
                                                                     ISSN 2347-1921 
                                                          

 4041 | P a g e                                                       A u g u s t  2 1 ,  2 0 1 5  
 
 

Chaotic behavior of a discrete dynamical systems withcomplex 
parameter 

El-Sayed, A. M. A, Mohamed, S. M, 
EL-Refai, A. H. M 

Faculty of Science, Alexandria University, Alexandria, Egypt 

Abstract: 

In this paper, we present the equivalent system of complex logistic equation. We study some dynamic properties such as 
fixed points and their asymptotic stability, Lyapunov exponents, chaos and bifurcation. Numerical results which confirm the 
theoretical analysisare presented. 

Key words: Logistic equation, complex variable;  fixed points;  asymptotic stability; Lyapunov exponent; bifurcation; 

chaos and chaotic attractor. 
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1 : INTRODUCTION: 

Consider the Logistic map 

𝑋𝑛+1 = 𝜌 𝑋𝑛 1 − 𝑋𝑛 ,        𝑛 = 0,1,2,…(1) 

If 𝜌 is a complex parameter𝜌 = 𝑎 + 𝑖𝑏, (a, b ∈ R). 

The map (1) with complex variable is given by 

𝑍𝑛+1 = 𝜌 𝑍𝑛 1 − 𝑍𝑛 ,        𝑍𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛          (2) 

The complex Logistic map (2) has been studied in [3]. 

Our aim of this paper is to study the dynamic behavior of the discrete dynamical system with complex number parameter   

𝜌 = 𝑎 + 𝑖𝑏. 

𝑍𝑛+1 = 𝜌 𝑍𝑛 1 − 𝑍𝑛
2 ,           𝑛 = 0,1,2, …      3  

where𝑍𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛 (𝑥𝑛  ,𝑦𝑛 ∈R ), with initial conditions 𝑍0 = 𝑥0 + 𝑖𝑦0  ,   𝑍 ≤1 . 

The case of complex variable system with real parameter 𝜌 will be studied also. 

2 The System with complex parameter: 

We study the system (3) with complex parameter 𝜌 = 𝑎 + 𝑖𝑏, where a and b are real numbers. 

The complex discrete dynamical system (3) can be written in the form 

 

 

𝑥𝑛+1 = 𝑎𝑥𝑛 1 − 𝑥𝑛
2 + 3𝑦𝑛

2 − 𝑏𝑦𝑛 1 − 3𝑥𝑛
2 + 𝑦𝑛

2 ,                          
                                                                                                                        (4)

𝑦𝑛+1 = 𝑎𝑦𝑛 1 − 3𝑥𝑛
2 + 𝑦𝑛

2 + 𝑏𝑥𝑛 1 − 𝑥𝑛
2 + 3𝑦𝑛

2 .                          

  

2.1   Fixed points and their asymptotic stability 

The  fixed points of the dynamical system (3) are the solution of the system (4), [5], thus  there are  five  fixed points, 
namely 

 𝑓𝑖𝑥1 = (0,0), 

 𝑓𝑖𝑥2=(
𝑏

2 𝑎2+𝑏2  
−𝑀+ 𝑀2+4𝐾

2

  ,  
−𝑀+ 𝑀2+4𝐾

2
), 

 𝑓𝑖𝑥3 = (
−𝑏

2 𝑎2+𝑏2  
−𝑀+ 𝑀2+4𝐾

2

, − −𝑀+ 𝑀2+4𝐾

2
), 

 𝑓𝑖𝑥4 = (
𝑏

2 𝑎2+𝑏2  
−𝑀− 𝑀2+4𝐾

2

,  
−𝑀− 𝑀2+4𝐾

2
), 

 𝑓𝑖𝑥5=(
−𝑏

2 𝑎2+𝑏2  
−𝑀− 𝑀2+4𝐾

2

,  
−𝑀− 𝑀2+4𝐾

2
). 

where: 

