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Abstract 

Let R  be a Completely Primary Finite Ring with a unique maximal ideal ))(RZ , satisfying (0)))((( 1 nRZ  and 

(0).=))(( nRZ  The structures of the units some classes of such rings have been determined. In this paper, we 

investigate the structures of the zero divisors of .R  
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1 Introduction 

It is well known, that in a finite ring with 1 , an element is either a zero divisor or a unit. Let R  be a finite ring with 1.  An 

element Ru  is called a zero divisor, if there exists some nonzero element Rv , such that 0.=uv  The set of zero 

divisors in R  is denoted by ).(RZ  The zero divisor graphs considered in this paper are due to Anderson and Livingstone 

in [3], denoted by ).(R  It is conventional, that these graphs present a better description of the structures of the zero 

divisors. The rest of the notations to be used in the sequel can be obtained from [1,2,4, 5]. 

Galois rings are completely primary and the importance of completely primary rings in the structure theory of finite rings 
cannot be underestimated. This is due to the fact that, a commutative finite ring with identity is expressible as a direct sum of 
completely primary finite rings. The building blocks for the construction of completely primary finite rings are the Galois rings, 

which are basically the extensions of rings of integers modulo 
np , where p  is a prime integer and n  is a positive 

integer. In the next section, we give the construction of the ring under consideration.  

2 The Construction  

Let 
'R  be the Galois ring of the form  kkr ppGR , . For each hi ,1,=  , let  

)(RZui   and U  be an h -dimensional 
'R -module generated by },,{ 1 huu   such that URR ' =  is an 

additive group . On this group, define multiplication by the following relations;   

    • If 1,2=k , then   i
i''

iijjii urruuuuupu


=0,=== .  

    • If 3k , then 0===,=0,= 1121  k

jij

k

i

k

iijjii

k uuuuupuuup  ;  

  ,= i
i''

i urru


 where phjiRr '

ij

' ,,,1,   is a prime integer, k  and r  are positive integers and 

i  is the automorphism associated with .iu  Further, let the generators }{ iu  for U  satisfy the additional condition that 

if Uui  , then 0.== jii uupu  

 From the given construction, we notice that R  is commutative iff i  is an identity automorphism. The ring is 

also completely primary and the subset of the zero divisors )(RZ  satisfies the following: ;=)( ' UpRRZ 
'11 =))(( RpRZ nn 
 and (0).=))(( nRZ  

Due to the differences in their geometrical and structural properties, we present the results of the graph )(R  for 

each characteristic of .R  
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3 Rings of characteristic p  

Proposition 3.1 Let char .= pR  Then   

    i) 1|=)(|  rhpR  

    ii) )(R  is complete  

    iii) 
1

=)(


 rhp
KR .  

    iv) 1=))(( Rdiam  .  

    v)  {=))(( Rgr if 0,1=1,= hr  and 2,3.=p
 

 3 elsewhere .  

    vi) The binding number  =))(( Rb .  

Proof. 

i) By the above construction, we have that )(= r' pGFR  and 
'' pRRF /= . So 

hFU =  is an 
'R

-module generated by huu ,,1   on the additive group URR ' = . It is clear that 

h

''' uRuRuRRZ  ,,=)( 21   and every non zero element in )(RZ  is of the form 

),,,(0, 21 hrrr  , for some 0.ir  We show that any element not contained in )(RZ  is invertible. So let 

)(),,,,( 210 RZrrrr h  . Choose an element say )(),,,,( 210 RZssss h   such that 

,0)(1,0,0,=),,,,)(,,,,( 210210  hh ssssrrrr . This implies that 
1

0000 =1= rssr  and 

2

000 =0=  rrssrsr iiii  for hi <1 . So, ),,,,(=),,,,( 2

0

2

02

2

01

1

0

1

210

  rrrrrrrrrrr hh  . 

Since 
rhrh' pRZpURR |=)(||=|||=|| 1)( 

 and 
*)(=)( RZR , then 1|=)(|  rhpR  which 

establishes (i).  
ii)  To establish this, note that the product of every pair ),,,,(0, 21 hrrr   

{0})(),,,(0, 21  RZsss h
 is equal to zero so that every pair of vertices in )(R  are adjacent. 

Hence )(R  is complete.  

iii) This is a consequence of (ii), since )(R  is complete having 1rhp  vertices.  

iv) This follows from (ii).  

v) When 
0=1,= hr

 or 1 and 
2=p

 or 3  , 
21)(= rhpn

. So 
 =))(( Rgr

. Otherwise, 

2>1)(= rhpn
 and since the completeness of the graph implies that 

1))((2=))((  RdiamRgr

, the result readily follows.  

vi)  Since the set S  of minimal degree in ))(( RV   is empty,  =))(( Rb .  

4. Rings of characteristic 2p  

Proposition 4.1 Let char .= 2pR  Then the following hold: 

    i) 1|=)(| 1)(   rhpR  

    ii) )(R  is complete.  

    iii)
1

1)(=)(


 rh
p

KR  

    iv) 1=)))((( Rdiam   

    v)  {=))(( Rgr if 0,=1,= hr  and 2,3=p
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
3 

 elsewhere .  

    vi) The binding number  =))(( Rb .  

