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ABSTRACT

Dynamics features movement and stable means. Continuous

Stable dynamics thus means continuous movement or motion. That is a moving object which enjoys continuous
movement. For example, the electron continuous revolution round the nucleus, the revolution of the moon round the earth
and that of the earth round the sun. In this formula, the continuous movement of the moving object round the origin of
coordinates in space is studied.

Regarding the importance of masses movement in space, the necessity is felt that in order to design and optimize
dynamic systems (dynamic mechanics) and all relevant subsets, a reasonable relation should be presented (Some
scientists believe that a charged particle is the 5" dimension in which case a particle enjoying continuous movement can
be named the 5" dimension.
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Introduction
In dynamic mechanics literature, the issue of movement relevant to a moving object is discussed and proved.

As an example, the throwing of a particle in space, a moving object range, force driving apogee, mass and acceleration of
the moving object are discussed and have documented and compiled formulas.

In this formula, a moving object continuous movement is studied, and as detailed in the abstract, the formula of the moving
object continuous movement, that is, the same stable dynamics, has been established.

The formula in question is initially proved in plane xoy and is then extended to planes xoz and yoz.

In the end, we have 3 images of the moving object in the above mentioned planes to obtain the moving object general
formula in space.

mM.Va.(OH p) = m.Vg(OH g) = m.V¢.(OH ¢) = m.Vp(OH p)

m= moving mass

at point (A) oxyz (movingspeedinspace=V

(OH) A=A. Vertical distance from point to velocity vector V A at point

Given a moving object with mass m and velocity Vp so that the moving object continuously moves round the origin of
coordinates , the following relation can be written :
Y oA

m. VXA
A{m- Vya

VA : Velocity image on the x axis

VA : Velocity image on the y axis
m.Vya

v

Using momentum m.v (x, y) A, we will calculate the momentum relative to point (O):

m.V(xyy) A.m(xyy) A = m.VxA.yA+m.VyA.XA
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Both sides of the relation is divided by m to give:

If the moving object moves from point A to point B, C, D or any other point in its orbit relation
DViyp . OHepp = Vaa YA+ VYaXa

Will thus apply at points B,C,D, ...

Relation (1) can thus be written as :

2) Vixyg. OHuyg = Vog-Yp+Vyg-Xg

And it can be concluded that all the relations at points A, B, C, D, ... are equal .

3) )VxA.yA +Vyp-Xp= VXg.yg + VYg.Xg = VXc.Ye + VY- Xo= VXp.yp + VYpXp

Regarding the above mentioned relations 2 points are significant.

1. The movement of a moving object round point O in an orbit depends on its velocity and distance from the origin of
coordinates at the point in question (A,B,CD, ...)

2. The movement of a moving object round point O does not depend on its mass (m) .
Formulas (1) to (3) apply to plane (x,y) , and the above mentioned formulas in planes xoz and yoz will equal ....

At point A and in plane xoz.

4)Vx2)A . OHx 2)a = VXA ZA + VZp XA

5)Vx2)8 . OH(x2)B = VXB.2B + VZB.XB

6 )VxA.zA +Vzp.Xp= VXg.2g + VZp.Xg = VXC'ZC + VzC.xC: VXp-Xp + VZp.Xp
and in plane yoz

7)Viy2A. OHy:2)a = VA za + VZa YA

8)V(v.28 . O(y.2)8 = V¥B 28 + V2B.YB

9) Vya-zp * Vza.ya= Vyg-zg + Vzg.yg = Vyc-zc t Vzcye= VYp-zp t VZpyp

If moving object m is continuously moving at velocity V round point O , formula (10) will apply.

10) MOH, VAR Va=/Vyp? + VyaZ+ VzA2 = OHp = J (OHxp)? + (OHyp)? + (OHzp)?

= 0Hx,=0H(x,y)5.COs (g —¥)=0Hy,-OH(x, y)A.Sin(% —¥)=®0Hz,=0H(x,2) 5 Sin (% —a)
m OHAVA:m OHBVB:mOHCVC:m-OHDVD= ......... = m. H3V 3
V5, = Velocity of the moving object in space

OH= Vertical distance from point O to the vector of velocity V
Now regarding what preceded the proof of non-Euclidean trigopnometric circle is dealt with and then, non-Euclidean
trigonometric proved formula will be compared with Euclidean trigonometric circle.

