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Abstract

In this paper, A new method proposed and coined by the authors as the natural variational iteration transform method(NVITM)
is utilized to solve linear and nonlinear systems of fractional differential equations. The new method is a combination of natural
transform method and variational iteration method. The solutions of our modeled systems are calculated in the form of
convergent power series with easily computable components. The numerical results shows that the approach is easy to
implement and accurate when applied to various linear and nonlinear systems of fractional differential equations.
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1. Introduction

The natural transform, initially was defined by Khan and Khan [1] as N - transform, who studied their properties and
applications. Later , Belgacem et al. [2, 3] defined its inverse and studied some additional fundamental properties of this integral
transform and named it the Natural transform. Applications of Natural transform in the solution of differential and integral
equations and for the distribution and Bohemians spaces can be found in [3, 4, 5, 6,7, 8,9,10]. Now,we mention the following
basic definitions of natural transform.

1.1 Natural Transform
over the set of functions

A=1{f(©):3M, 7,7, >0, T(1) | <M, if te(-1)) x[0,:0)]
the natural transform [1, 15, 16] of f (t) is defined by

N[f(t)]=R(s;u) = T f (ut)e*'dt,u>0,s>0 1)

where N[ f (t)] is the natural transformation of the time function f (t) and the variables U and S are the natural transform
variables.

1.2 Natural — Laplace, and Sumudu Duality

If R(S,U) is Natural transform and F(S) s Laplace transform of function f (t)in A then, G(U) is Sumudu transform of
function f(t)in A then [17]:

Natural- Laplace Duality (NLD) is

© st
NLF (] = R(s;u) == [ f (e *dt = ~F (), @
usy u u
Natural-Sumudu Duality (NSD) is
NLF (0] = R(siu) = = [ £ (Dyetat = Z6(Y) ®
sy S s s

1.3 Natural transform of nth derivative

It f"(t) is the nth derivative of function f (t)then its natural transform is given by[17]:
Sn n-1 u n—(k+1)
N[f”(t)]:Rn(s,u)=u—nR(s,u)—an—_kf(k)(O),n >1 @)
k=0
1.4 Convolution theorem of Natural transform
If F(s,u),G(S,u) are the natural transform of respective functions f (t), g(t) both defined in set A then[17],

N[f *g]=uF(s,u)G(s,u) ©)
where f * g is convolution of two functions f and @ .
1.5 Natural transform of fractional derivative
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If N[f(t)] is the natural transform of the function f (t) , then the natural transform of fractional derivative of order « is
defined as [17] :

n-1 ua (k+1)

ko S%

N[ 0= R(S u-> %0 ()

T ea-k

1.6 Weight shift property
Let the function f (t) belongs to set A be multiplied with weight funtion €' then [16],

N[e* f (t)] = —— R[——] (7)
sF+u S+u
1.7 Change of scale property

Let the function f (@t) belongs to set A,where a is non zero constant then [16],
1_.s
N[ f (at)] = = R[—,u] ®)
a a

2. Analysis of method
In the case of an algebraic equationf (x ) = 0, the Lagrange multipliers can be evaluated by an iteration formula for finding the

solution of the algebraic Equationf (x ) = 0 that can be constructed as[18];

X, =X, +AF (X,).

©
. : e 8X n+l
The optimality condition for the extreme —"* = ( Leads to
oX,
A=- 0 L ' (10)
f'(x,)

Where 0 is the classical variational operator. From (9) and (10), for a given initial value XO , we can find the approximate

solution X, by the iterative scheme for (9) as follows:

X =X, — :((X )) f (x,)#0,n=0,1,2,..... (11)

This algorithm is well known as the Newton-Raphson method and has quadratic convergence. To illustrate the basic idea of the
natural variational iteration transform method, we consider the following fractional differential equation:

DU +RIU )]+ F[U ()] = K(t).0 < « (12)

Where R is a linear operator, F is a nonlinear operator and K(t) is a given continuous function. Now, we extend this idea to
finding the unknown Lagrange multiplier. The main step is to first take the natural transform to Eq. (12). Then the linear part is
transformed into an algebraic equation as follows:
s” s“U(0) s~y (D)
2 R(S,U) T s —2——— "+ N[RU, (®]+ F[U, (0] - K(®)] =0, (13)
u u

n+1

where N[ f (t)] = R(s;u) = [ f (ut)e “'dt,u>0,5 >0
The iteration formula of (11) can be used to suggest the main iterative scheme involving the Lagrange multiplier as:
aU (O) Saf(n)U (n-1) (O)
R, =R +/1( _R,(s,u) - o SR N[R[U, (®)]+ F[U, (0O]1-K®D. @4

Considering N[R[U , (t)] + N[U , (t)] as restricted terms, one can derive a Lagrange multiplier as:

R, =R, +0(AR,),
u

OR., =R, +~— (AR, + AR,
u

This yields the stationary conditions of Eq. (14) as follows;
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2 (AR,)=0
u

With Eq. (14) and the inverse-natural transform N - , the iteration formula (14) can be explicitly given as:

Ups =U, =N CoR ) -2 —%+ NIRIU, O]+ FIU, O] - KOD]
o a a—(n)y 1 (n-1) a
Uy =N CoU = 2O - (VIR 0]+ FU, 01 - KO s
Uy = N[ S u ). —%:;)(O))]
S u u

Consequently the exact solution may be procured by using

U(x,t) =LimU, (x,t)

3. Applications
In this section, we illustrate the applicability, simplicity, and efficiency of NVITM for solving systems of linear and nonlinear
fractional differential equations.

