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ABSTRACT 

A complete group classification for the Klein-Gordon equation is presented. Symmetry generators, up to equivalence 

transformations, are calculated for each )(uf  when the principal Lie algebra extends. Further, considered equation is 

investigated by using Noether approach for the general case 2n . Conserved quantities are computed for each 

calculated Noether operator. At the end, a brief conclusion is presented. 
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SUBJECT  CLASSIFICATION 

35R01, 76M60 

INTRODUCTION  

The (1+n)-dimensional Klein-Gordon equation
               

                2 ( ),        0,tt uuu u f u f   
                                                                            (1) 
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In the past, the authors of [3, 10] have studied Eq. (1) for different values of n, for exact solutions, compatibility of the 

conditions for the reduction and reduced equations by consideration of an ansatz which reduces the dimension of the 

corresponding PDE (see [11]). In [9], the author discussed the symmetry properties and found particular solutions for 

some cases of Eq. (2). Tajiri [20] proposed some similarity and soliton solutions for the three-dimensional Klein-Gordon 

equation by means of similarity variables. Fushchych et al. [12] investigated the reductions and solutions by using the 

broken symmetry for Eq.(1) with n=3. In [8], Fedorchuk considered the reductions of Eq.(1) for n=4 by using 

decomposable subgroups of the generalized Poincare  group P(1,4). Fushchych [10] invoked an ansatz of the form 

( ) ( ) ( )u f x g x    to analyze exact solutions of Eq. (1). Description of such an ansatz for the Eq. (1) can 

be a difficult problem. That problem can be simplified by using symmetry methods. 

 Lie symmetry analysis is a systematic way to construct an ansatz which further reduces the dimension of the differential 

equation. The symmetry method also plays a central role in the algebraic analysis of the differential equation. There are 

nonlinear equations with arbitrary coefficients which possess nontrivial Lie point symmetries. Such nonlinear differential 

equations can be classified, with respect to unknown functions, according to the nontrivial Lie point symmetries they admit. 

This classification is known as group classification. The problem of group classification is one of the central aspects of 

modern symmetry analysis of differential equations. It was performed in the classical works of Lie.  

For the nonlinear wave equation: 
1 1

( ( ) )tt x xu f u u , group properties are deduced by Ames [1]. Pucci [18] discussed 

the group classification of 
1 1 1

( , )tt x x xu u f u u  . A list of symmetries of the equation 

1 1 11( , , , )tt x x xu u f t x u u   is presented in [16]. Furthermore, the group classification of 
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1 1 2 2 3 3
( )tt x x x x x xu u u u f u     was studied by Rudra [19]. The authors in [2] performed the group 

classification of the (1+1)-dimensional Klein-Gordon equation by using [7]. 

One of the classical aspects of the Lie theory is the computation of conservation laws. The existence of a large number of 

conserved quantities of a PDE or system of PDEs is a strong indication of its integrability. An efficient method to compute 

conservation laws is given by Noether [6,17]. The theorem states that there is a conservation law for the Noether 

symmetry of the differential equation. Conservation laws for the nonlinear (1+1)-dimensional wave equation viz 

( ( ) ) ( ( )) 0tt x x xu k u u k u    are discussed in [15]. Bokhari et al. constructed the conservation laws [5] for the 

nonlinear (1+n)-dimensional wave equation ( ( ) ) 0
i itt x xu f u u   via partial Noether approach. Conserved quantities 

for the (1+1)-dimensional nonlinear Klein-Gordon equation are reported in [14]. 

Fundamental operators 

Consider the 2
nd

 order PDE of the type 

            
0),,,,,,( 

iii xxttxti uuuuuxtE
                                                                    (2) 

where u  is dependent variable, ,  ( 1,2,..., )it x i n  are independent variables. 

(I) The Euler operator is 

1

... ,     
n

t i

it i

D D
u u u u



 

  
   
  

                                                             (3) 

where 

...,t t tj

j

D u u
t u u

  
   
                                                                                (4) 

...,    1,...,i i ij

i j

D u u i n
x u u

  
    
                                                          (5) 

are known as the total derivative operators. 

The generalized or Lie Backlund operator is defined by:    

... .i

i

xi t

i t x

Y
t x u u u

    
    

     
                                                (6) 

(II) Suppose  ( , , , , )
ii t xL L t x u u u A     (space of differential functions) is a differentiable function 

such that L  is said to be a standard Lagrangian if      

                                               

0.
L

u






                                                                     (7) 

(III) The generalized operator (6) satisfying 

                      

0

1 1

( ) ( )
n n

i i

t i t i

i i

Y L L D D D B D B 
 

                                            (8) 

is known as the Noether operator associated with a Lagrangian L . 

In Eq. (8), 
iB  for 0,1,2,...,i n  are known as the gauge terms. 

(IV) The equation 
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0

1

0     
n

i

t i

i

DT DT


 
 

evaluated on the solution space given by (2) is known as the conservation law for Eq. (2) and vector 

0 1( , , , )nT T T T   is said to be a conserved vector. 