In Euclidean trigonometric circle ,
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We have :
oM=1
OH = Cosy
ON = Siny

(OH)? + (ON)2 = (OM)?

Cos?y + Sin%y = 1
Non-Euclidean trigonometric circle is the same as the above Euclidean trigonometric circle (Fig.1) , the difference being
that in the above trigonometric circle , the movement of the moving object round axes oy, ox and on the 4 quarters of the

trigonometric circle region is studied , so that the movement of the moving object is in the direction of trigonometric
movement , that is :

OM =1 V)2 2 .
O — (~V) {0H + 0N = Omi= {79+ )" =
ON = (Vy) 3 yo=

If 1=Vy and 1=Vx , the following relation can be used: Ci=cte,(C%.V*x+C?.V?y=C?)
In Euclidean trigonometric circle , the location of each point M is specified on the trigonometric circle.
Euclidean trigonometry can thus be named local trigonometry.

In non-Euclidean trigonometric circle , since the movement of the moving object is studied , and at any moment in time ,
the moving object has a specific location , non-Euclidian trigonometry can be termed temporal trigonometry.

These 2 local and temporal trigonometric circles are now compared with each other.
In the comparison , it can be concluded that in local trigonometry , only the local situation is followed .

In temporal trigonometry however , both local and temporal situations are followed , and for test and control in 3 planes for
local trigonometry, (tan a = tan B .tan y) can be used , and in any type of movement , if temporal trigonometry is applied
there will be no need for local trigonometry application . Problems 1 , 2 , ... are only practices . If there are applied
problems .
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Firstquarter Secondquarter Thirdquarter Fourthquarter
Cosy VX Cosy VX Cosy VX Cosy VX
+ - - - - + + +
Siny Vy Siny Vy Siny Vy Siny Vy
+ + + - - - - +

Vv V Vv A%
tany Y tany Y tany Y/ tany o
+ - - + + - - +
Cotany VX/Vy Cotany VX/Vy Cotany VX/Vy Cotan'y VX/Vy
+ - - + + - - +

. . _V: LV : . )
No given relations z:iandy :% In planes ozy and oxy , the following relations in 3 planes of oxy , oyz and oxz can be
written as follows :

1)z = X—i: tan oc(In plane oxz )
2)y' = X—i tany (In plane oxy )
By dividing relation (1) by relation (2) , relation (3) can be obtained in plane oyz :

Vz
' Vx _ tan « \% \%
3)2_’25_32311 :_Z=tanB|:>_Z:tanB
y Ve tan y Vy Vy

No , given relations 1, 2 & 3, relation 4 is obtained :

1) z—:=tan «

Vy Vz vz Vy
== L =

2) v = tanyo w 4)tan o«=tanf * tany
Vz

3) W—tanﬁ

Relation (4) can be reckoned the basis for the original formula (dynamic trigonometry) . The following formulas will thus be
the subset of formula (4) .
As an example :

1 1

Cos Xt=—— 5) Cos otc= ———
1+tan 2x J1+tan 2B tan 2y
. tan o« tan B .tan y . tan B.tan y
Sin o« = = 6)Sin X= ———
Vi+tan2c  \/1+tan2cc.tan2y ) 4/1+tan 23 .tan 2y
Sin 2« = 2 Sin «. Cos o« =2 tan B.tany 1 _ 2tanP.tany

\/1+tan 2Ban?y \/1+tan 2B.tan 2y " 1+tan 2(3 .tan 2y

. 2 tanf .tany
7) Sin 2 =——F+——
) S 1+tan 2B .tan?y
1 tan 2B .tan 2y

Cos 2x= (Cos? x — Sin? x= —
1+tan2B.tan?y  1+tan?2B.tan?y

_1—tan2f .tan?y

8) Cos 2x =
) 1-+tan 2B .tan 2y
2tan B .tan y/ 8
in 2 1+tan 2B .tan 2y 2.tan B .tany
Tan 20c= 2= = =
a cos2c  1—tan?B.tan?y 1—tan 2B .tan 2y
1+tan 2B .tan 2y

2 tanB.tany
X =
9 ) Tan 2 1—tan 2B .tan 2y
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Practice No 1.

