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Abstract 

The study of spherical dihedral f -tilings when the prototiles are two noncongruent isosceles triangles was started in two 

previous papers. Here, we complete the classification, characterizing the f -tilings that satisfy the remaining case of 

adjacency. As it will be shown, this class is composed by two three-parameter families denoted by 
,,mnA  and 

,,mnB  

and a related four-parameter family denoted by 
qpqp ,,,B , where 0>0,>  qqpp ; two isolated tilings denoted 

by P  and Q ; and six distinct discrete families denoted by 3)(,,, kkkkk NMLJ ; and 
kk KF ,  with 4k . 
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1  Introduction 

Spherical folding tilings or f -tilings for short, are edge-to-edge tilings of the Euclidian sphere 
2S , by geodesic polygons, 

such that all vertices are of even valency and both sums of alternate angles around each vertex is always  . Let us 

denote by ),( YX  the set, up to isomorphism, of all dihedral f-tilings of 
2S  whose cells are congruent to X  or Y . In 

[8], it was shown that any ),( YX  necessarily has vertices of valency four. 

Some spherical f -tilings by congruent triangles, such as the spherical octahedron, have been known since antiquity; 

they were first specifically studied as a class in 1992 [2]. The researchers Yukako Ueno and Yoshio Agaoka have studied 

spherical tilings in depth: [11], [12]. In [1], the study of all spherical f -tilings by triangles and r -sided regular polygons, 

for any 5r  was given. Dawson and Doyle also worked on spherical tilings with triangles, relaxing the edge to edge 

condition, [9], [10]. 

The classification of all dihedral spherical folding tilings by triangles is not yet completed. So far, the studied cases 
correspond to the following prototiles: 

    • an equilateral triangle and an isosceles triangle, [5];  

    • an equilateral triangle and a scalene triangle, [6].  

    • two noncongruent isosceles triangles in two types of adjacency (Figure 1-I, II), [3] and [4].  

In this paper, we complete the classification of spherical f -tilings by two noncongruent isosceles triangles studying the 

last case of adjacency illustrated in Figure 1-III. 

Let 1T  be an isosceles spherical triangle of angles  ,,  with sides a  (oposite to  ) and b  (opposite to  ), and 

2T  another isosceles spherical triangle of angles  ,,  with sides c  (opposite to  ) and d  (opposite to  ). 

There are three types of adjacency, based on which edges meet, as shown in the next figure; the third has two subcases 
depending on orientation. 
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Figure  1:Different types of adjacency. 

Type III adjacency requires, by the spherical cosine law, that 
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 which simplifies to  

 .
2

cotcot=
2

cotcot





  (1.2) 

In order to get any dihedral f -tiling ),( 21 TT , we find it useful to start by considering one of its  local 

configurations, beginning with a vertex common to each one of the isosceles triangles in adjacent positions. In the 
diagrams that follows it is convenient to label the tiles according to the following procedures:   

    1.  Tiles 1 and 2 are of type 1T  and 2T  respectively, and exhibit the specified adjacency;  

    2.  For 2j , unless it is specifically indicated that the tile location is hypothetical, the location of tile j  can 

be deduced from the positions of the tiles 1),(1,2, j  and from the hypothesis that the configuration is part of a 

complete f -tiling.  

2  Triangular Dihedral f -Tilings by Isosceles Triangles 

In adjacency of type III, equation (1.2) shows that if  = , then  =  and the triangles are congruent, contrary to our 

assumption of dihedrality. As cot ,cot > 0
2 2

    
   
   

, the same equation shows that   and   are both right, both 

acute, or both obtuse. If =
2


   , this again implies tile congruence. Except in the right-angled case, we will consider, 

without loss of generality,  > , whence, by Eq. (1.2),  > . We shall make much use of the following result, which 

is a special case of Proposition 2.1 of [5].  

Proposition 2.1 Every f -tiling of the sphere with triangles has at least six vertices of valency 4.  

In an f -tiling, the angles at a tetravalent vertex are each repeated twice and are supplementary. Moreover, in the cases 

we are now considering, a little more can be said. 

Proposition 2.2 If a dihedral f -tiling has a pair of isosceles (nonequilateral) triangular tiles exhibiting adjacency of 

type III, two triangles of each type meet at each tetravalent vertex. If the tiling has more than 8 tiles, all tetravalent vertices 
have the same angles.  
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Proof.Suppose (for instance) that  = , and that a tetravalent vertex 1v  using these angles exists (Figure 2-I). 

Then it is completely surrounded by tiles congruent to 1T . But b  is not equal to a  (= c ); nor (as ca =  and 21 TT  ) to 

d ; thus tile A is forced. But then the folding condition forces tile B; and 2v  is also surrounded by copies of 1T . By 

induction, if the tiling can be completed it consists entirely of one type of tile, contradicting our assumption that it was 
dihedral. We conclude that one of the supplementary angles comes from each triangle. 

