (i) \Rightarrow (ii): Let $A \subset X$ such that ∂A is countably compact, but $\partial A = cl(A) \cap cl(X \setminus A)$, now we have a closed cover $\{cl(A), cl(X \setminus A)\}$ of X with $cl(A) \cap cl(X \setminus A)$ is countably compact and X is CJ-space, so cl(A) or $cl(X \setminus A)$ is countably compact.

- (ii) \Rightarrow (iii): Let A and B be disjoint closed subsets of X with ∂A is countably compact. By (ii) we can get cl(A) or $cl(X \setminus A)$ is countably compact. But cl(A) = A, so A or $cl(X \setminus A)$ is countably compact and since $B \subset cl(X \setminus A)$, so A or B is countably compact (since B is closed and $cl(X \setminus A)$ is countably compact).
- (iii) \Rightarrow (i): Let $\{A, B\}$ be a closed cover of X with $A \cap B$ is countably compact. Suppose that B is non-countably compact and since $A \cap B \subset B$ is countably compact, so by Lemma (1.12) there is a closed non-countably compact $D \subset B$ such that $D \cap (A \cap B) = \emptyset$, it follows that $D \cap A = \emptyset$. Thus A and D are disjoint closed subsets of X and ∂A is a closed subset of $A \cap B$ and thus countably compact. By (iii) A or D is countably compact, but D is non-countably compact. Hence A must be countably compact.
- $(iv) \Longrightarrow (v)$: Clear.
- $(v) \Rightarrow (iv)$: Let $K \subset X$ be a countably compact and let w be a disjoint open cover of $X \setminus K$. To show that $X \setminus W$ is countably compact for some $W \in w$ we shall follow three demarches.

First, we prove that if U is open subset of X containing K, then $w' = \{W \in w : W \nsubseteq U\}$ is finite. Suppose that it is not finite, then $w = W_1 \cup W_2$ with $W_1 \cap W_2 = \emptyset$ and $W_1 \cap w'$ and $W_2 \cap w'$ both finite.

Let $V_1 = \cup W_1$ and $V_2 = \cup W_2$, then $\{V_1, V_2\}$ is a disjoint open cover of $X \setminus K$, so by (iv) $X \setminus V_1$ or $X \setminus V_2$ is countably compact, but $V_1 \subseteq X \setminus V_2$ and $V_2 \subseteq X \setminus V_1$ since V_1 and V_2 are disjoint. It follows that $cl(V_1) \subseteq cl(X \setminus V_2) = X \setminus V_2$ and $cl(V_2) \subseteq cl(X \setminus V_1) = X \setminus V_1$, so we get $cl(V_1)$ or $cl(V_2)$ is countably compact (since closed subset of countably compact is countably compact).

Suppose that $cl(V_1)$ is countably compact, then $C = cl(V_1) \setminus U$ is countably compact. Now let $w'_1 = W_1 \cap w'$, then w_1 covers C and each $W \in w'$ intersects C, so C is not countably compact since w_1 is infinite and disjoint, which is a contradiction. Hence w' is finite.

Second, we show that if cl(W) is countably compact for all $W \in w$, then X is countably compact. Let V be a countably open cover of X, then V is a countably open cover of K, which is countably compact, so V has a finite subcover \mathcal{F} covers K. Let $U = \bigcup \mathcal{F}$, by step one we get a finite family $w' = \{W \in w: W \nsubseteq U\}$, so $\bigcup \{cl(W): W \in w'\}$ is countably compact and since V is an open cover of it therefore it is covered by some finite $\mathcal{E} \subset V$. But $\bigcup \mathcal{E} \subset V$ is finite and covers X, so X is countably compact.

Finally, let us show that $X\setminus W$ is countably compact for some $W\in \boldsymbol{w}$. If cl(W) is countably compact for all $W\in \boldsymbol{w}$, then X is countably compact by step (ii) and since $X\setminus W$ is a closed subset of X, so $X\setminus W$ is countably compact. Suppose that there exists $W_0\in \boldsymbol{w}$ such that $cl(W_0)$ is not countably compact.

Let $W^* = \bigcup \{W \in w : W \neq W_0\}$, then, $\{W_0, W^*\}$ is a disjoint open cover of $X \setminus X$, so $X \setminus W_0$ or $X \setminus W^*$ is countably compact, by (v). If $X \setminus W^*$ is countably compact, and since $cl(W_0)$ is a closed subset of $X \setminus W^*$, so $cl(W_0)$ is countably compact which is a contradiction, so $X \setminus W^*$ is not countably compact, it follows that $X \setminus W_0$ is countably compact.

 $(v) \Longrightarrow (i)$: Let $\{A,B\}$ be a closed cover of X with $A \cap B$ countably compact, then $\{X \setminus A, X \setminus B\}$ is a disjoint open cover of $X \setminus A \cap B$, then by $(v) X \setminus (X \setminus A)$ or $X \setminus (X \setminus B)$ is countably compact, that is A or B is countably compact. Hence X is CJ-space.