Relation (4) is tan o = tan B .tan y Given

. . . i “ = i . i . i i .
e _ M@{Sm sin B.sin y , obtain the relation between tan B , tan y, and in the end , obtain the

- cos &« = cosP.cosy
relations between Vx, Vy and Vz.

[ cos B.cos Y

sin2 o< = sin? B .sin?y

cos? o« = cos?Bcos?y & ln 2 + cos? «x=1 = sin?B.sin?y + cos?p. cosy

— 1 _ 1
Cos B = r=esgp COSY = Tty
. _ tan B . _ tany
sin B J1+tan 3 siny = y/1+tan?y

1 = sin?3 .sin?y + cos?B. cos?y
If we substitute values sinf3, cosf, siny, cosyin terms of tan y and tan 3 in the above relation we will have :

1 tan®B tan2y 1
1 (1+tan?B) (1 +tan2y) (1 + tan2B). (1 + tan2y)

= (1 + tan?f.tan?y) = (1 + tan?B). (1 + tan?y)

1+ tan?y + tan?f + tan?P * tan?y = 1 + tan?P. tan?y

2 2.
tan?y + tan?f = 0 .:>!M+E: 0
V2 sz

Practice No 2.

tan <

Given tan a = tan B .tan y=>tany = , calculate the relations between Vy, Vy&V,

tan B
tanc =
“vx
tan B:V_Z:(> tan than X siny _ Sil“ % cos o _ sine, gos B
Vy tan B cosy sin B cos B cos «. sin B

%
tan Y:V_Z
sin y=sin a . cos B = sin? y=sin?a.cos?p

COS Y=cos d . sin B=c0s? y=cos2d.sin*p

sin2y + cos? y=1 = sin 2y + cos? y =sin“a . cos? 3 + cos?a . sin?B =1

. tan o V2 o . tan B Ve Vy
sin @ === , sinB= —
an J1+(X_)Z()2 J1+tan?p \/1+(%)2
(Y i S— 0SB =——s=——
V1 +tan 2« JH'(%)Q J1+tan2B 1+(:]’_;)z
Vz VZy2
GD)? 1 1 G 1

* + * ==

L+ 1+ 146 1+ 1
GPHGY 1 ve, Ve Ve Ve Vi, Ve
[1+ (X_}Z()z] *[1+ (X_}Z/)z] 1 V)) V}) - V}) V)) V)? Vy)

Vz2 " Vz2
Vx2 Vy?

= 0= Vz4 = —-Vx2.Vy?
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Angular speed
Abstract

In this paper , the angular speed formula has been established (proved) on any type of curve. Regarding the importance of
the angular speed calculation in most of applied sciences such as dynamic mechanics , aerospace , dynamic systems and
lock of a relation established in this connection , the need is felt that in order to design and optimize dynamic systems , a
reasonable relation should be presented . This paper tries to prove such a relation in the easiest possible way.

Key Word : anqular speed

Introduction

Angular speed on any curve : In dynamic mechanics literature , "angular speed " has been defined like this : The angle
covered by a moving object in time unit.

The unit of angular speed is radiant per second (Rad / sec) .
Angular speed formula : V = R.w

Where V = linear speed on the curve , R = radius of rotation round the rotation axis and w = the moving object angular
speed.

N this paper angular speed is studied in any type of (closed / open) curve . It is initially studied in a closed curve in which
there are 2 existing characteristic geometric forms which are common : circle and ellipse .

