

## **PSEUDO-RC-INJECTIVE MODULES**

Mehdi Sadiq Abbas, Mahdi SalehNayef

Department of Mathematics, College of Science, University of Al-Mustansiriyah, Baghdad, Iraq Department of Mathematics, College of education, University of Al-Mustansiriyah, Baghdad, Iraq

### **ABSTRACT**

The main purpose of this work is to introduce and study the concept of pseudo-rc-injective module which is a proper generalization of rc-injective and pseudo-injective modules. Numerous properties and characterizations have been obtained. Some known results on pseudo-injective and rc-injective modules generalized to pseudo-rc-injective. Rationally extending modules and semisimple modules have been characterized in terms of pseud-rc-injective modules. We explain the relationships of pseudo-rc-injective with some notions such as Co-Hopfian, directly finite modules.

## Indexing terms/Keywords

Pseudo-injective modules; rc-injective modules; rc-quasi-injective; rationally closedsubmodules; pseudo-rc-injective modules; pseudo-c-injective modules; co-Hopfian modules.



# Council for Innovative Research

Peer Review Research Publishing System

JOURNAL OF ADVANCES IN MATHEMATICS

Vol .11, No.4

www.cirjam.com, editorjam@gmail.com



### 1 INTRODUCTION

Throughout, R represent an associative ring with identity and all R-modules are unitary right modules.

Let M and N be two R-modules, N is called pseudo -M- injective if for every submodule A of M, any R-monomorphism  $f: A \to N$  can be extended to an R-homomorphism  $\alpha: M \to N$ . An R-module N is called pseudo-injective, if it is pseudo N-injective. A ring R is said to be pseudo-injective ring, if  $R_R$  is pseudo-injective module (see [5] and [14]).

A submodule K of an R-module M is called rationally closed in M (denoted by  $K \leq_{rc} M$ ) if N has no proper rational extension in M [1]. Clearly, every closed submodule is rationally closed submodule (and hence every direct summand is rationally closed), but the converse may not be true (see [1],[6],[9]).

M. S. Abbas and M. S. Nayef in [3] introduce the concept of rc-injectivity. Let  $M_1$  and  $M_2$  be R-modules. Then  $M_2$  is called  $M_1$ -rc-injective if every R-homomorphism  $f: H \to M_2$ , where H is rationally closed submodule of  $M_1$ , can be extended to an R-homomorphism  $g: M_1 \to M_2$ . An R-module M is called R-rc-injective, if R is R-rc-injective, for every R-module R. An R-module R is called R-rc-injective.

In [15], an R- module N is called pseudo—M-c-injective if for any monomorphism from a closed submodule of M to N can be extended to homomorphism from M in to N. An R-module M is called rationally extending (or RCS-module), if each submodule of M is rational in a direct summand. This is equivalent to saying that every rationally closed submodule of M is direct summand. It is clear that every rationally extending R-module is extending [1]. An R-module M is said to be Hopfian (Co-Hopfian), if every surjective (injective) endomorphism  $f: M \to M$  is an automorphism [16]. An R-module M is called directly finite if it is not isomorphic to a proper direct summand of M [10]. An R-module M is said to be monoform, if each submodule of M is rational [17].

## 2Pseudo-rc-injectiveModules

We start with the following definition

**Definition 2.1**Let M and N be two R-modules .Then N is pseudo M-rationally closed-injective (briefly pseudo M-rationally closed submodule H of M, any R-monomorphism  $\varphi: H \to N$  can be extended to an R-homomorphism  $\beta: M \to N$ . An R-module N is called pseudo-rationally closed submodule N is called pseudo-rationally closed. Aring N is pseudo N-rationally closed-injective. Aring N is pseudo-N-rationally closed-injective. Aring N is pseudo-N-rationally closed-injective.

**Remarks 2.2** (1) Every pseudo-injective module is rc-pseudo- injective. The converse may not be true in general, as following example let M = Z as Z- module. Then, clearly M is rc- pseudo-injective, but Z is not pseudo-injective module. This shows that pseudo-rc-injective modules are a proper generalization of pseudo-injective.

