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Abstract

In this paper, symbolic analytical expressions for the solution of hyperbolic form of Kepler's equation will be established
.Mathematica procedure for the expressions is also established to together with some of its output.
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1- INTRODUCTION

The hyperbolic form of Kepler's equation plays an important role in dynamical astronomy. Many instances of hyperbolic
orbits occur in the solar system and recently, among the artificial satellites, lunar and solar probes. .

The hyperbolic orbits not only exist naturally, but can also be used to solve some critical orbital situations [1].

Due to the importance of the hyperbolic form of Kepler's equation as mentioned briefly in the above, it now urgent needed
to establish accurate expressions for its solution. Towards this goal the present paper is devoted.

To achieve this goal, we established symbolic analytical expressions for the solutions, because, the analytical formulae
are usually offering much deeper insight into the nature of the problems to which they refer On the other hand, these
expressions are obtained from utilizing exact theorems for their formulations. Mover, the symbolic analytical expressions
could also be implemented for digital computations. Finally a Mathematica procedure for the expressions is also
established together with some of its output.

2-BASICFORMULATIONS
2-1 Hyperbolic form of Kepler’s equation

The position—time relation in hyperbolic orbits is known as Kepler's equation for the hyperbolic case and is written as:

M=esinhH-H, 1)

M= /(_2)3(t—1:):n(t—1:). )

The quantity M, called the mean anomaly H the hyperbolic eccentric anomaly, e the eccentricity of the orbit (e - 1),

Where

LL the gravitational parameter, n the mean motion a the semi-major axis of the orbit (& < 0), t the time, and T is the
time of passage through pericenter.

2-2 Lagrange Expansion Theorem

Consider the functional equation

y=X+a¢y), 3)

where o is to be considered a small parameter — originally identified with a planetary eccentricity .Then y could be
expanded in terms of x and o as

ooal’l dn

-1
y=XS [o (1" )
n=1 .

Lagrange's series is, of course, the Taylor series representation of the root of the functional equation
y — X —a @(x) = 0 Sufficient conditions for a unique root are obtained by a direct application of Rouche’s theorem for
analytical function of a complex variable [2].

3- ANALYTICAL SOLUTION FOR HYPERBOLIC FORM OF KEPLER'SEQUATION
Write the hyperbolic form of Kepler's Equation (1) as:

sinhH=M+lH, (5)
e e

with,

y =sinhH ; x:% . :% ; d(y)=sinh'y

Lagrange’s expansion theorem of Equation (4) yields:

. M &1.,1,d"!
sinhH=—+)» — (5)"
e nZ:;‘n! (e) dx"*

[sinh™*x]". 6)

Up to the fourth orderin (1/ €) , we can write the last equation as:
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sinh H=" 4 psinh 31 + - L psinh 232 + L 9 psinng° " [sinh X"
e € 2e? dx 6e® dx?
(7

Now let us evaluate each term of the equation

e Lsinnix=LsintM_A 8-1)
e e e e
1 2sinh™*x 1  Ae A
== (8-2)

1 d., .
— — [sinh*x]? = = =
e’ dx[ ] 2 1+x?2 €*M?+e? €B

3[sinh*x]*> 3eA?
= =

d> . . Let Q=[sinh-1x]?
e T, =— —[sinh*x]® »Q' = =
! 683 dX2 [ ] Q A1+ X2 B
. 2AA'B-B'A?
Q"=3e 57 .
Where the prime is the derivatives w. r. t. x. Then,
A’ = 1 = E,
Ji+x? B
ex Ne

B' = =—.
Vi+x* B

Then,
2 2
"_ 39 2A_MeA :3Ae 2_M_A -
B2 B B? B
A MA
T, = 28 8-3
! 2eBz{ B } ;i
3 P k113 3
. 14d—3[8inh‘1x]4 pet CR )" >G’=4[Smh I a —
24e” dx V14 x2 B
2A'R_R'AS 2,2
G,,:463A A'B-B'A 4e[3A2eB_A3&aj=4Ae 3—AM}=C1+C2
B? B B B? B
Where
2pn2 2 3
C:1:12ef\ ; C2:_4e MA
B B®
then
G"=C;+C,
~InC, =In12 + 2InA + 2Ine — 2InB:>C—: 2A —ZB =
C, A B
C,_24A2e3 1 M
1~ 3 o~ A
B A B
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Let T=MA’€?/B® = InT =3InA + InM + 2Ine — 3InB
Since,

M=xe=>M'=e
Then,

, MA% [_A” M _B'] MA%? (3 e 3Me
T'= 3 = + _

3 3+ 3 BA 2
B A N B B BA M B

Hence,

C, =

—4Me3A3{ 3 1 3|v|}

B® BA M B2

1
24e4 24 4
A’ F_M} A3M{ 3 ) 3M}
eB?® 6eB?