In the open — type curve , it includes any type of cure both ends of which are not linked to each other .
Now to begin with , a closed curve is studied , firstly a circle .
Angular speed in a circle consists of 2 parts :

A .Angular speed in a circle with constant linear speed linear velocity (V) is constant in a circle and the circle radius R is
also constant . Angular speed is thus constant : V = R.w

All the angles covered in equal time units will thus be w = V/R: cte (with one 0Alink)

B. Angular speed in the circle with noncontact (variable) linear speed.

C . Angular speed in the circle with arms length more than one , in different rotational motion directions and constant &
variable angular speeds.

B . Since linear velocity (v) is not constant in a circle , the circle radius (R) is however constant , angular speed will thus be
noncontact . We will thus have :

R = m (circle radius in meters)

Y Rad
R sec

w =
V = M/cac (linear velocity )
V=R * W

dV=R xdw

Now regarding fig.1 it can be expressed that the moving object has moved from point A to point B in a time unit . That is ,
angle (a) , and hase moved from point (B) to point (C) in another time unit . That is angle ()

Angle (a) will not equal angle (B) .

It can thus be concluded that all the angles will not be covered in equal time units, .... , in any time unit , an angle will be
covered depending on the linear velocity variations .

Angular speed in an ellipse:

Given the ellipse center as the rotation axis and the moving object moves so that it holds a constant angular speed ,
regarding the fact that rotation radius and linear velocity are variable formula V = R.w can be investigated :

dV=R*dw+ w.dR=0+w.dR

According to Fig.2, the angles covered are equal to each other. Yet, regarding the Fig.1 it can be concluded that the linear
velocity variations are proportional to the rotation radius variations.

Now, angular speed is studied in an open curve to prove the angular speed formula.
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Fig. 1

B
w=cte _E:-\h\\\\
C /A

R

D ig. 2

In this paper, the angle the moving object covers in time unit is y. That is, the moving object moves on the curve from point
A to point B in time unit thus equals y (Fig.3)

w = (v.1)
t=1
w = (v.1) = (y)

In triangle O'CH we have :

y+tB+m—a=m

y+B=a

y=a-8

N.B. : Angle y may be y = a £f , depending on codirectional or counterdirectional speed .
Via = M/sec: Speed on the abscissa at point A

Vya = M/sec: Speed on the ordinate at point B

Vg = M/sec: Speed on the abscissa at point B

V,

w8 = T/sec: Speed on the ordinate at point B

Its proved formula is discussion and proof .

tan oo = VraYas Vs Vyp

discussion and proof:
Vya Vg +Vya Vyp
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Vya
tan x = Y
XA
V,
yB
tanf =
VxB
tany = tan(« - f3)
Yyr _ Vym
tan o< — tan 3 Va Ve

tany = tanw = =
v 1+tanoc.tanfB 1 4 Vva Ve

Via Vg

Vya-Vig — Via - VyB

tanw = ————————
Via-Vxg + Vya - Vip

In Fig.3 , if the moving object moves in the next second from point B to a hypothesized point like D , the moving object
angular speed in the next second will be defined , and the formula of angular speed in the next second between 2 point D
and B shall apply according to the formula presented between 2 point B and A . It is noteworthy that the above mentioned
formula has been proved for each time unit. For example , the moving object is at second (t,) at a point like A on the curve
, and at second (t, + 1) at a point like B. The above mentioned proved formula thus applies between 2 point in time units
(t) and (tn + 1). It accordingly applies between 2 points D and B at second (t, + 1) and (t, + 2) , etc.

Given an angular speed larger than 1, the angle covered has an average value and average angular speed is a separate
option which will be described later.

Example : A moving object covers in the 1% second (a == ) and in the next second (B = g )k

1A

For obtaining an average angular speed , angles (a) and () are added and then divided by 2

(x+PB)
2

The average angular speed will thus be obtained.

(E‘Fg)_ 20m _ 5m
2 96 24
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It can now be concluded that angular speed is different than average angular speed , that nobody can obtain angular
speed from average angular speed and that either of them is a separate option . Angular speed for 2 consecutive points ,
one second apart , has been proved . That is at the time between (t,) and (t, + 1) , angular speed will be obtained. The
formula proved on an open curve also applies to a closed curve . Using an example , the accuracy of the above formula
on a closed curve can be proved.