Proof. 

i) By the construction, 
*)(RZx  if and only if x  is of the form ),,,(0, 21 hrrr  . Now let 

)(),,,,(= 210 RZrrrrx h   be an element in R ,then x  is invertible and indeed 
1x  is 

),,,( 10 hsss   such that 
1

00 = rs  and 
2

0=  rrs ii  for hi 1 . Since 

rhrh' pRZpURR 1)(2)( |=)(||=|||=|| 
 and {0})(=)(  RZR , then 

1.|=)(| 1)(   rhpR  

ii)  For all 
0=,)(, * xyRZyx 

. So 
)(R

 is clearly complete.  
iii) This follows from (ii).  

iv) It is clear that for all 
,)(, *RZyx  1=),( yxd

. So 
1=)},({ yxdSup

 for all 
)(, Ryx 

. 
Therefore the result is immediate.  

v) When 
0=1,= hr

 and 
2=p

 or 
3,

 t 3=)( KR then 
21)(= 1)(  rhpn

 and hence  

)(R
 has no cycles. So, 

 =))(( Rgr
. Otherwise, for all 

2,>1)(=1, 1)(   rhpnhr
 

so the completeness of 
)(R

 implies that 
3=1))((2=))((  RdiamRgr

, since 

1.=))(( Rdiam 
 

vi) Similar to Proposition 3.1. 

Proposition 4.2 Let char pR =  or .2p  Then )(R  is triangular, if R  is one of the following.   

i) 222 ZZZ 
 

ii) 24 ZZ 
 

iii) 
1)]/([ 2

4  xxxZ
 

Proof.A zero divisor graph is triangular if .=)( 3KR  Let R  be a ring given by the Construction. Then 

1
=)(


 hrp

KR  or 
1

1)(=)(


 rh
p

KR . It suffices to find values of rp,  and h  for which 1hrp   or  
11)(  rhp  

equals 3. Now, let R  be of characteristic 2=p . Then 3=)( KR  when, 1=r  and 2=h . When R  is of 

characteristic 
2p , then the graph is triangular when 1=1,=2,= hrp  and 0=2,=2,= hrp . 

5 Rings of characteristic 3, kpk  

Proposition 5.1 Let char
kpR = , 3.k  

Then 


















isoddif

isevenif
=)(

)
2

21
(

)
2

(

kpartitep

kpartitep
R

r
hk

rh
k

 

Proof.Let Rr
 ,,1   with 1=1  such that RpRr

 /,,1    form a basis for RpR /  regarded as a 

vector space over its prime subfield pF . Since the two cases do not overlap, we treat them in turn. 

CaseI : k  is an even integer 

Let hspjpjariuaX
kk

iss

h

sii

r

isi  1,1)},1({0,,},1{= 22
1=1=,  .  Then 

*)(RZ  is 

partitioned into the following mutually disjoint subsets , .\)(={0},\=
,

*

1,
s

u
sii

asisi
s

u
sii

a VRZVXV     
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These subsets are clearly nonempty and each contains nonadjacent vertices. Moreover, 

}{=)(
,1

*

s
u

sii
asi

VVRZ   . Now 1|=}{|
)

2
(

,






rh
k

s
u

sii
asi

pV   and 1|=| 1V . So 

1=|)(|
)

2
(

* 
 rh

k

pRZ  which implies that )(R  is 1
)

2
(


 rh

k

p  partite. 

Case II: k  is an odd integer 

Let hspjpjariuaX
kk

isi

h

s

r

iii

r

isi 


,1},21)({0,,},1{= 2

1

2

1

1=1=1=,  . Then 
å)(RZ  is 

partitioned into the following mutually disjoint subsets, sisisi
s

u
sii

a XRZVXV ,,1, \)(={0},\= å

  . The subsets 

are nonempty and each contains nonadjacent vertices. So }.{=)(
,1

*

s
u

iii
asi

VVRZ    Now 

1|=|1,|=}{| 1

)
2

1
(

,
VpV

rh
k

s
u

sii
asi






  . So 
r

hk

s
u

sii
asi

pVVRZ
)

2

21
(

,1

* |=|||=|)(|



   showing that 

)(R  is 
r

hk

p
)

2

21
(



 partite.     

Corollary 5.2 Let char ,= kpR 3k , then   

    i) 2=))(( Rdiam   

    ii) 3=))(( Rgr   

    iii)






































isoddfor,
1

isevenfor,
2

=))((

)
2

1
(

)1(

)
2

1
(

)
2

(
)1(

)
2

(

k

pp

p

k

pp

p

Rb

rh
k

rhk

rh
k

rh
k

rhk

rh
k

. 