𝑀 = 1 −
𝑎

𝑎2+𝑏2and𝐾 =
𝑏2

4(𝑎2+𝑏2)2 

By considering a Jacobian matrix for one of these fixed points and calculating their eigenvalues, we can investigate the 
stability of each fixed point based on the roots ofthe systemcharacteristic equation [2]. The Jacobian matrix is given by 

𝐽 =  
𝜆 − 3𝑎𝑥2 + 3𝑎𝑦2 + 6𝑏𝑥𝑦         − 𝑏 + 3𝑏𝑥2 + 6𝑎𝑥𝑦 − 3𝑏𝑦2

𝑏 − 6𝑎𝑥𝑦 − 3𝑏𝑥2 + 3𝑏 𝑦2              𝜆 − 3𝑎𝑥2 + 3𝑎𝑦2 + 6𝑏𝑥𝑦
  

The Jacobian matrix at 𝑓𝑖𝑥1 = (0,0) is 

𝐽 0,0 =  
𝑎        − 𝑏
𝑏            𝑎

 . 

The eigenvalues of this matrix are given by 

 𝐽 − 𝜆𝐼 = 0 =  
  𝑎 − 𝜆       − 𝑏

       𝑏             𝑎 − 𝜆
 . 

Thus the characteristic equation reads 
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𝑃 𝜆 = 𝜆2 − 2𝑎𝜆 +  𝑎2 + 𝑏2 = 0. 

Hence we get the roots  

𝜆1,2 =
2𝑎± 4𝑎2−4 𝑎2+𝑏2 

2
= 𝑎 ± 𝑖𝑏. 

Thus the first fixed point of the system (3) is stable if    𝜆1 <  1 , 

 𝜆2 <  1   [4], this meanthat: 

 𝜆1,2 =   𝑎 ± 𝑖𝑏 =  𝑎2 + 𝑏2 < 1 

 

𝑎2 + 𝑏2 < 1. 

while the system about 

 𝑓𝑖𝑥2 =  𝑥∗, 𝑦∗ = (
𝑏

2 𝑎2 + 𝑏2  
−𝑀+ 𝑀2+4𝐾

2

  ,  
−𝑀 +  𝑀2 + 4𝐾

2
), 

yieldsthe following characteristic equation. 

𝐹 𝜆 = 𝜆2 − 2𝐵𝜆 +  𝐶 =  0. 

Where 

𝐵 =  𝑎 −  3𝑎𝑥2∗ +  6𝑏𝑥∗𝑦∗  +  3𝑎𝑦2∗, 

𝐶 = ( 𝑎 −  3𝑎𝑥2∗ +  6𝑏𝑥∗𝑦∗  +  3𝑎𝑦2∗)2 + (𝑏 − 6𝑏𝑥∗𝑦∗ + 3𝑏𝑦2∗ −  3𝑏𝑥2∗)2. 

Then we get the roots: 

𝜆1,2 =( 𝑎 −  3𝑎𝑥2∗ +  6𝑏𝑥∗𝑦∗  +  3𝑎𝑦2∗)±  𝑏 − 6𝑎𝑥∗𝑦∗ + 3𝑏𝑦2∗ −  3𝑏𝑥2∗ 𝑖. 

In the same way we can find the characteristic equation of the other fixed points, thus wewillexplain the stability of these 
fixed points through Figure(3). 

2.2 Lyapunov exponents: 

Since the Lyapunov exponent is a good indicator for existence of chaos,theLyapunov characteristic Exponents (LCEs) 
play a key role in the study of nonlinear dynamical systemsand they are measure of the sensitivity of the solutions of a 
given dynamical system tosmall changes in the initial conditions. One feature of chaos is the sensitive dependenceon 
initial conditions; for a chaotic dynamical system at least one LCE must be positive.Since for non-chaotic systems all LCEs 
are non-positive, the presence of a positive LCEhas often been used to help determine if a system is chaotic or not.[6] 

Figure (1) shows the LCEs for the system (3) with the parameters 𝜌 = 𝑎 + 𝑖𝑏 𝑎𝑛𝑑  initial conditions(𝑥0 , 𝑦0) = (0.4,0), we find 

that LCE1 = 0 and LCE2 = 0 . 