 

 

Figure  2:Configurations with tetravalent vertices 

Clearly   (or  ) is supplementary to  , it cannot also be supplementary to   (or 2T  would be equilateral.) This leaves 

the possibility of two disjoint pairs of supplementary angles:  ==   (Figure 2-II) or  ==   

(Figure 2-III.) 

 

Figure  3:The tiling 
1,1,A . 

In either case,  = . In the first case, this makes  =  and 21 TT  , contrary to our assumptions. In the second 

case, /2==   and the total area of the two triangles is  ; it is easy to see that the tiling must be a member of the 

continuous family shown in Figure 3, all of whose members have eight tiles. These tilings are part of the larger 
,,nmA  

family that we will consider below; the other members, however, have only one species of tetravalent vertex.  

2.1  Tilings in which adjacency of type III a) is present 

We first consider the case in which triangles 1T  and 2T  appear somewhere in the tiling with an adjacency of type III a), as 

illustrated in Figure 4. In this adjacency, the triangles “point the same way” on the common edge 
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Figure  4:Adjacency of type III. 

Proposition 2.3 If 
2

==


 , we have precisely the following tilings:   

    1.  For 0>,nm , and arbitrary <
n


 , a finite set of tilings 

,,mnA  with =
n

m

 



, each tiling 

containing )4( nm  tiles arranged in two hemispherical rosettes (see Figure 5); 

    2.  For 0>,nm , and arbitrary <
n


 , a finite set of tilings 

,,mnB  with =
n

m

 



, each tiling 

containing )4( nm  tiles arranged in four half-rosettes (see Figure 6); 

    3.  For 0> pp , 0>> qq , with qpqp  < , a finite set of tilings 
qpqp ,,,B  with 


)2(

)(
=,

)2(

)(
=

pqpq

pp

pqpq

qq








, each tiling containing )4( qpqp   tiles arranged in four half-

rosettes (see Figure 7). 

 

Figure  5:3D representations of the five 
2,2,A  tilings. 
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Figure  6:3D representations of the six 
1,1,B  tilings. 

 

 

Figure  7:3D representations of the three 
1,1,0,3B  tilings. 

Remark 1 Within each class, the tilings differ only by the way that the triangles are arranged within the rosettes or half-

rosettes. While enumerating these arrangements is a valid problem (related to the well-known “necklace” and “bracelet” 
enumeration problems), it is an essentially combinatorial problem rather than a geometric one, and we shall not give a 
solution here.  

Remark 2 The tilings 
,,mnB  and 

qpqp ,,,B  are very similar; the first may be thought of as an underdetermined special 

case of the second.  

 

Figure  8:Local configuration at vertex 1v . 

Proof.We have supposed that 
2

==


 . Without loss of generality, we will take  > . Starting with two cells 

exhibiting type III a) adjacency, vertex 1v  (see Figure 8) is of valency four surrounded exclusively by angles 
2


. Observe 

that if 
2

>


 , then necessarily 
2

>


 , and sums of alternate angles containing   and   do not satisfy the angle 

folding relation. 
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The sum of alternate angles containing  , at vertex 2v  (see Figure 8), must be either of the form   

    •  =nm   or  

    • 0)>,(,=
2

qpqp 


  

Next, we shall study all cases separately. 

Case A. The two sets of alternate angles have the same cardinality and the same sum; thus they have the same 

constituents. As there is, by hypothesis, more than one type of triangle, we have 0>,nm . Every edge incident to a 

vertex at 2v  is of length /2 ; so the union of the triangles with vertices at 2v  covers one hemisphere, and edge 

matching forces the tiling in the other hemisphere to be a mirror image. The tiling therefore has no other vertex type with 

  and   angles, and no angle sum equation other than  =nm   arises. The tiling is thus part of a continuous 

family with the same combinatorial structure but different angles. For each ),,( nm , moreover, there are finitely many 

ways to arrange the tiles at the poles. We refer to any such tiling as being of type 
,,nmA . Each such tiling in the family 

has m4  triangles congruent to 1T  and n4  triangles congruent to 2T ; they all have reflectional symmetry in the 

“equatorial plane” and differ only in their arrangements at the “poles”. 

Case B. Suppose that the sum of alternate angles containing  , at vertex 2v  is of the form 

0)>,(,=
2

qpqp 


 . Then there are exactly two edges of length b  or two of length d  at 2v , which must be 

paired; so the two right angles are adjacent. The other p2   angles and q2   angles form a “half-rosette". Matching 

the b  and d  edges of this forces a mirror-image half-rosette, completing one hemisphere. Now consider the vertex 3v  in 

figure 9; it has two right angles and a non-right angle. The sum of alternate angles there is thus either again of the form 




=
2

qp  ; or of the form 


=
2

qp  . (As the adjacency condition has been satisfied at 2v , p  or 

q  may be 0.) 

 

Figure  9:Local configurations when /2==  . 

In the first case, we do not have enough independent constraints to determine   and  , and the tiling is of the form 

,,qpB . In the other case the system of equations /2= qp  , /2= qp   has a unique solution, and the 

tiling is of the form 
qpqp ,,,B . Not every set of parameters is possible; as 0>>  , we necessarily have 0> pp , 

0>  qq , and qpqp  > . If these inequalities are satisfied, however, 0>qppq   and 


)2(

)(
=

pqpq

qq




 and 

)2(

)(
=

pqpq

pp




 are positive angles that tile as described. 