Proof. 

i) The annihilator, URZRZAnn n

RpR 


1

/ ))((=))(( . So the zero divisor of the form  

ii

n urp 1
 is adjacent to every other nonzero zero divisor. Meanwhile, when mod0( tl n

,,), Rsr   then zero divisors of the form  ii

h

i

l urp 1=  and 
'

i

'

i

h

i

t usp 1=  are non 

adjacent. Thus 2=))(( Rdiam  . 

ii)  The order of .=))(( 1)(

/

rh

RpR pRZAnn 
  So every zero divisor graph of R  contains rh

p
K 1)(   

subgraph. The invariants reveal that the least polygon in )(R  is 3K  

iii)  Let k  be an even integer. From the definition of .=)(, 11
ii

aVVNV   So 

2|=)(|
)

2
(

1 
 rh

k

pVN . Also 

1=21|=||)(|=||
)

2
(

)1(
)

2
(

)1(

1 























rh
k

rhk
rh

k

rhk

s
u

sii
a ppppVRZV 

å
 . 

If k  is odd, then 1|=|=|)(|
)

2

1
(

1 






rh
k

s
u

sii
a pVVN  . Also observe that 

rh
k

rhk
rh

k

rhk ppppXRZXRZV
)

2

1
(

)1(
)

2

1
(

)1(

1 =11|=||)(|=|)(|=||









 













 åå
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. The ratio ||/|)(| 11 VVN  completes the proof.  

 

Proposition 5.3 There exists no ring in the Construction whose zero divisor graph, )(R  is an 

3.>, ngonn  

Proof.Suppose R  is not a field and the cardinality of the vertices of nonzero zero divisors, 3|>))((| RV  . Since 

)(RZ  is a nilpotent ideal, (0)))(( RZAnn . Consider ))((0 RZAnna , then a  is adjacent to every other 

))(( RVb   . This completes the proof. 

Proposition 5.4 Let R  be a commutative ring given by the Construction. Then   2or10,=)(Rdiam  .  

Proof.If 22= ZZ R  , then 1|=)(| *RZ ; So   0=)(Rdiam  . 

If ,= 33 ZZ R  then 2=)( *RZ  , so   1=)(Rdiam  . 

For all the other constructed commutative rings,   2=)(Rdiam   because  )(0 RZAnna  is adjacent to every 

other vertex in ))(( RZV .     

Proposition 5.5 The girth    =)(Rgr  if R  is one of the following rings.   

i) >)(<][= xfxR pZ  , where )(xf  is a monic irreducible polynomial modulo p  of degree r  

.  

ii) 22= ZZ R
 .  

iii) 33= ZZ R
 .  

 

Proof.In case (i), there exists no nonzero zero divisor. 

In case (ii) , there exists only one nonzero zero divisor, that is (0,1) . 

For (iii), the ring has two adjacent nonzero zero divisors , that is (0,1)  and (0,2).  Cases (iv) and (v) are easy.     

The next two results, summarize our findings on the zero divisor graphs of the equivalence classes of the rings 
considered in this paper.  

Proposition 5.6 Let R  be a ring given by the Construction. Then  

 














isoddif,
2

1

isevenif
2=

kpartite
k

kpartite
k

RE  

Case I  k  is even. 

)(RE  is partitioned into the following subsets  

}
2

1|))({(=1

k
lRZV l   

1<
2

},))({(=  kj
k

RZV j

j . For each  =, 1 jVVj  and jV  are mutually disjoint. Moreover 

).(=}{
1

2
=1 RVV Ej

k

k
j




  The result follows by counting the disjoint subsets. 

Case II: k  is odd.  
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)(RE  is partitioned into the following  

Proof.If 1=k  or 2,  then  RE  is partite1 , so the result holds trivially. 

For 3k , we partition  RE  into the following subsets  

}
2

1
1|))({(=1




k
lRZV l

 

1}<<
2

1
|))({(= 


kj

k
RZV j

j . 

Then clearly for each  =, 1 jVVj  and jV  are mutually disjoint. Moreover ).(=}{
1

2

1
=1 RVV Ej

k

k
j




  The 

result follows by counting the disjoint subsets.    

Proposition 5.7 Let R  be a ring given by the Construction in Section 2. Then,   

i) diameter, 
2=))(( Rdiam E .  

ii) girth, 
3=))(( Rgr E .  

iii) binding number,  

 

















isoddif
1

5

isevenif
4

=))((

k
k

k

k
k

k

Rb E  

Proof.(i) and (ii) are easy to see. 

To prove (iii), we consider the two separate cases when k  is even and when k  is odd respectively. 

If k  is even, 
2

|=| 1

k
V  while 

2

4
|=)(| 1

k
VN , so that 

k

k
Rb E

4
=))((


  

Finally , when k  is odd, 
2

1
|=| 1

k
V  while 

2

5
|=)(| 1

k
VN . Then 

1

5
=

||

|)(|

1

1





k

k

V

VN
 

6. Conclusion 

In this paper, we investigated the graphical properties of the zero divisors of the rings described by the Construction in 
Section 2. We recommend further research on the zero divisor graphs of the rings of idealizations and their automorphisms.  
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