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ABSTRACT

The main purpose of this work is to introduce and study the concept of pseudo-rc-injective module which is a proper
generalization of rc-injective and pseudo-injective modules. Numerous properties and characterizations have been
obtained. Some known results on pseudo-injective and rc-injective modules generalized to pseudo-rc-injective. Rationally
extending modules and semisimple modules have been characterized in terms of pseud-rc-injective modules. We explain
the relationships of pseudo-rc-injective with some notions such as Co-Hopfian, directly finite modules.
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1 INTRODUCTION

Throughout, R represent an associative ring with identity and all R-modules are unitary right modules.

Let M and N be two R-modules, N is called pseudo —M- injective if for every submodule Aof M, any R-
monomorphismf: A - N can be extended to an R-homomorphism a: M — N. An R-module N is called pseudo—injective, if
it is pseudo N-injective. A ring R is said to be pseudo-injective ring, if Ry is pseudo-injective module (see [5] and [14]).

A submoduleK of an R-module M is called rationally closed in M (denoted by K <,. M) if N has no proper rational
extension in M [1]. Clearly, every closed submodule is rationally closed submodule (and hence every direct summand is
rationally closed), but the converse may not be true (see [1],[6],[9]).

M. S. Abbas and M. S. Nayef in [3] introduce the concept of rc-injectivity. Let M; and M, be R-modules. ThenM, is called
M, -rc-injective if every R-homomorphismf: H - M,, where H is rationally closed submodule of M;, can be extended to an
R-homomorphism g: M; - M,. An R-module M is calledrc-injective, if M is N-rc-injective, for every R-module N. An R-
module M is calledrc—quasi-injective or self- rc —injective, if M is M-rc-injective.

In [15], an R- module N is called pseudo—M-c-injective if for any monomorphism from a closed submodule of M to N can
be extended to homomorphism from M in to N. An R-module M is called rationally extending (or RCS-module), if each
submodule of M is rational in a direct summand. This is equivalent to saying that every rationally closed submodule of M is
direct summand. It is clear that every rationally extending R-module is extending [1]. An R-module M is said to be Hopfian
(Co-Hopfian), if every surjective (injective) endomorphism f: M — M is an automorphism [16]. An R- module M is called
directly finite if it is not isomorphic to a proper direct summand of M [10]. An R-module M is said to be monoform, if each
submodule of M is rational [17].

2Pseudo-rc-injectiveModules
We start with the following definition

Definition 2.1Let M and N be two R-modules .Then N is pseudo M-rationally closed-injective ( briefly pseudo M-rc-
injective ) if for every rationally closed submodule H of M , any R-monomorphism ¢:H — N can be extended to an R—
homomorphism g: M — N . An R- module N is called pseudo-rc-injective, if N is pseudo N-rc-injective. AringR is called self
pseudo- rc-injective if it is a pseudo-Ry —rc-injective.

Remarks 2.2 (1)Every pseudo-injective module is rc-pseudo- injective. The converse may not be true in general, as
following example let M= Z as Z- module. Then, clearly M is rc- pseudo-injective, but Z is not pseudo-injective module.
This shows that pseudo-rc-injective modules are a proper generalization of pseudo-injective.

(2) Clearly every rc-injective is pseudo-rc-injective. The converse may not be true in general. For example, [7, lemma 2],
let M be an R-module whose lattice of submodules is

/ . \

0 N1 NoM

\ " /
Where N1 is not isomorphic to N2, and the endomorphism rings of N; are isomorphic to Z/2Z where i=1,2. S. Jain and S.
Singh in [7] are show that, M is pseudo-injective (and hence by (1), M is pseudo-rc-injective) which is not rc-quasi-
injective, since N; @ N, is rationally closed submodule of M and the natural projection of N; @ N,onto Ni(i=1,2) can not

be extended to an R-endomorphism of M,[7]. Therefore, M is not rc-injective module. This shows that pseud-rc-injective
modules are a proper generalization of rc-injective modules.

(3) Obviously, every pseudo- M-rc-injective is pseudo M-c-injective. The converse is not true in general. For example,
consider the two Z- module M =Z/9Z and N = Z/3Z itis clear that N is pseudo M-c- injective but N is not pseudo - M-
rc- injective. This shows that pseud-rc-injective modules are stronger than of rc-injective modules.

Proof: Let H=<3 >, clearly H is rationally closed submodule of M, and define a:H - N by a(0) =0, a(3) =1,
a(6) = 2 . Obvious, « is Z- monomorphism. Now , suppose that N is pseudo M —rc-injective then there is f: M — N and
B(1) =n for some n € N .Hence B(3) = 38(1) = 3n and hence 3n = 8(3) = a(3) =1, implies 3n =1 , a contradiction,
this shows that , N is not pseudo M—rc-injective. o

(4) For a non-singular R- module M. If N is pseudo M—c-injective then N is pseudo M—rc-injective.