3.1 Application 1
Consider the following system of linear FPDEs[19]:

DfU =V, -U -V, t>00<a<lxeR (16)
DV =U,-U-V (17)
with the initial condition:
U (x,0) =sinh x,V (x,0) = cosh x
Applying the natural transform on both sides of Eq.(16) and Eq.(17),then
N[DU]= N[V, -U -V],
N[DV]=N[U, -U -V]

Using the properties of natural transform we obtain;

a a-1
>R, (s,u) = >—U(x0)~ N[V, ~U =V] =0 (18)
u u

a a-1
2R, *(s,u)->—V(x0) -~ N[U, U -V]=0 (19)
u u

The iteration formula of Eg.(16) and Eg.(17)can be constructed as:

Rn+l = Rn + A(S’ u)[s_a Rn (S’ U) - U (X,O) - N[an -U n _Vn ]] (20)
u

S a-1

ua

a-1

V(X,O) — N[U nx _Un _Vn]] (21)

s“ S
R*1 =R* +A*(S,u)[— R, *(s,u) ——;
u u
where A, A *is a general Lagrange multiplier, which can be identified optimally via the variational theory, U0 =0,

NIV, —U, -V, ]land N[U  —U, —V,]] are arestricted variation, that are , aUn =0

i.e.
s” s“
I
aRn+1 = aRn + 6(ﬁ'u_a Rn) ) ale = aRn + u—a(ﬂ Rn + ﬂ’aRn)
s” s“
OR™,,, =0R™, +a(/1*u—aR*n) . OR*,, =0R* +u—a(/1*R*n +A*OR™* )
o : iy o u“ u”
This yields the stationary conditions, which gives 4 = —— A*=—— .
Sa 1 Sa
Substituting this value of Lagrangian multiplier in Eq.(20) and Eq.(21),we get the following iteration formula:
ua Sa Sa—l
Rn+1 = Rn - _a[_a Rn (Sv U) T u (X’O) - N[an -U n _Vn ]] (22)
sTu u
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a-1

sua V(%0)~N[U,, -U, -V,1]

Applying inverse natural transform on both sides of Eq.(22) and Eq.(23),we get:

U, =sinhx+ N[~ [N]V,, ~U, -V,1],
S

V,.i = coshx+ N [--[N[U,,
S

a

U, =sinh x —cosh x

-U, =V,11,
U (x,0) =sinh x,V (x,0) = cosh x,

C(a+1)
V, = cosh x—sinh ,
INa+1)
a 2a
U, =sinh x —cosh x +sinh X ——,
IN'a+1) I'2a+1)
a 2a
V, = cosh X —sinh x +CcoSh X ——,
I +1) I'2a+1)
a 2a 3a
U, =sinhx - coshx+sinhxt——coshx—,
I'a+1) I'a+1) 'S +1)
a 2a 3a
V, = cosh x —sinh x +Cc0Sh X ——— —sinhx ——.
I'x+1) I'2a+1) I'Ga+1)

Finally, we approximate the analytical solution U (X,t) and V (X,t) by:
U(x,t) =LimU, (x,t), V(xt)=LimV,(xt),
N—o0 n—oo

a 2a 3a
U (x,t) =sinhx — ! coshx +sinh X ———— X —
INCERN I'2a +1) 'S +1)

a 2a 3a
V(x,t) = cosh x —sinh x +coshx ———— X
INa+1) I'2a +1) I'Ga+1)

U(x,t) =sinh xE,, , (t**) —t“E,, ...
V(x,t) = cosh xE,,, (t**) —t“E

0 (ta)k
Where ZO (ak 1)

(t**) cosh x,
,(t*)sinh x

20,a+

E,.(t%) isthe famous Mittag—Leffler function.

For the special case a = 1, we obtain (See Figures (1, 2))

U(x,t) =sinh xE,, (t*) —t“E,, (t*) cosh x
V(x,t) = cosh XE,, (t*) —tE, , (t*)sinh x

Where E,, (t?) =cosh(t) , tE,,(t?)=sinh(t),
U (x,t) = sinh xcosht —sinht cosh x = sinh(x —t),
V (x,t) = cosh xcosht —sinhtsinh x = cosh(x —t).

Hence;
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U (x,t) =sinh(x —t) (36)
V(x,t) = cosh(x —t) (37)

Which is the exact solution and is same as obtained by [19].