 

Figure 1:Lyapunov exponent of (3) where a=0.5 

2.3 Bifurcation and chaos 
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In this section we show by numerical experiments the dynamic

 

al behavior of the dynamical  system(3), where 𝜌 = 𝑎 + 𝑖𝑏. 

 

Figure 2:  Bifurcation diagram  of (3) x vs. b.Figure3:Bifurcation diagram  of (3) x vs. b. 

we see clearly in Figure (2) the fixed points are stable at b between 0.6 and 0.84, and atb = 0.85 this point is called 
bifurcation point. Note that this system is not chaotic. 
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Figure 4: Bifurcation diagram of (3) y vs. b. 

 

 

Figure 5: Bifurcation diagram of (3)  𝒛  vs. b. 

Figure (4) shows the bifurcation diagram of y versus b, while Figure (5) shows bifurcationdiagram of   𝒛  b versus b . 
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2.4 Chaotic attractor 

In this section we are interested in studying the chaotic attractor for the system (3) where𝜌 = 𝑎 + 𝑖𝑏. 

 

 

 

Figure 6: chaotic atractor of (3). 

 

 

Figure 7: Bifurcation diagram of (3) in 3D. 

 

3 The system with real parameter: 
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Also we study the dynamic behavior of the complex discrete dynamical system 

𝑍𝑛+1 = 𝑍𝑛 1 − 𝑍𝑛
2 ,           𝑛 = 0,1,2, …      

with real parameter 𝜌 ∈ 𝑅. 

3.1 Fixed points and stability: 

The fixed points of the system (3) is the solution of the equation 

Z = ρ Z 1 − 𝑍2 , 

 

Z − ρ Z 1 − 𝑍2 = 0, 

  

Z 1 − ρ  1 − 𝑍2  = 0. 

then: 

Z = 0       or      1 − ρ  1 − 𝑍2  = 0 

 i. e 

Z = 0or  Z =  
𝜌 − 1

𝜌
 

This gives the fixed points ,namely 

 

 𝑓𝑖𝑥1 =  0,0 , 

 

 𝑓𝑖𝑥2 =   
𝜌−1

𝜌
, 0 , 

 

 𝑓𝑖𝑥3 =  − 
𝜌−1

𝜌
, 0 . 

For the stability of the fixed points, we have the following. 

By considering a Jacobian matrix for each of these  fixed points and calculating their eigenvalues ,we can investigate the 
stability of each fixed point based on the roots of the systemcharacteristic equation .[3] 

First we must convert the equation (3) to system of equations as follow: 

𝑥𝑛+1 + 𝑖 𝑦𝑛+1 = 𝜌(𝑥𝑛 + 𝑖 𝑦𝑛)(1 − (𝑥𝑛 +𝑖 𝑦𝑛)2). 

which gives 

 

𝑥𝑛+1 = 𝜌  𝑥𝑛(1 − 𝑥𝑛
2   +  3𝑦𝑛

2),                                                          

                                                                                                                (5)

𝑦𝑛+1 = 𝜌  𝑦𝑛(1 − 3𝑥𝑛
2  +  𝑦𝑛

2).                                                           

  

Thus the Jacobian matrix is given by  

J= 

𝜕𝑓1

𝜕𝑥

𝜕𝑓1

𝜕𝑦

𝜕𝑓2

𝜕𝑥

𝜕𝑓2

𝜕𝑦

 . 

Where𝑓1 = 𝜌  𝑥𝑛 1 − 𝑥𝑛
2  +  3𝑦𝑛

2 , 𝑓2 = 𝜌  𝑦𝑛 1 − 3𝑥𝑛
2  +  𝑦𝑛

2 . 

 

= 
𝜌 − 3𝜌𝑥2 + 3𝜌𝑦2 6𝜌𝑥𝑦

−6𝜌𝑥𝑦 𝜌 − 3𝜌𝑥2 + 3𝜌𝑦2 . 