(5) Every monoformR-module is pseudo—rc-injective.

(6) An R-isomorphic module to pseudo-rc-injective is pseudo-rc- injective.

5190 |Page October 02, 2015



LLL ISSN 2347-1921

So, by above we obtain the following implications for modules.

+» Injective = quasi-injective =pseudo-injective= pseudo-rc-injective = pseudo-c-injective.
+» Rc-injective= rc-quasi-injective = pseudo-rc-injective= pseudo-c-injective.

In the following result we show that, for a uniform R-module the concepts of the rc-injective modules and pseudo-
rc-injective are equivalents.

Theorem 2.3 Let M be uniform R- module. Mis a rc-injective if and only if M is a pseudo-rc-injective module.

Proof: (=) Obviously.

(&) Suppose thatM is a pseudo-rc- injective, let K be rationally closed submodule of M and a: K - M beR-
homomorphism. Since M is uniform module, either a or Iy — a is a R-monomorphism. First, if « is R-monomorphism, then
by pseudo-rc—injectivity of M, there exists R-homomorphism g: M - M such that go iy = a .Finally, if Iy —a is R-

monomorphism, then by pseudo-rc-injectivity of M, there exists g: M — M such that go iy =Ix —a hence Iy — g = a.
Therefor M is rc— injective. m

Proposition 2.4 Let N; and N, be two R-modules and N = N; @ N,.Then N, is pseudo N;-rc-injective if and only if for
every (rationally closed) submodule 4 of N such that An N, = 0 and 1 (A) rationally closed submodule of N; (where r; is
a projection map from N onto N; ), there exists a submodule A’ of N suchthat A< A"and N = A’ @ N,.

Proof: Similar to proving [3, proposition (2.3)]. o
Some general properties of pseudo- rc-injectivity are given in the following results.

Proposition 2.5Let Mand N;(i € I) be R-modules. Then [];¢; N; is pseudo M- rc-injective if and only if N; is pseudo M-
rc-injective, for every i € I.

Proof: Follows from the definition and injections and projections associated with the direct product. o

The following corollary is immediately from proposition (2.5).

Corollary 2.6Let M and N; be R- modules where i € I and [ is finite index set, if @™, N; is pseudo M-rc-injective, Vi € [
, thenN; is pseudo- M-rc-injective. In particular every direct summand of pseudo-rc-injective R-module is pseudo-rc-
injective. O

Proposition 2.7 Let M and N be R-modules. If M is pseudo N-rc- injective, then M is pseudo A-rc- injective for every
rationally closed submoduleA of N .

Proof: Let A<, N and let K <,. A, f:K— N be R-monomorphism. Then, by [2, Lemma (3.2)] we obtain, (K <,. N ,
hence by pseudo N-rc- injectivity of M, there exists a R-homomorphism h: N - M such that ho iy o iy = f where ix: K - A
and iy:A = N are inclusion maps. Let ¢ = ho iy. Clearly, ¢ is R-homomorphism, and ¢ = ho iy =ho iyo i = fThen ¢
is extends f.Therefore, M is A-rc- injective. o

In [15] was proved the following: Suppose that R is a commutative domain. Let ¢ be a non-zero non-unit element of R. The
rightR-module RG(R/xR) is not pseudo-c-injective. From this result and remark (2.2)(3), we conclude the following
proposition for pseudo-rc-injective modules.

Proposition 2.8 For a commutative domain R. Let x be a non-zero non-unit element of R. The R-module R®(R/xR) is
not pseudo rc- injective. o

Now, we investigate more properties of pseudo rc-injectivity.

The R-moduleM;and M, are relatively (mutually) pseudo-rc- injective if M; is pseudo M; -rc — injective for every i,j €
{1,2},i #j.

The following result is generalization of [5, Theorem (2.2)].

Theorem 2.91fM®N is a pseudo-rc-injective module, then M and N are mutually rc-injective.