Remark 3 Only the choice of adjacency type III a) forces the requirement that one hemisphere must contain both types 

of triangle, so that 0>q . If we relax this requirement we still obtain tilings of type I and type III b) ( vide infra.)  

Assuming that    and since   and   belong to the same quadrant, then in adjacency of type III a), we have 
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 <  (see Figure 10-I). Therefore, 
2

<<


  and consequently 


 
2

<  or 


<
2
 , since vertices of 

valency four must exist. 

 

 

Figure  10:Local configurations near an arbitrary type III a) adjacency. 

Proposition 2.4 There is a discrete family of dihedral f -tilings with an adjacency of type III a), and   ; and 

there are no other such tilings. We denote the family by 4, ttF . For each 4t , 
tF  is composed by vertices of 

valency four, six and t2 , where (both) sums of alternate angles are respectively of the form  =2,=   

and  =t .  

Proof. Case A. Let us suppose that 
2

=


 . Then, 
2

<<<
4





 and 


 =

2
< . 

Starting from the configuration illustrated in Figure 11, in order for the tiling to actually use both species of tile, vertex t  

must be:   

    of valency six, with one of the sums of alternate angles of the form  =2  ; or  

    of valency 1),2(2  kk  with one sum of alternate angles satisfying  =2 k ; or  

    of valency 1),12(2  pp , satisfying  =2 p .  

 

Figure  11:Local configuration for case A. 

Subcase A.1If vertex t  is of valency six (see Figure 12-I), then vertex v  must be of valency greater than four 

(otherwise 
2

=


 ). Moreover, as ,>
2




  for , , ,
2


   

 
 
 

, a set of alternate angles can only be of one 

of the following forms: 

Subcase A.1.a 2,=
2

 mm 


; in which case for some 2m  then, vertex w  must be of valency six 

surrounded exclusively by angles   or surrounded by the sequence of angles ),,,,,(  . However, both 

possibilities lead us to  = , contradicting our hypothesis. 
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Case A.1.b 1,=
2

 nn 


 (observe that ,>
2




  for , ,
2


  

 
 
 

 then vertex w  is partially 

surrounded by the angles 
2

,,


 . As 


 >2,>
2

2   and  < , then the sum containing the alternate 

angles   and 
2


 does not satisfy the angle folding relation. 

 

Figure  12:Local configurations for subcases A.1-3. 

Subcase A.2If vertex t  is of valency )2(2 k  surrounded by the sequence of angles ),,,,,,,,(    

(Figure 12-II), then vertex v  is of valency greater than four (otherwise 
2

=


 ). Nevertheless, for the same reason as 

above, the configuration cannot be extended. 

Subcase A.3If vertex t  satisfies  =2 p , for some 1p , then in order to avoid the situation described 

before, tile 9 is as shown in Figure 12-III. But again, vertex v  leads us to the same impossibilities as in Figure 12-I. 

Case B.Assuming that 
2

=


 , then 


 <=
2

<< . 

The vertex surrounded partially by the angles   and   (in Figure 10-I) is not of valency four (otherwise, it we would 

have  = , contrary to our assumption.) However, recalling that  >2   and taking into account the order 

relation between the angles, we conclude that the sum containing the alternate angles   and 1  (Figure 10-II) cannot 

satisfy the angle folding relation for any choice of 1 . 

Case C.Suppose 
2

>>


 ; then, as 
2

<<


 , we have 


 <<
2

<< . Consequently in Figure 10-II, 

1  must be   or  . However, if the vertex is of valency four, the remaining edge is of length b  or d , and the two small 

angles match; this and the angle folding condition imply  = , contrary to hypothesis. If the valency is greater than four, 

the set of alternate angles that contains   contains at least two more angles, each at least as large as  , and their sum 

would be greater than  . 

Case D.Suppose that 


 <
2

< . Then > >
2


  , so   is the only obtuse angle. Proposition 2.2 rules out   as 

the other angle; so the tetravalent vertices must be of the form ),,,(  , or ),,,(  . We will consider these 

subcases one at a time. 

Subcase D.1: ),,,(  : We consider what the angle 1  at t  in Figure 10-II could be. 

If we had  =1 , we would have  < , so the alternating angle sum needs at least one more element. But 

 >2>2  , while  >2>  ; and clearly  2  and    are also greater than 

 . Thus  =1  is incompatible with the angle folding relation. Very similar arguments rule out .=1   The angle 
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folding relation rules out  =1 ; so we conclude that it can only be  . We thus have, matching bases, the configuration 

of Figure 13. 

 

Figure  13: Local configuration for subcase D.1. 

Consider the vertex at u , where an alternate-angle sum contains at least two   angles. As   is acute, there must be 

more angles present. The sum cannot contain a   angle, as  >2>2  . It cannot contain more than three 

  angles, as 2 > = >
2


    . Thus it must be of the form  =3 ,  =2 k 1)( k ; or  =3 k

1)( k . We will consider each of these options in turn. 