The Jacobian matrix at𝑓𝑖𝑥1 = (0,0)is 

𝐽(0,0) =  
𝜌 0
0 𝜌

 . 

The eigenvalues of this matrix are given by 
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 𝐽 − 𝜆𝐼 = 0 =  
𝜌 − 𝜆          0

0             𝜌 − 𝜆
 . 

Thus the characteristic equation reads 

𝑃 𝜆 = 𝜆2 − 2𝜌𝜆 + 𝜌2 = 0 

and has the roots 

𝜆1,2 =
−𝑏 ±  𝑏2 − 4𝑎𝑐

2𝑎
 

 

=
2𝜌 ±  4𝜌2 − 4𝜌2

2
 

 

= 𝜌. 

Thus the  first  fixed point is stable if 𝜆𝑖  < 1    𝑖 = 1,2  ,  [4] 

i.e , 𝜌 < 1  that is −1 < 𝜌 < 1. 

While the𝑓𝑖𝑥2 =   
𝜌−1

𝜌
, 0 yields the following characteristic equation 

𝐹 𝜆 = 𝜆2 +  4𝜌 − 6 𝜆 −  4𝜌2 − 12𝜌 + 9 = 0.                  (6) 

 

with the roots 

𝜆1 = 𝜆2 = 3 − 2𝜌. 

Thus the  fixed point  is stable if 3 − 2𝜌 < 1that is 1 < 𝜌 < 2. 

It is pretty clear that the 𝑓𝑖𝑥3 =  − 
𝜌−1

𝜌
, 0  yields the same characteristic equation.So, the 𝑓𝑖𝑥3is stable if  

3.2Lyapunov exponent 

Figure (8) shows the LCEs for the system (3) with the parameter values 𝜌 and initialcondition (𝑥0, 𝑦0) = (0.4,0) , We  find 

that LCE1 = 1.0969 and LCE2 = 1.0969 . 

 

Figure 8: Lyapunov exponent of the system (3). 

3.3 Bifurcation and chaos 

In this section we show by numerical experiments the dynamical behavior ofthe dynamicalsystem (3) or (5). 
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Figure 9: Bifurcation diagram 0f (3) x vs.𝜌. 

 

 

Figure 10: Bifurcation diagram 0f (3) x vs.𝜌. 
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Figure 11: Bifurcation diagram 0f (3) x vs . 𝜌. 

We see clearly in Figure (11) the fixed point is stable at 𝜌 between 

 (-1) and(1) , we get transcritical bifurcation at 𝜌 = 1,the bifurcation from  a stable fixed point to a stableorbit of period (2) 
at 𝜌 = 2.2 ,and then the bifurcation from period two to period four at 

𝜌between (2.4) and (2.5). The further period doubling occur at decreasing increments in𝜌 and the orbit becomes chaotic 

for 𝜌 ≅ 2.6. 

 

 

Figure 12: Bifurcation diagram 0f (3) y vs. 𝜌. 
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Figure 13: Bifurcation diagram 0f (3) 𝑍  𝑣𝑠. 𝜌.  

Figure (12) shows the bifurcation diagram of y versus 𝜌, while Figure (13)  shows the bifurcation diagram of 𝑍  versus  𝜌 . 

3.4 Chaotic attractor 

In this section we are interested in studying the chaotic attractor for the system (3) or (5). 

 

 

Figure 14: chaotic attractor of (3). 

 

 



                                                                     ISSN 2347-1921 
                                                          

 4052 | P a g e                                                       A u g u s t  2 1 ,  2 0 1 5  
 
 

 

 

 

Figure 15: Bifurcation diagram 0f (3) in 3D. 

4 Conclusion 

 The discrete dynamical system with complex parameter is not chaotic while this system with real parameter is 
chaotic. 

 The discrete dynamical system with complex parameter have different dynamic behavior from that system with 
real parameter as we have seen in the Logistic map, It is clear that the stability region of the system is being 
shrinked in case of complex parameters, this is clear if we compare Figure (3) with Figure (11). 
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