Proof: Suppose thatM@®N is a pseudo-rc-injective module. Let B be a rationally closed submodule of N and a: B - M be an
R-homomorphism. Define ¢: B - M @N by ¢(b) = (a(b), b) for all,b € B, it is clear that ¢ is an R-monomorphism, . Since Nis

isomorphic to a direct summand ofM@N, then (by remark (2.2)(3)) and proposition(2.7), we have M@®N is pseudo-rc N—
injective, thus, there exists an R-homomorphism f: N — M@N such that ¢ = f o iz where iz: B —» Nbe the inclusion map. Let
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m, = M @&N - M be natural projection of M @N onto M. We have m; o =m; o foiz and hence a =m; o f o ip, thus m; o
f:N - M is R-homomorphism extending a. This show that M is N-rc-injective. As same way we can prove that N is M-rc-
injective. o

Corollary 2.10 If ®;¢ M; is a pseudo -rc — injective, thenM; is a M;-rc-injective for all distinct i,j € 1. o

Corollary 2.11 For any positive integer n > 2, if M™ is pseudo rc- injective , then M is rc-quasi—injective. o

The following example shows that the direct sum of two pseudo-rc-injective is not pseudo-rc-injective in general. For a
prim p, letM; = Zand M, = Z/pZ , be a right Z-modules .SinceM,, and M, are monoform then,M;, and M, are pseudo-rc—
injective. But, by proposition (2.8), we have M;@®M, is not pseudo-rc -injective module.

Now, we consider the sufficient condition for a direct sum of two pseudo- rc- injective modules to be pseudo —rc-
injective.

Theorem 2.12 The direct sum of any two pseudo—rc-injective modules is pseudo-rc- injective if and only if every
pseudo —rc- injective module is injective.

Proof:Let M be a pseudo-rc-injective module, and E(M) its injective hull of M. By hypothesis, we have M @ E(M) is
pseudo-rc-injective. Let iy: M - M @ E(M) be a natural injective map then there exists an R-homomorphism a: M @
E(M) > M @ E(M) such that iy =acigoi, where i:M — E(M) is inclusion map and ig: E(M) - M @ E(M) is injective
map. Thus, Iy = my o iy = my o @ o ig o i, where [), is the identity of M and my, is a projection map from M @ E(M) onto M.
Therefore Iy =goi , where g =my o acig. Thus by [8, Corollary (3.4.10)],we obtain E(M) =M @ kerg. Since M n
kerg=0and M <, E(M) lead to kerg =0 and hence M = E(M). This shows that M is injective module. The other
direction is obvious. o

Recall that anR-module M is a multiplication if, each submodule of M has the form IM for some ideal Iof R [9].

Proposition 2.13 Every rationally closed submodule of multiplication pseudo-rc-injective R-module is pseudo-rc-
injective.

Proof: Let A be a rationally closed submodule of a rationally closed submodule H of M and let f:A—> H be an R-
monomorphism. Since H is a rationally closed of M. It follows that by [2, Lemma (3.2), A is also a rationally closed
submodule of M. Since M is pseudo-rc-injective, then there exist an R-homomorphism ¢:M — M that extends f . Since
M is multiplication module, we have H = MI for some ideal | of R . Thus ¢|y = ¢(H) = o(MI) = p(M)I < MI = H . This
show that H is pseudo-rc-injective. a

In the following part we give characterizations of known R-modules in terms of pseudo-rc-injectivity.

We start with the following results which are given a characterization of rationally extending modules. Firstly, the following
lemma is needed.

Lemma 2.14 Let A be rationally closed submodule of R-module M. If A is pseudo M-rc-injective, then 4 is a direct
summand of M. o

Proof: Since A is a pseudo M-rc-injective R-module, there exists an R-homomorphism f: M — A. That extends The identity
I: A - A. Hence by [8, Corollary (3.4.10), M = A @ kerf, so that A is a direct summand of M.

Proposition 2.15 An R-module M is rationally extending if and only if every R-module is pseudo M- rc—injective.

Proof:(=). It is similarly to prove [3, proposition (2.4).
(). Follow from lemma (2.14). ]

Note that, by proposition (2.15), every rationally extending R-module is pseudo-rc-injective. But the converse is not true in
general. As in the following example: consider the Z-module M = Z/p%Z where p is prime number. It is clear that, M is
pseudo-rc-injective (in fact, M is rc-injective). Obviously, A =< P > s rationally closed submodule of M but 4 is not
direct summand of M . Thus M is not rationally extending.

Theorem 2.16 For an R-module M, the following statements are equivalent:
(1) M is rationally extending;

(2) Every R-module is an M-rc-injective;

(3) Every R-module is pseudo M-rc-injective;

(4) Every rationally closed submodule of M is an M-rc-injective;

(5) Every rationally closed submodule of M is a pseudo M-rc-injective.

Proof:(1) & (2) Follows from [3, proposition (2. 4).
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(2) = (4). Clear.

(4) = (1). ltis follows from lemma (2.14).

Now, (1) = (3). It is follows from proposition (2.15).

(3) = (5). Itis obvious.