(2) Clearly every rc-injective is pseudo-rc-injective. The converse may not be true in general. For example, [7, lemma 2], let *M* be an *R*-module whose lattice of submodules is



Where  $N_1$  is not isomorphic to  $N_2$ , and the endomorphism rings of  $N_i$  are isomorphic to Z/2Z where i=1,2. S. Jain and S. Singh in [7] are show that, M is pseudo-injective (and hence by (1), M is pseudo-rc-injective) which is not rc-quasi-injective, since  $N_1 \oplus N_2$  is rationally closed submodule of M and the natural projection of  $N_1 \oplus N_2$  onto  $N_i$  (i=1,2) can not be extended to an R-endomorphism of M,[7]. Therefore, M is not rc-injective module. This shows that pseud-rc-injective modules are a proper generalization of rc-injective modules.

(3) Obviously, every pseudo-M-rc-injective is pseudo M-c-injective. The converse is not true in general. For example, consider the two Z- module M=Z/9Z and N=Z/3Z it is clear that N is pseudo M-C- injective but N is not pseudo - M-rc- injective. This shows that pseud-rc-injective modules are stronger than of rc-injective modules.

**Proof:** Let H=<3>, clearly H is rationally closed submodule of M, and define  $\alpha:H\to N$  by  $\alpha(0)=0$ ,  $\alpha(3)=1$ ,  $\alpha(6)=2$ . Obvious,  $\alpha$  is Z- monomorphism. Now, suppose that N is pseudo M-rc-injective then there is  $\beta:M\to N$  and  $\beta(1)=n$  for some  $n\in N$ . Hence  $\beta(3)=3\beta(1)=3n$  and hence  $3n=\beta(3)=\alpha(3)=1$ , implies 3n=1, a contradiction, this shows that , N is not pseudo M-rc-injective.

- (4) For a non-singular R- module M. If N is pseudo M-c-injective then N is pseudo M-rc-injective.
- (5) Every monoform*R*-module is pseudo-rc-injective.
- (6) An R-isomorphic module to pseudo-rc-injective is pseudo-rc- injective.



So, by above we obtain the following implications for modules.

- ❖ Injective ⇒ quasi-injective ⇒ pseudo-injective ⇒ pseudo-rc-injective.
- Rc-injective⇒ rc-quasi-injective⇒ pseudo-rc-injective⇒ pseudo-c-injective.

In the following result we show that, for a uniform R-module the concepts of the rc-injective modules and pseudo-rc-injective are equivalents.

**Theorem 2.3** Let *M* be uniform *R*-module. *M* is a rc-injective if and only if *M* is a pseudo-rc-injective module.

**Proof:**(⇒) Obviously.

( $\Leftarrow$ ) Suppose that M is a pseudo-rc- injective, let K be rationally closed submodule of M and  $\alpha: K \to M$  be R-homomorphism. Since M is uniform module, either  $\alpha$  or  $I_K - \alpha$  is a R-monomorphism. First, if  $\alpha$  is R-monomorphism, then by pseudo-rc-injectivity of M, there exists R-homomorphism  $g: M \to M$  such that  $g \circ i_K = \alpha$ . Finally, if  $I_K - \alpha$  is R-monomorphism, then by pseudo-rc-injectivity of M, there exists  $g: M \to M$  such that  $g \circ i_K = I_K - \alpha$  hence  $I_K - g = \alpha$ . Therefor M is rc-injective.

**Proposition 2.4** Let  $N_1$  and  $N_2$  be two R-modules and  $N=N_1\oplus N_2$ . Then  $N_2$  is pseudo  $N_1$ -rc-injective if and only if for every (rationally closed) submodule A of N such that  $A\cap N_2=0$  and  $\pi_1(A)$  rationally closed submodule of  $N_1$  (where  $\pi_1$  is a projection map from N onto  $N_1$ ), there exists a submodule A' of N such that  $A \leq A'$  and  $N = A' \oplus N_2$ .

**Proof:** Similar to proving [3, proposition (2.3)].

Some general properties of pseudo- rc-injectivity are given in the following results.

**Proposition 2.5**Let M and  $N_i (i \in I)$  be R-modules. Then  $\prod_{i \in I} N_i$  is pseudo M-rc-injective if and only if  $N_i$  is pseudo M-rc-injective, for every  $i \in I$ .

**Proof:** Follows from the definition and injections and projections associated with the direct product.

The following corollary is immediately from proposition (2.5).