(V) The conserved vectors of the system (2) associated with a Noether operator X  can be determined from the 

formula 

                                             
( ).i i iT B N L 

                                                           (9) 

In Eq. (9), 

                        

0 ,        ,i i

t i

N W N W
u u

 
 

 
   

 

where W  is known as the Lie characteristic function and can be found from 

                                        1

.
n

j

t j

j

W u u  


                                               (10) 

The outline of this paper is as follows. In Section 2, the group classification of the (1+n) -dimensional Klein-Gordon 

equation is given. Section 3 is for the Noether symmetry operators and conserved vectors of Eq. (1). Finally, conclusions 

are summarized at the end. 

Lie point symmetries 

In this section, we discuss the group classification for the (1+n)-dimensional Klein-Gordon equation, i.e. Eq. (1) for 

arbitrary n . We apply the 2
nd

 prolongation vector i.e  

                                1

[2]

( )1

( ) 0.( ) n
i i

tt x xi i
i

n

tt x x
u u f ui

Y u u f u



 

  


 û
                                    (11)

 

Eq. (11) yields the following determining equations: 

                             
( )  0,   ( )  0,   ( )  0,i

u u uui ii iii    
                                (12) 

 ( )  0,  ( )  0,   ( )  0,
j i i i

i j i i

x x t x t xi ii iii          
                      (13)

 

1 1

2 0,   2 0,
j j i i i

n n
i i

tt x x x u tt x x tu

j i

     
 

        
                                   

(14) 

              1

2 0.
i i

n

tt x x t u u

i

f f f    


    
                                                             

(15)
                                            

 

Eq. (13) forms a set of equations for an infinitesimal conformal transformation on 
1nR  with Lorentz metric and thus the 

unknowns appearing in these equations are quadratic polynomials of 1, , , nt x x   (see [21]) and Eq. (14) 

implies 

                  
,    ,     1,2, , .

ix u tuconstant constant i n    
                        (16) 

Differentiating Eq. (15) with respect to u  and using the results given in Eq. (16), yields 

                                                 

0.( )u
uu

uu

f

f


                                  
                    (17)
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The solutions of Eq. (17) yield the following functions 

( )  ( ) ,            ( )  ( ) ln( ),              ( )  ( ) ( ) ,   0,1.bu mi f u ae c ii f u c au b iii f u au b c m       
 

Lie algebra  

In this section, we discuss the different forms of )(uf , up to equivalence transformations, which lead to an extension of 

the principal Lie algebra of Eq. (1) for ...3,2n . 

 For 1n , the results are presented in [2]. 

When f(u) is arbitrary 

The minimal algebra for the arbitrary case is: 

0 2,     ,      ,      ,   i n i i n i i j

i i j i

Y Y Y x t Y x x j i
t x t x x x

 

     
      
                                (18)

 

and appeared in all the rest of the considered cases, thus we shall only present the additional algebra(s). The principal Lie 

algebra for this case is of dimension n(3+n)/2+1. 

( ) buf u ae c   

For 0c  the principal algebra extends and additional generators will be: 

3

1

2 ,
n

n p i

i i

Y t x
t x u





  
  

  


                                     
                                         (19)

 

where 

 

         0,      if n is even 

P=  

         1,      if n is odd.       

 

                                  
                                                      (20)

 

The Lie algebra is of dimension n(n+3)/2+2. 

( ) ln( )f u c au b 
 

There is no extension in the principal algebra. 

( ) ( )mf u au b c  
   

0,1m 
 

In this case, for cb  0  leads to an extension of the principal algebra and additional generators will be: 

3

1

2
,

1

n

n p i

i i

u
Y t x

t x m u




  
  

   


   
                                                      (21)

 

where p  is defined in (20) and the Lie algebra is of dimension n(n+3)/2+2. 

Noether symmetries 

In this section, we will use Noether approach for finding the conserved vectors of Eq. (1) for arbitrary n , taking 2n  . 

Case 1: n=1 
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Noether operators and conserved vectors of Eq. (1) for 1n  are reported in [14]. 

Case 2: n=2 

The standard Lagrangian for Eq. (1) will be 

22

1

( ),      ( ) ( ).
2 2

i

n
xt

i

uu
L F u F u f u



   
                                                              (22)

 

The Noether determining equation (8) with the help of Eq. (22) after some lengthy manipulation gives the following set of 
determining 

equations:

1 1,

( )  0,    ( )  0,   ( ) 2 ,  ( ) 2 ,
i i j

n n
i i i j

u u u t x u x t x

i j j i

i ii iii i        
  

             

(23)
 

0( )  0,  ( )  0,   ( )  ,    ( )  ,
i j i i

i i j i

x t x x u t u xi i i B ii B           
  (24)

 

0

1 1

( ) ( ) .[ ]
i i

n n
i i

t x t x

i i

f u F u B B  
 

    
                    (25)

 

Hence doing the routine calculation, Eq. (25) yields: 

                 
2(2 1) 2 0.( )uu uuuu uuun f f nf   

                                  (26)
 

Eq. (26) further divides two cases and discussed in the following sections. 