Subcase D.1.a:Assume that 
3

=


 . Since  >2  , then we get 
3

>


 . On the other hand, as 

 >2  , then 
6

>


 . Therefore,  

 .<
2

<<=
3

<<
6










 (2.1) 

 The vertex v  (Figure 13) surrounded partially by the angles  ,,,  has alternate angle sums containing at least one 

  angle and one   angle. From the equality and inequalities in (13) we deduce that:  

 .4,2,2,22,<<2,2    

We conclude that the alternate angle sums can only be of the form  =  or  =3 . As these have 

different numbers of angles, they cannot coexist at the same vertex. We consider the two subcases: 

Subcase D.1.a.i:  = . In this case we may add some new cells to the configuration in Figure 10-II and 

a vertex x  surrounded partially by two adjacent angles   and one angle   arises; see Figure 14-I. But then one set of 

alternate angles contains   and  ; but this is impossible, as   <<  for any },,,{  . 

Subcase D.1.a.ii:  =3 . Tiles 9-23 of (Figure 14-II) are forced, yielding the configuration shown, in which a 

vertex y  is surrounded by three angles  , violating the angle folding relation. 

 

Figure  14:Local configurations for subcase D.1.a. 
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Subcase D.1.bAssume that  =2 k , for some 1k . We have  >2   and  = , so  2<

. Then if 1>k , we would have  

 .>2>222=   k  

As this is impossible, 1=k : that is,  =2  . 

The vertex w  in Figure 13, partially surrounded by four consecutive angles  , has an alternate angle sum including at 

least two   angles. The options are  =m ,  =2 n  ( 1n ),  =3 n  ( 1n ), or  =m . 

Again, we consider these subcases in order. 

Subcase D.1.b.i:Suppose that a set of alternate angles at w  has m   angles (so  =m .) For 3=m , the 

triangles 1T  and 2T  would be congruent, so 4m . In this case, the configuration shown in Figure 13 extends to a 

complete f -tiling; all tiles are forced, for instance in the order shown in Figure 15. It has m8  triangular faces, equally 

distributed between the two congruence classes, and we have three types of vertices: valency four, six and m2  whose 

both sums of alternate angles satisfy respectively,  =2,=   and  =t . The next figures show 2D and 

3D representations of 
4F . This family of tilings maybe obtained from the family of dihedral f -tilings 4, mmLR , with 

an isosceles triangle and a non-equiangular rhombus as prototiles,described in [7], by subdividing the rhombs. 

 

 

 

Figure  15:2D and 3D representation of 
4F . 

Subcase D.1.b.ii:Suppose w  has a set of alternate angles with two   angles and n   angles (so  =2 n
.) The configuration in Figure 10-II extends to the one illustrated in Figure 16-I. The vertex x  surrounded partially by the 

consecutive angles  ,,  is not of valency four, since   . However,  >2>2  , 

 >2>  , while  >>2  . Thus no set of alternate angles containing   and   can 

satisfy the angle folding condition. 

Subcase D.1.b.iii:Suppose w  has a set of alternate angles with three   angles and n   angles (so 

 =3 n .) Then tile 11 must be a 2T , positioned as shown in Figure 16-II, to avoid the just-examined impossible 

configuration at x . But there must be 1T  triangles with   angles at w ; as these cannot match an edge of length d , 

one must be positioned as triangle 12. But then the same  ,,  configuration arises at y . 

Subcase D.1.b.iv:Suppose w  has a set of alternate angles with m   angles and an   angle (so  =n .) 

Completing v , we arrive at the configuration of Figure 16-III, where vertex z  is surrounded partially by the consecutive 

angles  ,, . As  >2 , this cannot occur in an f -tiling. 

Subcase D.1.c:Suppose now that  =3 q , 1q . If 2q , we would have  



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  3  

 J o u r n a l o f  A d v a n c e s  i n  M a t h e m a t i c s  

 

6002 | P a g e                              c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
      M a y  2 0 1 6                                          w w w . c i r w o r l d . c o m  

 .)(2=2<3<2   qq  

But this is impossible; so 1=q  and  =3  . Now, recall that   =>2 ; so  >2 . But then  

  22<2<=3   

contradicting our assumption that  > . 

 

 

Figure  16:Local configurations for subcases of D.1.b. 

Subcase D.2:Suppose that there exist vertices of valency four surrounded by the angles  ,,, . These cannot 

be the only vertices with   angles (see Figure 10.) But the vertex x  cannot be tetravalent; and any set of three or more 

angles containing },{  , },{  , or },,{   must sum to more than  . We conclude that if the vertex x  can be 

completed in accordance with the folding condition, the alternate angle sum has the form  =m  for 2m  or 

 =m  for 1m . In either case,  <  and  < . From the latter, and the fact that  2  and 

 2  are both greater than  , we get 

 
2

> , < , and > .
3 3 6

  
    (2.2) 

Clearly  = ; combining this with the inequality  >2  , we get 

 .>    (2.3) 

 These inequalities will be used below. 