**Corollary 2.6**Let M and  $N_i$  be R- modules where  $i \in I$  and I is finite index set, if  $\bigoplus_{i=1}^n N_i$  is pseudo M-rc-injective,  $\forall i \in I$ , then  $N_i$  is pseudo-M-rc-injective. In particular every direct summand of pseudo-rc-injective R-module is pseudo-rc-injective.

**Proposition 2.7** Let M and N be R-modules. If M is pseudo N-rc- injective, then M is pseudo A-rc- injective for every rationally closed submodule A of N.

**Proof:** Let  $A \leq_{rc} N$  and let  $K \leq_{rc} A$ ,  $f: K \to N$  be R-monomorphism. Then, by [2, Lemma (3.2)] we obtain,  $(K \leq_{rc} N$ , hence by pseudo N-rc- injectivity of M, there exists a R-homomorphism  $h: N \to M$  such that  $h \circ i_A \circ i_K = f$  where  $i_K: K \to A$  and  $i_A: A \to N$  are inclusion maps. Let  $\varphi = h \circ i_A$ . Clearly,  $\varphi$  is R-homomorphism, and  $\varphi = h \circ i_A \circ i_A = f$  Then  $\varphi$  is extends f. Therefore, M is A-rc- injective.

In [15] was proved the following: Suppose that R is a commutative domain. Let c be a non-zero non-unit element of R. The right R-module  $R \oplus (R/xR)$  is not pseudo-c-injective. From this result and remark (2.2)(3), we conclude the following proposition for pseudo-rc-injective modules.

**Proposition 2.8** For a commutative domain R. Let x be a non-zero non-unit element of R. The R-module  $R \oplus (R/xR)$  is not pseudo rc- injective.

Now, we investigate more properties of pseudo rc-injectivity.

The R-module  $M_1$  and  $M_2$  are relatively (mutually) pseudo-rc- injective if  $M_i$  is pseudo  $M_j$  -rc — injective for every  $i, j \in \{1,2\}, i \neq j$ .

The following result is generalization of [5, Theorem (2.2)].

**Theorem 2.9**If  $M \oplus N$  is a pseudo-rc-injective module, then M and N are mutually rc-injective.

**Proof:** Suppose that  $M \oplus N$  is a pseudo-rc-injective module. Let B be a rationally closed submodule of N and  $\alpha: B \to M$  be an R-homomorphism. Define  $\varphi: B \to M \oplus N$  by  $\varphi(b) = (\alpha(b), b)$  for all,  $b \in B$ , it is clear that  $\varphi$  is an R-monomorphism, . Since N is isomorphic to a direct summand of  $M \oplus N$ , then (by remark (2.2)(3)) and proposition(2.7), we have  $M \oplus N$  is pseudo-rc N-injective, thus, there exists an R-homomorphism  $f: N \to M \oplus N$  such that  $\varphi = f \circ i_B$  where  $i_B: B \to N$  be the inclusion map. Let



 $\pi_1=M\oplus N\to M$  be natural projection of  $M\oplus N$  onto M. We have  $\pi_1\circ \varphi=\pi_1\circ f\circ i_B$  and hence  $\alpha=\pi_1\circ f\circ i_B$ , thus  $\pi_1\circ f:N\to M$  is R-homomorphism extending  $\alpha$ . This show that M is N-rc-injective. As same way we can prove that N is M-rc-injective.

**Corollary 2.10** If  $\bigoplus_{i \in I} M_i$  is a pseudo -rc – injective, then  $M_i$  is a  $M_i$ -rc-injective for all distinct  $i, j \in I$ .  $\square$ 

**Corollary 2.11** For any positive integer  $n \ge 2$ , if  $M^n$  is pseudo rc- injective, then M is rc-quasi–injective.  $\square$ 

The following example shows that the direct sum of two pseudo-rc-injective is not pseudo-rc-injective in general. For a prim p, let  $M_1 = Z$  and  $M_2 = Z/pZ$ , be a right Z-modules .Since  $M_1$ , and  $M_2$  are monoform then,  $M_1$ , and  $M_2$  are pseudo-rc-injective. But, by proposition (2.8), we have  $M_1 \oplus M_2$  is not pseudo-rc-injective module.