[hX]

C +C,}=
24e* dx? { k=

A B AB M B’

1
24e* dx

[ o=

2np2
Al\gl{6_A2_9AM+3AM } A

82
Using Equations (8) into Equation (7) we get:

2np2
sth—M_,_é_,_A_'_ A 2_AM of A 6_A2_9AM+3A M L
B 6eB® B B2

e e eB 2eB?

By using Equation (5) for the left hand side of the above equation, we get the Analytical Solution for Hyperbolic form of
Kepler's Equation on the form

A A AM, A , 9AM 3A’M?
AT — +

H=A+—+ 2 - + 6— +oee 9
B 282( B) 6B3( B? ) o
Where,
A= smh‘llvI In MEB (10)
e e
And,

B=vM? +¢? (11)

4- MATHEMATICA PROCEDURE

Equation (2) could be written as:
y=2 GA, 12)
j=1

Where,

A =sinh ‘{Mj .
e

The following procedure computes the G's coefficients.

4-1 Mathimatica procedure: KeplerHypSeries

e Purpose
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. 4( M
To find analytical expression for the coefficient G j of Sinh 1(— in the m terms series solution for Kepler's hyperbolic
e

orbits equation.
Input
1- m (integer) the maximum number of terms for the series solution of Kepler's equation for hyperbolic orbits
2-s (integer) < Mis number of the required term of the series.
e Output
G's coefficients
e Needed procedures
None
e List of the procedure
KeplerHypSeries[m_s_] = [{ },® = ArcSinh[x]; Q = Table[D[®",{x,n — 1}],{n,1,m}];y
= i £, (E)H * Q[n] P,
n=1”! e {x - %,ArcSinh[x] - A}I l

:= Coef ficient[y, A']//FullSimplify; Do[Print[G," =",P].[j,1,s}]

4-2 List of G's coefficients

(setaw) (11 () (150 e (o1 [ ) )

G1= (e2+M?)8
Gzz-m(M(105+78(e2+M2)+55(e2+M2)2+36(e2+M2)3+21(e2+M2)4+10(e2+M2)5+3(e2+M2)6
M2
-e ’1+e—2(-91-66(e2+M2)-45(e2+M2)2-28(e2+M2)3-15(ez+M2)4-6(e2+M2)5-(e2+M2)6) )
1 14 2 12 2 1 Mz 11 2 M2 9 M2 2 4
G3= = (-e'45005M?-2¢ (5+2M?)-4e!3 I+—-e (20+9M?) I+ +e 1+?(-56+5M +15M*)

6e(e?+M?)8 ,1+l\e/l—2

M2
+2€7 1+e—2(-60+77M2+110M4+35M6)+e6(-165+294M2+490M4+250M6+25M8)+
M2
2e° 1+e—2(-110+315M2+399M4+215M6+45M8)+M4(2717+1320M2+546M4+175M6+35M8+2M1°)+
M2
eM? 1+?(3731+1925M2+870M4+322M6+85M8+11M10)

M2
+e3 1+?(-364+1705M2+1620M4+910M6+320M8+51M10)

-?(-455+2431M?+2475M*+1554M°+665M8+165M10+11M12)-e10 (35+3M2(5+M2))

+e? (-84-+5M?(74+M?)(1+2M?) ) +2¢* (-143+M2 (495+M2(9+M2)(77+42M2+12M4))))
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1
= 21M ey

, M? / M?
—84(e? + MH)* —7(e? + M?)® — 8008e |1 +—7 —3003(e® + M*) |1+

, M? , M? , M?
—924€(€2+M2)2 1+e—2—210€(€2+MZ)3 1+e—2—28€(€2+M2)4 1+e—2

M? 1
2 2\5 2 2 2 2y2
—e(e“+M?)” |1+ o2 + CEYIDL (42315 + 19305(e* + M?) + 7590(e“ + M*)

MZ
+2349(e? + M?)3 + 525(e? + M2)* 4+ 55(e2 + M?)5 4+ 29029¢ ’1 =7

M? M? M?
+12375e(e? + M) |1+ 4410e(e® + M?)? |1+ +1190e(e? + M?)* |1+
M? M?
+195¢(e? + M?)* |14+ 9e(e? + MH)® |1+ |)

In conclude the present paper, we stress that, symbolic analytical expressions for the solution of hyperbolic form of
Kepler's equation are established .Mathematica procedure for the expressions is also established to together with some of
its output.

Gy 15M? | —12376 — 5005(e? + M?) — 1716(e? + M?)? — 462(e? + M?)3
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