Subcase D.2.a:Suppose that, at t , we have  =1  (Figure 17). Then there are three consecutive   angles at 

vertex u , and a set of alternate angles that contains two   angles. As 
2

<


 , at least one more angle is needed; but, 

as  >2>2  , the folding condition is violated. 
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Figure  17:Local configurations for subcase D.2.a 

Subcase D.2.b:We must, therefore, have  =1 , and   ,2<< ; so the alternate angle 

sum at t  containing   and   can only be  

 .1for=  mm   (2.4) 

 Consequently 


 <
2

<<< . Then triangles 3-12 are forced, in the order shown.(5 is forced because  =1 ; 9 

is forced because of the necessity for   angles; and the others are obvious.) 

 

Figure  18: Local configurations for subcase D.2.b 

Now, the vertex v , surrounded partially by angles  ,,, , cannot have   angles. Suppose there are more than two 

  angles at v ; then  2 . But  >2 , so 
2

<
5


 . Then we have >

5


 , and  =>  , 

making it impossible for the folding criterion to be satisfied at t . We conclude that there can be only two   angles at v . 

If  =q , by (2.2) we have 4<q . Furthermore,  

  >2>2   

so we cannot have  qp   with 1p  unless 1=q . It follows that the sums of alternate angles at v  must be of 

the form  =2 ,  =3 , or  = p . We will study each of these three subcases. 

Subcase D.2.b.i:Suppose the sum to be  =2 . In this, and the next subcase, triangle 13 is forced at v . 

There is now a partial set of alternate angles at s  containing a   and a  ; as at t , triangle 14 is forced (see Figure 19) . 

Triangles 15-17 follow immediately. We now have a vertex with eight   angles, so  4 . But this makes 
2


  , 

which is impossible. 
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Figure  19:Local configuration for subcases D.2.b.i and D.2.b.ii 

 

 

Subcase D.2.b.ii:Suppose the sum to be  =3 . We obtain triangles 13-17 as in the previous subcase. We 

note that triangles 12 and 17 cannot have an edge in common, as this would imply  =4 , whence  = . Therefore, 

triangles 5-8,11,12,16, and 17 do not fully surround the vertex on their own. But  ==3  , so 

 >2=5  ; it follows that all remaining angles must be   angles. The folding condition requires there to be at 

least two   angles at this vertex. Triangles 18-21 must therefore be as shown; but this creates a vertex r  with four   

angles, and this cannot be completed in accordance with the folding condition. 

Subcase D.2.b.iii:Suppose the sum to be 1,=  mp  . Combining this with (2.4), we have 

 mp  = ; and as  < , we have pm > . 

On the other hand, substituting (2.3) into (2.4) gives us the inequality  

 .>1)(   m  

We conclude that mpm >>1 , which is clearly impossible as both m  and p  are natural numbers.  

2.2  Tilings in which adjacency of type III a) is absent. 

All tilings with one or more adjacencies of type III a) have now been classified. Any remaining tiling must have only 
adjacencies of type III b), so that whenever noncongruent triangles share a common edge, they “point the opposite way”. 

Proposition 2.5 A spherical f -tiling with = =
2


  , which is without adjacencies of type III a), is of the form 

qp,0,0,B  (as defined in Proposition 2.3) for some 0>> qp . For given p  and q  there is only one tiling in this class 

(see Figure 21-III).  

Proof.Assume that 
2

==


 . We assume a type III b) adjacency (Triangles 1 and 2 of Figure 20.) Triangles 3 and 4 

are forced by pairing sides of length a  and d . The vertex 1v  cannot be tetravalent, and thus cannot have a third right 

angle. If there were any   angle there, some   angle would be adjacent to a   angle, creating a forbidden type III a) 

adjacency. We conclude that the fan at 1v  consists entirely of   angles (Figure 20-II.) Pairing edges of length b  gives 

the same structure at 3v , while 2v  and 4v  consist entirely of   angles (Figure 20-III.) We thus have  =2=2 qp

, and (if we take  < ), 1>> qp .  
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Figure  20:Local and global configuration with = =
2


   

Otherwise, without loss of generality we have  < ,  < . 

Lemma 2.1 If 1T  and 2T  yield an f -tiling with adjacency of type III b), and   and   are not right, then 

< < <
2


   .  

Proof.We have triangles 1,2,3, and 4 as in Figure 21-I. Suppose >
2


 ; then by equation 1.2 >

2


  also. But then, 

however we cover the edge 21vv , we obtain a third obtuse angle at 1v  or 2v , forbidden by the folding relation; so we 

must have <
2


 . The existence of vertices of valency four requires that >

2


 .  

Lemma 2.2 In an f -tiling without adjacencies of type III a):   

    1.  a vertex with at least one   angle and at least one   angle must also have at least two angles from 

},{   

    2.  a vertex with at least one   angle and at least one   angle must have at least two adjacent pairs of base 

angles.  