Now, we consider the sufficient condition for a direct sum of two pseudo- rc- injective modules to be pseudo -rc-injective.

**Theorem 2.12** The direct sum of any two pseudo-rc-injective modules is pseudo-rc- injective if and only if every pseudo -rc- injective module is injective.

**Proof:**Let M be a pseudo-rc-injective module, and E(M) its injective hull of M. By hypothesis, we have  $M \oplus E(M)$  is pseudo-rc-injective. Let  $i_M: M \to M \oplus E(M)$  be a natural injective map then there exists an R-homomorphism  $\alpha: M \oplus E(M) \to M \oplus E(M)$  such that  $i_M = \alpha \circ i_E \circ i$ , where  $i: M \to E(M)$  is inclusion map and  $i_E: E(M) \to M \oplus E(M)$  is injective map. Thus,  $I_M = \pi_M \circ i_M = \pi_M \circ \alpha \circ i_E \circ i$ , where  $I_M$  is the identity of M and  $I_M$  is a projection map from  $I_M \oplus E(M)$  onto  $I_M$ . Therefore  $I_M = g \circ i$ , where  $I_M = g \circ i$ , where  $I_M = g \circ i$ , where  $I_M = g \circ i$  is the identity of  $I_M = g \circ i$ . Thus by [8, Corollary (3.4.10)], we obtain  $I_M \oplus I_M \oplus I_$ 

Recall that an R-module M is a multiplication if, each submodule of M has the form IM for some ideal I of R [9].

**Proposition 2.13** Every rationally closed submodule of multiplication pseudo-rc-injective *R*-module is pseudo-rc-injective.

**Proof:** Let A be a rationally closed submodule of a rationally closed submodule H of M and let  $f:A \to H$  be an R-monomorphism. Since H is a rationally closed of M. It follows that by [2, Lemma (3.2), A is also a rationally closed submodule of M. Since M is pseudo-rc-injective, then there exist an R-homomorphism  $\varphi:M\to M$  that extends f. Since M is multiplication module, we have H=MI for some ideal I of R. Thus  $\varphi|_H=\varphi(H)=\varphi(MI)=\varphi(MI)=H$ . This show that H is pseudo-rc-injective.

In the following part we give characterizations of known R-modules in terms of pseudo-rc-injectivity.

We start with the following results which are given a characterization of rationally extending modules. Firstly, the following lemma is needed.

**Lemma 2.14** Let A be rationally closed submodule of R-module M. If A is pseudo M-rc-injective, then A is a direct summand of M.

**Proof:** Since A is a pseudo *M*-rc-injective *R*-module, there exists an *R*-homomorphism  $f: M \to A$ . That extends The identity  $I: A \to A$ . Hence by [8, Corollary (3.4.10),  $M = A \oplus kerf$ , so that *A* is a direct summand of *M*.

**Proposition 2.15** An R-module M is rationally extending if and only if every R-module is pseudo M-rc-injective.

**Proof:**( $\Rightarrow$ ). It is similarly to prove [3, proposition (2.4). ( $\Leftarrow$ ). Follow from lemma (2.14).

Note that, by proposition (2.15), every rationally extending R-module is pseudo-rc-injective. But the converse is not true in general. As in the following example: consider the Z-module  $M = Z/p^2Z$  where p is prime number. It is clear that, M is pseudo-rc-injective (in fact, M is rc-injective). Obviously, A = < P > is rationally closed submodule of M but A is not direct summand of M. Thus M is not rationally extending.

**Theorem 2.16** For an *R*-module *M*, the following statements are equivalent:

- (1) *M* is rationally extending;
- (2) Every *R*-module is an *M*-rc-injective;
- (3) Every *R*-module is pseudo *M*-rc-injective;
- (4) Every rationally closed submodule of M is an M-rc-injective;
- (5) Every rationally closed submodule of M is a pseudo M-rc-injective.

**Proof:**(1)  $\Leftrightarrow$  (2) Follows from [3, proposition (2. 4).



- $(2) \Rightarrow (4)$ . Clear.
- $(4) \Rightarrow (1)$ . It is follows from lemma (2.14).

Now,  $(1) \Rightarrow (3)$ . It is follows from proposition (2.15).