3.2 Application 2
Consider the following system of time-fractional coupled Burgers equations[20]:

DU -U, —2UU, +(UV), =0,t>00<a <LXxeR, (38)
DAV -V, —2W, +(UV), =0, (39)

with the initial condition:
U(x,0) =sinx and V(x,0) =sinx (40)
where (is parameter describing the order of the fractional derivative. The functions U (X,t), V (X,t), are the unknown

functions, t is the time and X is the spatial coordinate.The derivative is understood in the Caputo sense. The general response

expression contains parameter describing the order of the fractional derivative that can be varied to obtain various responses.
By applying the natural transform on both sides of Eq.(38) and Eq.(39) ,then

N[Dtau]_ N[Unxx +2UnUnx _(Unvn)x] =0
N[DV]- NV, + V.V —(U,V.),]=0,

Using the properties of natural transform we obtain;

a a-1
>R (s,U)—>—U(x0)~ N[U,, +2UU, = (UV),]=0 (1)
u u
Sa Safl
“—R, *(s,u) ==V (x,0) = N[V,, +2WV, - (UV),]=0 (42)
u u

The iteration formula of Eq.(38) and Eq.(39) can be constructed as:

a a-1
Ry = Ry + A8 U)=R, (5,0) —>—U(x,0) - N[U,, +2U,U,, - (U,V,),]]
u u
a a-1
R*. ., = R* 4% (5,U)[ = R(5,U) — ~—V (x0) ~ N[V,.o, + 2W,, (U V,),]] (a4)
u u

~

where A, A *is a general Lagrange multiplier, which can be identified optimally via the variational theory, UO =0

N[U,,+2U.U.,—-U, V), lland N[V, +2V,V, —U,V,),]]are arestricted variation, that are , aUn =0

i.e.

R, =0R +0(A-R)) , OR,,=0R, +-— (AR, +AdR) .
u u
OR*. ., =0R* +0(4 *S—a R*) . OR* ., =0R™*, +s—a (A*R*, +40R™,)
u Y
This yields the stationary conditions, which gives 4 = . A* = . -
Sa 1 SO!
Substituting this value of Lagrangian multiplier in Eq.(43) and Eq.(44)we get the following iteration formula:
a a a-1
Row =Ry = 2R (5,U) —>—U(x,0) = N[Upy + 20U, — (U,V,), 1] (45)
S” u u
N . ua Sa N Sa—l
R* ., =R* —[—R* (5,u)——V(x0) - N[V, +2V,V,, - (U V,),]] (46)
sTu u

Applying inverse natural transform on both sides of Eq.(45) and Eq.(46)we get:

a a a-1
Uy =U, -NZ[ R (5.0) =~ U(x0) = N[U ., +2U U, ~ (U,V,), 111, @)
S™ u u
o ua Sa Safl
Vn+1 :Vn_N [_a[_aR*n (S,U)— o V(X’O)_NI.\/XX+2anxx_(UnVn)x]]]' (48)
ST u u
U, =sinx, V, =sinx, (49)
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. t” .
U, =sinX———-—sInXx, (50)
INa+1
V, :sinx—t—sinx, (51)
IN'a+1)
a 2a
U, =sinX—————sinXx+ ————sinx, (52)
IN'a+1) I'2a+1)
a 2a
V, =sin X —————sin X+ ————sin X (53)
INa+1 I'2a +1)
Finally, we approximate the analytical solution U (X,t) and V (X,t) by:
U(x,t) =LimU_(x,t), V(xt)=LimV,(Xt)
Hence,
U(x,t) =V (x,t) =sinxE_ (-t%) (54)

£ _ta k
Where ZL =E_(—t%) is the famous Mittag-Leffler function.

For the special case a = 1, we obtain[See Figures (3,4,)]
U(x,t)=e"sinx, V(x,t)=e"sinx (55)

which is the exact solution of obtained by [20] .

6. Conclusion

In this paper, a novel approach was introduced and utilized to solve linear and nonlinear systems of fractional differential
equations. In this research work, it was emonstrated through different examples how the new method can be used for solving
various systems of fractional differential equations. When compared with the existing published methods, it is easy to notice
that the new method has many advantages. It is straightforward, easy to understand, and fast, requiring much less
computations to perform a limited number of steps of the simple procedure that can be applied to find the exact solution of a
wide range of types of systems of fractional differential equations. Furthermore, there is no need for using linearization or
restrictive assumptions when employing this new method.
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Figure 1:The surface plot of the solution U(x, t) or V(x,t) of applicationl when (a) a = 0.75, (b) @ =0 .90, (c) a =1 which is the
exact solution and Plots of U(x, t) or V(x,t) versus t at x = 1 for different values of
(——)a=0.75, (--) «=0.90, (— ) a =1 which is the exact solution.
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exact solution and Plots of U(x, t) or V(x,t) versus t at x = 1 for different values of
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Figure 2:The surface plot of the solution U(x, t) or V(x,t) of application 2 when (a) @ = 0.75, (b) @ =0 .90, (c) @ =1 which is the

(——)a=0.75, (--) «=0.90, (— ) @ =1 which is the exact solution.
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