Proof.If ( e.g.) both   angles and   angles exist, they must be isolated from each other to prevent Type III a) 

adjacencies. To do this in a cycle requires two other angles. Furthermore,   angles always occur in adjacent pairs, as do 

  angles.  

The next lemma shows that Lemma 2.2(ii) is vacuous. 

Lemma 2.3 If 1T  and 2T  yield an f -tiling without adjacency of type III a), and < <
2


  , then: 

    1.  all tetravalent vertices are of the form ),,,(  ;  

    2.   = ;  

    3.   2< ;  

    4.  any vertex with a   angle is of the form ),,,(  .  

Proof.By Proposition 2.1 there are tetravalent vertices, with supplementary angles; one of these must be obtuse, hence 

(by Lemma 2.1)   or (possibly)  . Lemma 2.2 forbids ),,,(  . Proposition 2.2 rules out ),,,(   and 

),,,(  . Suppose we have a tetravalent vertex with angles ),,,(  . Then triangle 5 must be as shown in 

Figure 21-II, and at the vertex w  a set of alternate angles contains   and  . But as  =>  , this violates 
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the folding condition. The first part of the lemma follows by elimination; the second and third parts are immediate 
corollaries. 

Suppose that a   and   angle are found at the same vertex. By the previous lemma, they must be separated on both 

sides by pairs of base angles; and as  = , neither pair can consist of   angles. The vertex thus has two pairs of 

  angles sharing a long edge (Figure 21-III.) But then one of the sums of alternate angles contains, at least in part, 

 2 , which is impossible.  

 

 

Figure  21: Local configurations from lemmas 2.1 and 2.3 

Lemma 2.4 In an f -tiling without adjacency of type III a), in which the base angles are not right, every adjacent pair 

of noncongruent triangles extends to the local configuration of figure 22.  

 

 

Figure  22:Configuration common to all f -tilings without type III a) adjacency in which  ,  are not right. 

Proof.Let triangles 1 and 2 be noncongruent; then they have type III b) adjacency (Figure 22). Then (Lemma 2.3) 

triangles 3 and 4 must be as shown, and base matching forces triangles 5 and 6.  

The next lemma limits our choices for the vertex labelled g  in Figure 22. 

Lemma 2.5 In an f -tiling without adjacency of type III a), in which the base angles are not right, a vertex with four 

adjacent   angles has no   or   angles.  

Proof.The vertex cannot have a   angle by Lemma 2.3(4). If it has an   angle, it has at least two adjacent   

angles, as the bases must be paired. But then some alternating angle sum contains two   angles, an  , and a  . But 

by Lemma 2.3(3),  >2>2  , violating the folding condition.  

Proposition 2.6 The f -tilings without adjacency of type III a), in which   and   are not right angles, are:  

 ,=and=2,=:3,
k

kk 
 J  

 ,=and=3,=:4,
t

kt 
 K  

 ,=and=2,=:3,
k

kk 
 L  

 ,=and=3,=:3,
k

kk 
 M  
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k

kk 
 =and=,=:3, N  

 
5

=and
3

=,=2,=:





 P  

 .
3

=and=2,=:


 Q  

Proof.We will consider separate cases based on what nontetravalent vertices containing one or more   angles exist. It 

is possible that there are none (case A below), or that a vertex with only   angles exists (case B). The following lemmas 

help classify the remaining cases. 

Lemma 2.6 In an f -tiling without adjacency of type III a), in which the base angles are not right and no vertex is 

surrounded entirely by   angles, no vertex has more than two   angles.  

 

Proof.If there are no  -only vertices, it is impossible for two   angles to be adjacent at a vertex v . Matching short 

bases, we find that a neighboring vertex w  has four adjacent   angles (figure 23.) They do not totally surround w ; what 

can fill the gap? Lemma 2.3 rules out   angles. As  >2  ,   angles cannot be used. This leaves only   

angles, which would create a type IIIa) adjacency. (There might more than four   angles at w ; the important thing is that 

at some point the sequence of   angles must end, and there is no legal choice for the next angle.) 

 

Figure  23:An impossible configuration 

It follows that if v  had more than two   angles, each pair (in cyclic order) would have to be separated by an   angle or 

two   angles. But then some alternating angle sum would have the form  =2cba   for 1>bca  . But  

  >2)(2  cacba  

so this is impossible.  

A similar argument, in conjunction with Lemma 2.2, gives the following; details are omitted. 

Lemma 2.7  In an f -tiling without adjacency of type III a), in which the base angles are not right, no vertex with an   

angle has more than two   angles.  

We conclude that the only other possibility (case C) is that  = , and some vertex has two   angles, two   

angles, and two   angles. (It is not obvious that this case and case B are disjoint; this will follow from the analysis of case 

B.)  

Case A: The angle   only appears at tetravalent vertices. 

In this case, let ( e.g.) n  be the number of   angles in the tiling. We have  nnnn 4=2=2= . But this implies 

that some individual vertex must have at least four times as many   angles as   angles. As  >2>4  , 

we conclude that this is only possible if there are no   angles at this vertex. But then (Lemma 2.2) there are no   

angles or (Lemma 2.3)   angles there either. 