- $(3) \Rightarrow (5)$ . It is obvious.
- $(5) \Rightarrow (1)$ . It is follows from lemma (2.14).

An R- module M is directly finite if and only if  $f \circ g = I_M$  implies that  $g \circ f = I_M$  for all  $f, g \in End(M)$  [10, proposition (1.25)]. The Z-module Z is directly finite, but it is not co-Hopfian. In the following proposition we show that the co-Hopfian and directly finite R-modules are equivalent under pseudo-rc-injective property.

**Proposition 2.17**A pseudo-rc-injective *R*-module *M* is directly finite if and only if it is co–Hopfian.

**Proof:** Let  $\varphi$  be an injective map belong to End (M) and I is identity R-homomorpism from Mto M. By pseudo-rc-injectivity of M, there exists an R-homomorphism  $\beta \colon M \to M$  such that  $\beta \circ \varphi = I_M$ . Since M is directly finite, we have  $\varphi \circ \beta = I_M$  which is shows that  $\varphi$  is an R-automorphism. Therefore, M is co-Hopfian. The other direction it is clear.  $\Box$  The following corollary is immediately from proposition (2.17).

**Corollary 2.18**An rc-injective R-module M is directly finite if and only if it is Co–Hopfian.  $\Box$ 

Since every indecomposable module is directly finite then by proposition (2.17), we obtain the following corollary.

**Corollary 2.19** If M is an indecomposable pseudo-rc-injective module then M is a Co-Hopfian.  $\Box$ 

In [33] was proved that every Hopfian R-module is directly finite. Thus the following result follows from proposition (2.17).

**Corollary 2.20** If M is a pseudo-rc-injective and Hopfian R- module .Then M is a Co-Hopfian.  $\square$ 

For any an *R*-module *M* we consider the following definition.

**Definition 2.21** An *R*-module *M* said to be complete rationally closed module (briefly *CRC* module), if each submodule of *M* is a rationally closed. It is clear that every semisimple module is *CRC* module, but the converse is not true in general.

For example  $Z_4$  as Z-module is CRC module, but not semisimple since < 2 > is not direct summand of  $Z_4$ .

An R-module M is said to be satisfies (C<sub>2</sub>)-condition, if for each submodule of M which is isomorphic to a direct summand of M, then it is a direct summand of M[10]. Recall that an R-module M is said to satisfy the generalized C<sub>2</sub>-condition (or GC<sub>2</sub>) if, any  $N \le M$  and  $N \cong M$ , N is a summand of M[18].

The following result is a generalization of [5, Theorem (2.6)]

Proposition 2.22 Every pseudo-rc-injective CRC module satisfies C2 (and hence GC2).

**Proof:** Let M be a pseudo-rc- injective CRC module, let  $H \le M$  and  $K \le M$  such that H is isomorphic to K with  $H \le_d M$ . Since M is a pseudo-rc- injective then by corollary(2.6), we obtain H is a pseudo- M-rc- injective. But  $H \cong K$  thus, by remark (2.2)(9), K is a pseudo M-rc-injective. By assumption, we have K is rationally closed sub module of M. Thus, by Lemma (2.14), we get  $K \le_d M$ . Hence M satisfies  $C_2$ . The last fact follows easily.  $\square$ 

Although the Z-module M=Z is a pseudo-rc-injective, but it is not satisfies  $C_2$ , since there is a submodule H=nZ (where  $(n \ge 2)$ ) of which is isomorphic to M but it is not a direct summand in M. This shows that the CRC property of the module in proposition (2.22) cannot be dropped.

In [4], an R-module M is called direct-injective, if given any direct summand K of M, an injection map  $j_K : K \to M$  and every R-monomorphism  $\alpha : K \to M$ , there is an R-endomorphism  $\beta$  of M such that  $\beta \alpha = j_K$ .

In [11, Theorem (7.13)], it was proved that, an R-module M is a direct-injective if and only if M is satisfies ( $C_2$ )-condition. Thus by proposition (2.22) we can conclude the following result.

**Proposition 2.23** Every pseudo-rc-injective CRC module is direct-injective.  $\Box$ 

In [13, p.32], recall that a right R-module M is called divisible, if for each  $m \in M$  and for each  $r \in R$  which is not left zero-divisor, there exist  $m' \in M$  such that m = m'r. In [4] was proved that every direct-injective R-module is divisible. Thus we have the following corollary which follows from proposition (2.23).