C. Examples are solved, starting with the simplest ones at constant and variable angular speeds and constant and
variable relations in circles to clarify angular speed different aspects in a curve.

Ex.1. The movement of 2 arms {OA = AB} at 2 codirectionally equal angular speeds (wWOA = wAB) are considered

constant
Angular speed : {variable
1

Length of arm :{n;?:(?ual

codirectional

Direction of movement :{ . .
counter directional

Ex.2 . Solve the 1% EM . counterdirectional relative to each other

Ex.3 . Solve Ex.1 given the following assumptions codirectional angular speed wOA = wAB ,0A = 2AB

Ex.4 . Solve Ex.1 given the following assumptions counterdirectional angular speed wOA = wAB ,0A = 2AB
Ex.5 . Solve Ex.1 given the following assumptions codirectional angular speed 2. wOA = wAB ,0A = AB
Ex.6 . Solve Ex.1 given the following assumptions counterdirectional angular speed 2. wOA = wAB ,0A = AB
Ex.7 . Solve Ex.1 given the following assumptions codirectional angular speed 2. wOA = wWAB ,0A = 2AB
Ex.8 . Solve Ex.1 given the following assumptions codirectional angular speed 2. wOA = wWAB ,0A = 2AB

Calculation of angular speed at (t) seconds in such problems , the following method can be practiced :

In Ex.3, for calculating angular speed att = 2 sec, using triangle 0%13 length OBcan be calculated.

In triangle 0%8 2 sides and an angle are known .That is lengths OAand AB and angle (n-2a) are known.

Angles (y and B) will thus also be obtained. By obtaining angle (y) , it can be added to angle 2a. Total angles © = (y + 2a)
will thus constitute angular speed covered by point B within 2 seconds . That is wOB = (y + 2a) . For calculating other
angular speeds at different times t , the above mentioned method can be applied.

Ex.9 . Calculation of angular speed at t seconds :
In Ex.9 for calculating angular speed , we shall proceed as in Ex.3 : Firstly , using the above mentioned method in triangle

O%Bapplying 2 relations of OAand AB, angle (y) is obtained and then in triangle ﬁ by obtaining length OBand having

length BCand angle ABC, 2 angles and the other side of triangle ﬁcan be obtained . By having an angle near point O
(A,8), this angle can be added to its nearby angles , the total of which will constitute angular speed at time (t).
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Ex1
Relations OA = ABare given. Point (A) has angular speed wOA = 1"—8relative to point (O) , and point B has angular speed
wAB = 1"—8relative to point (A). 2 arms {OA = AB}moves towards the trigonometric circle. Please find :

1. Angular speed wOB= ?trace its curve via drawing and calculating at different times.

2. Codirectional angular speed wOA = WAB ,0A = AB

T
[ ©O0A = wAB = 7= Rad/Sec

wOB =7
T
o0=—

t=_1 sec
{ 0OA = AB
I
\ 18

Rad

a
0%5:)(11—a)+y+y=1r:>—a+2y=0:>y:§

a 3 3 0m
= + = - = -, —= —
wOB=a+y=aqa G rialr
t=1 sec.
3 9a 9 m e
= + — ——— s — O
wOB= 3a ;A= -
t=3 sec.
mOB=ncx+5a-2"a2+n°‘
t=n sec
n 3 m 3
= + - = =) = —. =
wOB = na + ~a =na () n.o.o

t=n sec.
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Ex 2

Codirectional angular speed

T
w0A = wAB = 1—8Rad/Sec

O0A = 2.AB
w0OB =7

=" Rad
(X—18a

R
|
{

2 2 2
OB = OA + AB — 2.0A.AB. Cos(m — 2a)
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Ex 3