The tiling thus contains a complete rosette of k2 2T  triangles 3)( k , as shown(figure 24-I). The   angles at u  must 
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be paired with   angles, forcing a ring of k2 1T  triangles. These in turn create vertices v  with   angles that require   

angles to complete . 

 

Figure  24:Case A, subcase A.1, and the tiling 
4J  

 

But then the vertices v  have two   angles and at least four   angles. By lemmas 2.6 and 2.7, any further angles must 

be  . We cannot have eight or more   angles in total, as then the sums of alternating angles would be 

 >2>4  . 

Subcase A.1:There are four   angles at v , and  =2 . Filling the gap at each vertex v  with two more 2T  

tiles completes the tiling 
kJ  (see figure 24-II; note that the edges terminating in arrowheads all meet at the antipodal point 

of the original vertex.) These tilings exists for all 3k . The 2D images show 
5J , the 3D image shows 

4J . 

Subcase A.2:There are six   angles at v , and  =3 . The vertex w  is as shown, with   angles that must 

be matched with   angles. The vertices y  now have two   and four   angles and need two more   angles, 

completing the tiling 
kK . (Calculation shows that for 3=k  the tile 1T  is degenerate, with 0= . The tilings 

kK  thus 

exist only for 4k .) 

 

Figure  25:Subcase A.2 and the tiling 
4K  

Case B: There is at least one vertex with only   angles. 

Such a vertex must have k2   angles for some 3k  (see figure 26-I.) We consider one of the adjacent vertices u  

with two   angles, and consider what other angles can exist there. 

The gap cannot be filled by two or four   angles, or two   angles and four   angles, because  

 .2<2<<    

Nor can we have four more   angles, because /3  , so /3>  and  >3 . 

Similarly, we cannot have two more   and four   angles, or eight   angles, because  

 .4,22<2<    
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The possible alternate-angle sums at the vertex are thus  =2  (subcase B.1 below),  =2   (subcase 

B.2), and  =3  (subcase B.3). The first of these is clearly incompatible with either of the others. The second can 

only occur for 3=k ; for other values of k , 
4


  , so >

2


 . 

 

 

 

Figure  26:Case B, subcase B.1, and the tiling 
3L  

Subcase B.1:  =2 . Each vertex u  with two or more   angles must have exactly two   angles and four 

  angles (figure 26-II.) This forces the zig-zag equatorial ring of 2T  triangles partially visible in figure 26-III. These in turn 

expose pairs of   angles (figure 26-II, top), each pair requiring two more 1T  triangles by Lemma 2.3. This yields a 

complete tiling, 
kL , for each 3k . This tiling differs from 

kF  in that the pairs of equatorial triangles within each lune 

have different orientations. 

Subcase B.2:  =2  . As observed above, this can only occur when 3=k ; we then have =
3


 , =

5


 , 

=
10


  and 

2
=

3


 . The hypothesized  -only vertex has six   angles. 

As always, the triangles must appear in congruent pairs with common bases; the union of two such triangles, 

whether 1T  or 2T , is a rhomb with angles 
2

3


 and 

5


. This rhomb tiles uniquely, yielding the spherical rhombic 

triacontahedron (the dual of the icosadodecahedron). Any tiling using the triangle tile set, then, is a subdivision of the 

spherical rhombic triacontahedron. The number of such subdivisions is approximately 
302  divided by 120, the order of the 

icosahedral symmetry group. (This approximation treats the symmetry group of every tiling as trivial - as a result, the 
numerical value it gives, approximately nine million, undercounts slightly.) The estimate evaluates to around nine million - 
but only four of these many tilings use both tiles and obey the folding condition. We will see that one has already been 
found, one is in a family that will be described below, and two are new sporadic tilings. 

Subcase B.2.a:There is a vertex with only   angles. This must be surrounded by a rosette of 2T  triangles (1 in 

Figure 27-I) The exposed   angles force the next ten triangles (2), all 1T . There are now exposed vertices (for instance 

u ) with two   and two   angles; we may either complete these with four more   angles (figure 27-II) or with two more 

  angles (figure 28-I). 
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Figure  27: Subcases B.2 and B.2.a.i 

 

Subcase B.2.a.i:The vertex u  has two   angles and six   angles. The adjacent vertex, v  in figure 27-II, is 

tetravalent, and must be completed in accordance with Lemma 2.3. This forces a third   angle at w , and the pattern 

propagates around the ring of triangles labeled 3 in figure 27-III. The same lemma then forces all the triangles labelled 4, 

and the final ten triangles (5) are forced at vertices that already have four   angles. Examining the tiling obtained, we see 

that while it has the correct types of tile, it is not in fact part of case B, because it does  not have any vertex with only   

angles. Rather, it is the already-identified tiling 
5K  (figure 25-III). 