(5) = (1) . Itis follows from lemma (2.14). o

An R- module M is directly finite if and only if fo g=1y impliesthatgeo f =1, forall f,g € End (M) [10, proposition
(1.25)]. The Z-module Z is directly finite, but it is not co-Hopfian. In the following proposition we show that the co-Hopfian
and directly finite R-modules are equivalent under pseudo-rc-injective property.

Proposition 2.17A pseudo-rc-injective R-module M is directly finite if and only if it is co-Hopfian.
Proof: Let ¢ be an injective map belong to End (M) and | is identity R-homomorpism from Mto M. By pseudo-rc-injectivity
of M, there exists an R-homomorphism g: M — M such that g o ¢ = I;. Since M is directly finite, we have ¢ o 8 = I); which

is shows that ¢ is an R-automorphism. Therefore, M is co-Hopfian. The other direction it is clear. a
The following corollary is immediately from proposition (2.17).

Corollary 2.18An rc-injective R-module M is directly finite if and only if it is Co—Hopfian. o

Since every indecomposable module is directly finite then by proposition (2.17), we obtain the following corollary.
Corollary 2.19 If M is an indecomposable pseudo-rc-injective module then M is a Co-Hopfian. o

In [33] was proved that every HopfianR-module is directly finite. Thus the following result follows from proposition (2.17).
Corollary 2.20 If M is a pseudo-rc-injective and Hopfian R- module .Then M is a Co-Hopfian. o

For any an R-module M we consider the following definition.

Definition 2.21 An R-module M said to be complete rationally closed module (briefly CRC module), if each submodule
of M is a rationally closed. It is clear that every semisimple module isSCRC module, but the converse is not true in general.

For example Z, as Z-module is CRC module, but not semisimple since < 2 > is not direct summand of Z,.

An R-module M is said to be satisfies (C;)-condition, if for each submodule of M which is isomorphic to a direct summand
of M, then it is a direct summand of M[10].Recall that an R-module M is said to satisfy the generalized C,-condition (or
GC,) if,any N < Mand N = M, N is a summand of M [18].

The following result is a generalization of [5, Theorem (2.6)]
Proposition 2.22Every pseudo-rc-injective CRC module satisfies C, (and hence GC»).

Proof: Let M be a pseudo-rc- injective CRC module, let H < M and K < M such that H is isomorphic to Kwith H <; M.
Since M is a pseudo-rc- injective then by corollary(2.6), we obtain H is a pseudo- M-rc- injective. But H = K thus, by
remark (2.2)(9), K is a pseudo M-rc-injective. By assumption, we have K is rationally closed sub module of M. Thus, by
Lemma (2.14), we get K <; M .Hence M satisfiesC.. The last fact follows easily. o

Although the Z-module M = Z is a pseudo-rc-injective, but it is not satisfies C,, since there is a submoduleH = nZ
(where (n = 2)) of which is isomorphic to M but it is not a direct summand in M. This shows that the CRC property of the
module in proposition (2.22) cannot be dropped.

In [4], an R-module M is called direct-injective, if given any direct summand Kof M, an injection map jx: K — M and every
R-monomorphism a:K — M, there is an R-endomorphism g of M such that fa = j.

In [11, Theorem (7.13)], it was proved that, an R-module M is a direct-injective if and only if M is satisfies (C,)-condition.
Thus by proposition (2.22) we can conclude the following result.

Proposition 2.23 Every pseudo-rc-injective CRC module is direct-injective. o

In [13, p.32], recall that a right R-module M is called divisible, if for each m € M and for each r € R which is not left zero-
divisor, there exist m' € M such that m = m'r. In [4] was proved that every direct-injective R-module is divisible. Thus we
have the following corollary which follows from proposition (2.23).

Corollary 2.24Every pseudo-rc-injective CRC module is divisible.
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Recall that an R-module M is self-similar if, every submodule of M is isomorphic to M [12].The Z-module Z is both self-
similar and pseudo-rc-injective module but it is not semisimple and CRC module.Also, Z, as Z-module is pseudo-rc-
injective CRC module but it is not self-similar module.Note that from above examples the concepts CRC-modules and self-
similar modules are completely different.

In the following result we show that the pseudo-rc-injective and semisimpleR-modules are equivalent under self-similar
CRC modules.

Theorem 2.25Let M is a self-similar CRC module. Then the following statements are equivalent:

0] M is semisimple module;
(i) Mis pseudo-rc-injective.

Proof: (i) =(ii). Clear.

(ii)=(i). Let K be any submodule of M, then by self-similarity of M, we have K is isomorphic to M. Since M is pseudo-
rc-injective CRC module thus, by proposition (2.22), M satisfy GC,-condition. So, K is a direct summand of M.
therefore, M is semisimple module. o
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