Counterdirectional angular speed

L Rad

w0A=-—wAB =18
Sec

ISSN 2347-1921
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Ex 4

Codirectional angular speed

T
(wAB = 2.00A = wOA = 75 Rad/Sec
t=1sec
OA = AB
wOB =7

— " Rad
0(—183
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Ex5

Counterdirectional angular speed

T
(~wAB = 2.w0A = ©AO = 75 Rad/Sec

t=1sec
0A =AB
wOB =7

_T[
“= 18
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Ex 6

Codirectional angular speed

Vs
(wAB = 2.w0A = wAB = g Rad/Sec

t= 1sec
0A =2.AB
wOB =7

_7T
“=18
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Ex7

T
= 2.w0A = w0A = 1—8Rad/Sec

(wAB
i t =1sec

0A =2.AB
wOB =7
T

CZ=1—8

160
1l4a
12a
A 10a

8a

6o % 200 : /

60

>35>
oo

)

o _wAB
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_t=lsec

0OA =AB =BC

Ex8

[ wBC = wAB = w0A = wOA%Rad/Sec
|

1 w0C =7

|

\

woC = (4a+vy +6)
T=4

ISSN 2347-1921

Sec
\ C
| C
:‘;}\'
C A
J 4 \ _Ao—
\Sa/ | // ()
/ \ -y
C , [ | C
7
T—4o-f3 Vi
/
; 20
B /
il o B e
9o oL //
4o
B C
ga\ 120 3a, B
A b 5
C 2a g 1t
A B
120 A
3a > p
60 A R R
C 1 1) ‘
- = y,
/ % / /
. 120,
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Ex 9

T
(—~wBC = wAB = w0A = wOA = Rad/Sec

t=tsec
0A = AB = BC
w0C =7
T
t “=18
C
" v
/ \3(1 C
/ N
/
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Ex 10
T

(wBC = —wAB = w0A = wOA = Rad/Sec

_t=1lsec

0A =4B =BC

w0C =7
-
t “=18
C
@
90 /901/
[y B C
" N4a

A \’,

\
‘\\i\

Wv
\? Al
N
N\
”\\ 3’\
> » >
W
\
\
|
Le
-ﬁ

3

©OA ~0AB 2 ©BC
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Ex 11
Vs

[ ~wBC = ~wAB = w0A = w0A 7 Rad/Sec
I _t=1lsec

04 =4B =BC

w0C =7

| =15
| T 18

ISSN 2347-1921

.

A C
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Ex 12
-1

[ WBC = wAB = ~w0A = wOA = 7= Rad/Sec
I _t=1lsec

04 =4B = BC

w0C =7

| =15
| T 18

—nOA ®AB oBC

301 'I
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Ex 13

T
(—~wBC = wAB = —w0A = w0A = g Rad/Sec
_t=1sec _
04 =7B = BC
w0C =7

_T[
“=18
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Ex 14

T
(wBC = —wAB = —w0A = w0A = 1—8Rad/Sec

_t=lsec _
OA = AB =BC
w0oC =7

_7T
“=18
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Ex 15
i3
.( wOA = 1—8Rad/Sec
_t=1lsec _
0A = AB = BC
wBC = 2.wAB = wAB = 2.w0A
T
*=18

5139 |Page September 23, 2015



L&@)) ISSN 2347-1921

Ex 16

Vs
I( ®0A = 7= Rad/Sec

_t=lsec _
0OA = AB = BC
—wBC = 2.wAB = 2.wAB = —w0A

w0C =7
T

a=1—8
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Ex 17

—

Tl’
wOA = 18 Rad/Sec

t = 1sec
0A= 2.AB = 4.BC
wBC = wAB = w0OA

w0C =7

0(=1—8
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Ex 18

T
I( @O0A = 7= Rad/Sec

t = 1sec
0A= 2.AB = 4.BC
wBC = wAB = wBC
w0C =7

0(=1—8
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Ex 19

T
( w0A =—Rad/Sec
| 18

t = 1sec
O0A = 2.AB = 4.BC
w0A = —wAB = wBC
w0C =7
T

0(=1—8
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Ex 20

Vs
I( @0A = T=Rad/Sec

t = 1sec
0A = 2.AB= 4.BC
w0A = —wAB = —wBC
w0C =7
T
“=18
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Ex 21