(i) \Longrightarrow (v): Let K be a countably compact subset of X and let $\{W_1, W_2\}$ be a disjoint open cover of X\K, then $\{X \setminus W_1, X \setminus W_2\}$ is a closed cover of X with $X \setminus W_1 \cap X \setminus W_2 = X \setminus (W_1 \cup W_2)$ countably compact, since $X \setminus K \subset W_1 \cup W_2$, and so $X \setminus (W_1 \cup W_2) \subset K$ which is countably compact and by the closed subset of countably compact space is countably compact. But X is CJ-space, so $X \setminus W_1$ or $X \setminus W_2$ is countably compact.

Theorem1.14: A locally connected space X is CJ-space if and only if it is a strong CJ-space.

Proof: By Proposition (1.6), every strong CJ-space is a CJ-space. Suppose, then, X is CJ-space. To show that X is strong CJ-space, let $K \subset X$ be countably compact. Since X is locally connected, there is a disjoint open coverwof $X \setminus K$ with each $W \in w$ connected. By Theorem (1.13), there is $W_0 \in w$ such that $X \setminus W_0$ is countably compact. Letting $L = X \setminus W_0$, then L is countably compact containing K and $X \setminus L$ is connected.

Remark1.15: A closed subset of CJ-space need not be CJ-space. For example; let us take the same topological space $\mathbb R$ in the example of Remark (1.9), this space is CJ-space, but the closed subspace $\mathbb N$ with the induced topology, which is the discrete topology, is not CJ-space since $\{0^+, E^+\}$ is a closed cover of $\mathbb N$ with $0^+ \cap E^+ = \emptyset$ is countably compact, but neither 0^+ nor E^+ is countably compact.

This remark shows that the property of being CJ-space is not hereditary property.

Proposition1.16: A clopen subset of a CJ- space is CJ-space.

Proof: Let X be any CJ-space and let W be a clopen subspace of it, we have to show that W is CJ-space, let $\{A,B\}$ be a closed cover of W with $A \cap B$ countably compact, then $\{A \cup X \setminus W, B\}$ is a closed cover of X with $(A \cup X \setminus W) \cap B = A \cap B$ countably compact, so $A \cup X \setminus W$ or B is countably compact. If B is countably compact, then we have got the proof. If B is not countably compact, then $A \cup X \setminus W$ is countably compact, but A is a closed subset of $A \cup X \setminus W$, so A is countably compact and hence W is CJ-space.

2. Functional Characterizations of CJ-Spaces

Remark2.1: The continuous image of CJ-space is not CJ-space in general. For example; Let $f: (\mathbb{N}, \tau) \to (\mathbb{N}, \tau')$ such that f(2k) = f(2k-1) = k; $k \in \mathbb{N}$, where τ is the odd-even topology, (see example of Remark (1.7)), and τ' is the discrete topology.

Clear that f is continuous and onto map and (\mathbb{N}, τ) is CJ-space, but (\mathbb{N}, τ') is not CJ-space.

Definition 2.2 [3]: A map $f: (X, \tau) \to (Y, \tau')$ is said to be countably compact map if inverse image of each countably compact set is countably compact.

Definition 2.3[3]: A map $f: (X, \tau) \to (Y, \tau')$ is said to be countably compact preserving if image of each countably compact set is countably compact.

Proposition 2.4: If $f: (X, \tau) \to (Y, \tau')$ is continuous countably compact map from a CJ-space X onto a topological space Y, then Y is CJ-space.

Proof: Let $\{A,B\}$ be a closed cover of Y with $A \cap B$ countably compact, then $\{f^{-1}(A), f^{-1}(B)\}$ is a closed cover of X with $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B)$ which is countably compact, sof⁻¹(A) or $f^{-1}(B)$ is countably compact. It follows that A or B is countably compact. Hence Y is CJ-space.

Proposition 2.5: Let $f: X \rightarrow Y$ be an injective, closed, countably compact and countably compact preserving map from a topological space X into a CJ-space Y, then X is also CJ-space.

Proof: Let $\{A,B\}$ be a closed cover of X with $A \cap B$ countably compact, then $\{f(A),f(B)\}$ is a closed cover of Y with $f(A) \cap f(B) = f(A \cap B)$ countably compact, but Y is CJ-space, so f(A) or f(B) is countably compact. Then $f^{-1}f(A)$ or $f^{-1}f(B)$ is countably compact, it follows that A or B is countably compact. Hence X is CJ-space.

Corollary 2.6: The property of being "CJ-space" is a topological property.

Proof: Follows from the fact that every homeomorphism map is a countably compact and countably compact preserving map.

References:

- [1] E. Michael, J-spaces, Topology and its Applications 102(2000) 315-339.
- [2] Michael.C.Gemignani, Elementary Topology, New York, California, London, second edition, 1972.
- [3] G.L. Garg and AshaGoel, Perfect Maps InCompact (Countably Compact) Spaces, Internet J. Math. & Math. Sci Vol. 18 No.4(1995) 773-776.