Subcase B.2.a.ii: The vertex u  has four   angles and two   angles.The adjacent vertex ( v  

in figure 28-I) has at least four   angles, and must therefore have six; again, this forces a third   angle at the next 

exposed vertex, w , and the pattern propagates. The resulting configuration (figure 28-II) is a sporadic tiling P  that is not 

part of any infinite family. Figure 28-III shows a three-dimensional view of this tiling. 

 

Figure  28: Subcase B.2.a.ii, and the sporadic tiling P  

Subcase B.2.b:There is a six-  vertex, and no vertex with only   angles. We consider two subcases, depending 

on whether two six-  vertices are adjacent: 

Subcase B.2.b.i:There is no vertex with only   angles, and there are two adjacent six-  vertices. By hypothesis, 

we have the ten 1T  triangles shown in figure 29-I. At the vertex u  there must be two   angles and a  ; without loss of 

generality, the configuration is as in figure 29-II (the triangles labeled (3) are forced.) The vertex v  has six   angles, and 

by hypothesis cannot have more; and those tiles labeled (4) in figure 29-III must be as shown to avoid a vertex with only 

  angles. After this, the triangles labeled (5) are forced sequentially in clockwise order, starting at the upper right. The 

triangles labeled (6) in figure 29-IV are then forced, followed by those labeled (7). This completes the sporadic tiling Q  

(figure 29-V). 
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Figure  29:Subcase B.2.b.i, and the sporadic tiling Q  

We note that in fact there is a symmetric patch of eighteen 1T  triangles at each pole, with a central hexavalent vertex 

surrounded by three others. The 2T  triangles form an ornate “belt” at the equator. 

Subcase B.2.b.ii:There is at least one six-  vertex, but no two are adjacent. By hypothesis, we have a vertex 

surrounded by six 1T  triangles, and the three adjacent vertices with at least two   angles must be tetravalent (see figure 

30-I.) Every other triangle in the tiling is forced, either by Lemma 2.3 or by the observation that a vertex with two   

angles and four   angles must be completed with two more   angles rather than an odd  . The resulting tiling is 
3M , a 

particular case of the 
kM  family described below. 

 

 

Figure  30: Subcase B.2.b.ii, and the tiling 
3M  



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  3  

 J o u r n a l o f  A d v a n c e s  i n  M a t h e m a t i c s  

 

6012 | P a g e                              c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
      M a y  2 0 1 6                                          w w w . c i r w o r l d . c o m  

Subcase B.3:  =3 . If 3=k , calculation shows that we have =
3


 , 

2
=

5


 , =

5


 , and 

2
=

3


 . 

This set of angles satisfies  =2  , so any such tilings have been dealt with in subcase B.2. If 3>k , neither 

 2  nor  2  is equal to  , so (as in subcase B.1) we may assume every vertex sum including a   angle to be 

of the type defining the subcase, and every vertex with at least one   angle to have exactly two   angles and six   

angles. 

By hypothesis there is a vertex with only k2   angles. Of the k2  adjacent vertices, k  have two   angles, and the 

other six triangles are thus forced. As in subcase B.2.b.ii, the rest of the tiling follows by alternately completing tetravalent 

vertices and vertices with two   angles. The reader is referred to Figure 30. This tiling, 
kM , exists for all 3k . 

 

Figure  31:Subcase B.3, and the tiling 
3M  

Case C:  = . None of the four types of “case B” tiling contains a vertex with two   angles, two   

angles, and two   angles. Therefore, if there exists such a vertex anywhere in a tiling, this and the tetravalent 

),,,(   vertex are the only types of vertex containing   angles. 

We start with a vertex with two  , two  , and two   angles - as observed in Lemma 2.2, they must be 

arranged as shown in figure 32-I. The vertex u , which has an   and a   angle, must also be of this type, and v  is 

tetravalent. We thus see that this configuration repeats, and we conclude that the vertices labeled w  in figure 32-II are 

surrounded entirely by   angles. Thus =
k


  for some 3k , and the entire tiling, 

kN , is as shown in figure 32-III. 
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Figure  32:Case C, and the tiling 
4N  

We note that this tiling differs from 
kF  and 

kL . In those two tilings, the edges of the equatorial triangles lie 

along longitudes; in 
kN , it is the bases that do this. 

3  Conclusion 

This paper completes the classification, begun in [3] and continued in [4], of f -tilings of the sphere by two noncongruent 

congruence classes of isosceles triangle tiles. Those papers dealt with the cases in which the base of one triangle was 
congruent to the base, (resp. leg) of the other; here we consider the case in which the legs of one triangle are congruent to 
those of the other. 

In the case where the base angles of one triangle are right, those of the other triangle must also be right. There are 
doubly-infinite and continuous families of such tiles, most of them giving rise to large numbers of rather similar tilings, 
differing only in the order of two distinct types of triangle within a “fan." 

For triangles with acute base angles, on the other hand, we find either one-parameter discrete families, indexed by the 
number of tiles meeting in a polar rosette, or sporadic tilings that are not part of any family. One pair of tiles, with angles 

2
, ,

3 3 5

   
 
 

 and 
2

, ,
5 5 3

   
 
 

, tiles the sphere in millions of distinct ways, but only four of them are f -tilings. 
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