-1
I( @0A = = Rad /Sec

t = 1sec
OA= 2.AB = 4.BC
—w0A = wAB = wBC
w0C =7
T

a=1—8
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Ex 22

s
( w0A = —Rad/Sec
| 18

t = 1sec
0A= 2.AB= 4.BC
—w0A = wAB = —wBC
w0oC =7
T

a=1—8
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Ex 23

=
( wOA=_-Rad/Sec

t = 1sec
0A= 2.AB= 4.BC
—w0A = wAB = wBC
| woC =7

m
k a=1
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Ex 24

e —
( @wOA=-;Rad/Sec

t = 1sec
0A= 2.AB= 4.BC
—w0A = —wAB = wBC
| woC=2

T
k a=1
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Ex25

—T
I( @0A = — Rad/Sec

__t=1sec
OA= 2.AB = 4.BC

—w0A = —wAB = —wBC

w0C =7
-
“= 18
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Ex 26

T
( w0A = —Rad/Sec
| 18

t = 1sec
0A= 4B = BC
w0A = 2.wAB = 4.wBC
w0C =7
T

a=1—8
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Ex 27

b3
( w0A = —Rad/Sec
| 18

t=1 sec
0A= 4B = BC
w0A = 2.wAB = 4.wBC
w0oC =7
T
“= 18
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Ex 28

T
( w0A = —Rad/Sec
| 18

t=1 sec
0A= 4B = BC
w0A = —2. wAB = 4. wBC
w0oC =7
T

a=1—8
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Ex 29

Vs
I( @0A = 7= Rad/Sec

t=1 sec
0A= 4B = BC
w0A = —2.wAB = —4.wBC
w0oC =7
T
*=18
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Ex 30

T
([ —w0A =—Rad /Sec
| 18

t=1 sec
0A= 4B = BC
—w0A = 2.wAB = 4.wBC
w0oC =7
T

a=1—8

il —~——

4

5154 |Page September 23, 2015



ﬂL@ “ ISSN 2347-1921

Ex 31

—T
I( ®0A = - Rad/Sec

t=1 sec
0A= 4B = BC
—w0A = 2.wAB = —4.wBC
w0C =7
T
“=18

=

0
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Ex 32

—T
I( @O0A = — Rad/Sec

t=1 sec
0A= 4B = BC
—w0A = —2.wAB = —4.wBC
w0C =7
T

a=1—8
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Ex 33

—T
I( w0A = — Rad/Sec

18
t=1 sec
0A= 4B = BC
—w0A = 2.wAB = —4.wBC
w0C =7
T
“=18
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Ex 34

I
wO0A = ERad /Sec

_t= 1 sec

0OA = 2.AB = 4.BC
wAB  wBC

w0A = =

2 4
w0C =?
T
a=—

18
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Ex 35

T[
wOA = 18 Rad/Sec

- t=1 sec
0OA = 2.AB = 4.BC

1 OA_wAB_—wBC
WA= T

w0C =7
YA

(Z=E
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Ex 36

T
wO0A = ERad /Sec

_t=lsec

OA= 2.AB= 4.BC
{ OA_—wAB_wBC
woAETT T,

w0C =7
_T
“=1s
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Ex 37

s
wOA = ERad /Sec

t=1 sec
OA = 2.AB = 4.BC
{ 04 —wAB —wBC
w 3 2
w0C =7
T

(Z=E

iy
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Ex 38

T
—w0A —ERad/Sec
_t= 1 sec
0OA = 2.AB = 4.BC
{ OA_wAB_wBC
woAETT T
w0oC =?
-
“=18

oBC ﬁ
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Ex 39

i
—w0A = 18 Rad/Sec

t=1 sec
OA= 2.AB = 4.BC
{ 0A wAB —wBC
@ 2 )
w0oC =7
T

a=ﬁ

AB
0 —o0A X o g
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Ex 40

Y[
—w0A = ERad/Sec

_ t=1sec

| —wAB  wBC

2 3

T
a=—

18

5164 [P age




LL@_)JJ ISSN 2347-1921

Ex 41

Tl’
—w0A = 18 Rad/Sec

_t= 1 sec
OA= 2.AB= 4.BC
{ —wAB —wBC

2 4
w0C=7?
T
a=-—

18
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