**Corollary 2.24**Every pseudo-rc-injective CRC module is divisible.



Recall that an R-module M is self-similar if, every submodule of M is isomorphic to M [12]. The Z-module Z is both self-similar and pseudo-rc-injective module but it is not semisimple and CRC module. Also,  $Z_4$  as Z-module is pseudo-rc-injective CRC module but it is not self-similar module. Note that from above examples the concepts CRC-modules and self-similar modules are completely different.

In the following result we show that the pseudo-rc-injective and semisimple *R*-modules are equivalent under self-similar CRC modules.

**Theorem 2.25**Let *M* is a self-similar CRC module. Then the following statements are equivalent:

- (i) M is semisimple module;
- (ii) Mis pseudo-rc-injective.

Proof: (i) ⇒(ii). Clear.

(ii) $\Rightarrow$ (i). Let K be any submodule of M, then by self-similarity of M, we have K is isomorphic to M. Since M is pseudorc-injective CRC module thus, by proposition (2.22), M satisfy  $GC_2$ -condition. So, K is a direct summand of M. therefore, M is semisimple module.

#### REFERENCES

- Abbas, M. S. and Ahmed, M. A. (2011), Rationally Extending and Strongly Quasi-Monoform Modules, Al-Mustansiriya J. Sci. Vol. 22, No 3,pp. 31-38.
- [2]. Mehdi S. Abbas and Mahdi S. Nayef, (2015), RATIONALLY INJECTIVE MODULES, Journal of Advances in Mathematics Vol.10, No.5, 3479-3485.
- [3]. Mehdi S. Abbas and Mahdi S. Nayef, (2015), M-RC-Injective and RC-Quasi-injective Modules, International J. of Math. Sci. Vol.35, Issue. 2,1772-1779.
- [4]. Chang-woo Han and Su-JeongChol, (1995), Generalizations of the quasi-injective modules, Comm. Korean Math. Soc. No.4, 10, 811-813.
- [5]. Dinh, H. Q. (2005), A note on Pseudo-injective modules, comm. Algebra, 33, 361-369.
- [6]. Goodearl, K. R. (1976), Ring Theory, Nonsingular Rings and Modules, Marcel Dekker. Inc. New York.
- [7]. Jain, S. K. and Singh, S. (1975), Quasi-injective and Pseudo-injective modules. Canada. Math.Bull.18, 359-366.
- [8]. Kasch, F., (1982), Modules and Rings, Academic Press Inc. London (English Translation).
- [9]. Lam, T. Y., (1999), Lectures on Modules and Rings. GTN 189, Springer Verlag, New York.
- [10]. Mohamed, S. H. and Muller, B. J. (1990), Continuous and Discrete modules, London Math.Soc. Lecture note Series 14, Cambridge Univ. Press.
- [11]. Nicholson, W. K. and Yousif, M. F. (2003), Quasi-Frobenius Rings, Cambridge Univ. Press.
- [12]. Rodrigues, V. S. Sant'Ana, A. A. (2009), A not on a problem due to Zelmanowitz, Algebra and Discrete Mathematics, No.3, 85-93.
- [13]. Sharpe, N. D. W. and Vamos, P. (1972), Injective Modules, Cambridge Univ. Press.
- [14]. Singh, S. and Jain, S. K. (1967), On pseudo-injective modules and self pseudo-injective rings, J. Math. Sci. 2, 23-31.
- [15]. T. Sitthiwirattham, S. Bauprasist and S. Asawasamirt, (2012), On Generalizations of Pseudo-injectivity, Int. Journal of Math. Analysis, Vol. 6, no. 12, 555-562.
- [16]. Varadarajan, K. (1992), Hopfian and Co-Hopfian objects. Publicacions Mathematiques, Vol. 36, 293-317.
- [17]. Zelmanowits, J. M. (1986), Representation of rings with faithful polyform modules, Comm. Algebra, 14(6),1141-1169.
- [18]. Zhou, Y. (2002), Rings in which certain right ideals are direct summands of annihilators, J. Aust. Math. Soc. 73, 335-346.