0    

 For this case, the Noether operators will be: 

                                     0 2,    ,    ,    .i n i n iY Y Y Y   

This forms the minimal algebra and thus thus we shall only present the additional algebras in the next section. 

0 
 

For this case, the additional Noether operators will 

be:
2 2 2

3

1 1

1
,   ,

2 2
[ ]

n n
i

n i i i j i j

j ji j

x u
Y x t x t x x x j i

t x x u


 

   
      

   
   

2 2

4 1 4 2

1 1 1

1
,    .

2 2 2
[ ]

n n n

n i i n i

i i ii i

ut u
Y t x t x Y t x

x t u t x u
 

  

     
      

     
  

 

Conserved quantities 

(I) The vector 0T corresponding to 0Y  has the following components: 

0 2 2

0 0

1

1
( ),     .

2
[ ]

i i

n
i

t x x t

i

T u u F u T u u


    
 

(II) The components of the vector iT  are: 

0 2 2 2

1

1
,      ( ),    ,     .

2
[ ]

i i j i j

n
i j

i x t i t x x i x x

j

T u u T u u u F u T u u j i


        
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(III) For n iY   the components of n iT   are: 

0 2 2 2 2 2

1 1,

2 ( ) ,     2 ( ) ,
2 2
[ ] [ ]

j i i j i

n n
ii

n i t x x t n i t x x i x t

j j j i

x t
T u u F u tu u T u u u F u x u u 

  


         

                               

( ) ,      .
i j

j

n i i t x xT x u tu u j i    
 

(IV) For 2n iY   with ij   the conserved vector 2n iT  has the following components: 

0 2 2 2

2 2

1,

( ) ,     2 ( ) ,   
2

[ ]
i j i k i j

n
ji

n i j x i x t n i t x x i x x

k k i

x
T x u x u u T u u u F u x u u 

 


      

2 2 2

2 2

1,

2 ( ) ,     ( ) ,    , .
2
[ ]

j k i j i j k

n
j ki
n i t x x j x x n i j x i x x

k k j

x
T u u u F u x u u T x u x u u k i j 

 

        
 

(V) For 3n iY   the components of 3n iT   are: 

0 2 2 2 2 2

3

1 1 1

1
( ) , 

2 2 2
[ ] [ ]

k i j

n n n
i i

n i t x i j x i j x t

k j j

x t x u
T u u x t x u x x u u

  

        

2
2 2 2 2 2 2

3

1 1 1

1
( ) ,  

22 4 2
[ ] [ ]

i j j i

n n n
i

n i i j t x x t j x i x

j j j

u u
T x t x u u u tu x u x u

  

          

2 2 2

3

1 1

2 2 2

1

1
( )

2 2

,   , .
2

[ ]

[ ]

i m j

j m

n n
j i
n i i t i j x i m x x

j m

n
i j

t x x

m

x u
T x tu x t x u x x u u

x x
u u u m i j



 



       

  

 


 

(VI) For 4 1nY   the components of 4 1nT   are: 

2
0 2 2 2 2

4 1

1 1 1

1
( ) ,

4 4 2
[ ] [ ]

i i

n n n

n i t x i x t

i i i

u u
T t x u u x u tu

  

        
 

2 2 2 2 2

4 1

1 1 1

1
( ) ,    .

2 2 2
[ ] [ ]

i j j i

n n n
i i
n p t x x i t j x x

j i j

x t ut
T u u u t x u x tu u j i 

  

          
 

(VII) For 4 2nY  , the vector 4 2nT   has the following components: 

0 2 2

4 2

1 1

,
2 2
[ ] [ ]

i i

n n

n t x i x t

i i

t u
T u u x u u

 

    
 

2 2 2

4 2

1 1

,
2 2
[ ] [ ]

i j j i

n n
i i
n p t x x t j x x

j j

x u
T u u u tu x u u 

 

       
 

Where p  is defined in (20). 

Conclusion 
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A complete classification of the )1( n -dimensional Klein-Gordon equation is reported. The procedure is carried out for 

arbitrary n . A class of functions is obtained which possess the non-trivial Lie point symmetries. It is observed that 

obtained class of function does not depend on the number of independent variables. Extensions of the principal algebras 

up to equivalence transformations are constructed for each )(uf . These symmetry algebras can be further used to 

construct ansatz or similarity variables. 

It should be noted that in the entire obtained Lie point symmetries, the coefficients of t  and 
ix  are independent of the 

dependent variable u  and hence the obtained symmetries are fiber preserving or projective transformations. Such 

transformations allow one to calculate the expression for the group transformations on the actual function 

1( , ,..., )nu t x x  with less difficulty. Noether operators and conservation laws of the considered equation are 

computed by using Noether approach for 2n . 
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