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Abstract 
This paper is concerned with the minimax approximation of a discrete data set by rational functions. The second algorithm 
of Remes is applied. A crucial stage of this algorithm is solving the nonlinear system of leveling equations. In this paper, 
we will give a new approach for this purpose. In this approach, no initial guesses are required. Illustrative numerical 
example is presented. 
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1. Introduction 
      

Let  be a given real-valued function define on a discrete point set . We shall consider the problem of 

approximating the values by functions of the form: 

                                                                (1) 

Where n and m are nonnegative integers.   
 

The rational minimax approximation for the values  is to determine the coefficients  and  

which minimize the expression: 

                                                                       (2) 

Such that  

 
The best approximation problem can be found in almost every book on approximation theory (see [4, 6, 10, 11, 13, 14, 
15]).This problem was studied from the second half of the 19th century to the early 20th century, and by 1915 the main 
results had been established (see Steffens [16]). Also a good introduction and another vision on this subject is in Pachόn 
and Trefethen [12]. 
 

 Existence of a best approximation is not guaranteed [17, p.193]. If  and  denotes the actual degree of  and  

respectively then characterization theorem can be stated as follows. 

Theorem:  is the best approximation to  on  if and only if    has an alternating set 

consisting of at least  points of . 

In [1] Barrodale and Mason gave a computational experience with two algorithms for rational approximation on a discrete 
point sets. In [8] three algorithms are described and discussed for discrete rational approximation. In [9] a comparison of 
eight algorithms is given for obtaining rational minimax approximations. The results of the study indicated that the Remes 
algorithm is one of two satisfactory methods to be used in practice. This algorithm is considered here. We shall assume 

that the interval include the origin, then we may choose b1=1. If  is non-degenerate then by characterization theorem 

the error alternate at least ℓ=n+m+1 times. At the  iteration a set   is defined. The algorithm consists of the two following 
stages: 
 

Stage (1). An approximation  is obtained by solving the system of the leveling equations 

              (3) 

Where  is the leveled reference error. 

 

Stage (2). The extreme points of the error function  yield a new reference set . 

 

2. New Approach for Solving the Nonlinear System of Leveling Equations 
      
     We will concentrate on stage (1) of the algorithm with a new approach to solve the leveling equations  

                                               (4) 

Or equivalently, 
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                                                   (5) 

Where  

                                                (6) 

The approach can be summarized in the following steps: 
 

Step (1). Write the first (n+1) equations of (5) as 

                                                                                      (7) 

and the last (m+1) equations as 

                                                                                      (8) 

Where  

 

 

 

 

 

 

 

 
                                                                

Step (2). Since  (Vandermonde determinant), then from equation (7) we have  

                                                                                    (9) 

Substituting (9) into (8) yields 

                                                                 (10) 

A non-zero vector  satisfies equation (10) if and only if the matrix   is singular.  

 

Step (3). Define 

                                                       (11) 

We solve equation (11) by an efficient iterative method to find λ, (see [5]). 
 

Step (4). Since b1=1, a non-zero vector  can be found that satisfies the system  

                                                       (12) 

Where  

 
 In [2], an algorithm was designed by Barrodale and Philips. This algorithm is a modification of the simplex method of 
linear programming applied to the dual formulation of the Chebyshev problem. It does not require the m×n matrix of 
coefficients to be of rank n. Computational experience with this and other algorithms indicates that this algorithm is more 
efficient in both time and storage requirements. So, we solve the linear system of equations (12) by this algorithm. 

Step (5). Solve the system of linear equations (8) to find the coefficients  . 

The system (7) is the dual monomial Vandermonde system. Several authors have attempt to exploit the structure of the 
Vandermonde  matrix in order to derive more efficient solution methods, but until now, the most efficient algorithm is the 
algorithm derived by Bjӧrck and Pereyra [3], for the dual problem, this algorithm requires o(n

2
) arithmetic operations and 

o(n) elements of storage [7]. So we use this algorithm in solving the dual monomial Vandermonde system. 

3. Numerical Results 
     We have successfully applied the second algorithm of Remes algorithm to find best approximation to  on .  
 
We have tested the new approach to solve the leveling equations (4). The Remes algorithm was terminated 
when the error curve is leveled to an accuracy of three significant figures. 
 

Example : 
A function  is evaluated on discrete set  [0,14]. Approximations of the form 

  are used to compute best approximations to . The data are plotted in Figure 1 along with the 

best approximation for n=14, m=0. For different values of n and m the results, in Table 1, are as follows: 
 

 
 
 
 

Table 1. Th errors of the best approximation for different values of n and m 
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Coefficients 

     

a1 3.737313 4.9421434 3.5220162 0.0298715 -0.0001651 

a2 -8.1338615 -31.869710 -3.4957960 -0.0009472  

a3 20.971022 54.136755 1.2701932   

a4 -29.63756 -55.948732 -0.2013592   

a5 22.852492 32.247657 0.0142759   

a6 -10.58756 -10.416417 -0.0003693   

a7 3.1352225 1.9497278    

a8 -0.6126368 -0.2162448    

a9 -0.0795983 0.0140257    

a10 -0.00067254 -0.0004921    

a11 0.0003397 0.722×10
-5 

   

a12 -0.717×10
-5

     

a13 -0.178×10
-6

     

a14 0.135×10
-7

     

a15 -0.225×10
-9

     

b2  -4.3063743 -0.2158723 -5.2114448 -5.6874438 

b3   0.0131442 1.2092566 3.6968329 

b4    -0.0636450 -0.9219163 

b5     0.1008672 

b6     -0.0040573 

Max |Ei| 0.081 0.253 0.355 2.662 2.717 

 

The progress of the second algorithm of Remes is shown in Table 2 for the case n=6 and m=1. Each row corresponds to a 
reference point and each column to an iteration. 

 
Table 2. Th errors of the best approximation for different reference points when n=6 and m=1 

 
 
                                     
 
 
 
 
 
 
 
 
 

 

We list below, Table 3, the errors obtained in the successive iterations when  is approximated by   . 

 
Table 3. The errors in the successive iterations for values n=14 and m=0 

 
 
 
 
                                                              

 
                         
     
 
 

 

x1 0.2 0.2 0.2 0.2 

x2 1.0 1.0 1.0 1.0 

x3 2.6 2.8 2.8 2.6 

x4 4.6 4.8 4.8 4.8 

x5 6.2 6.2 6.2 6.4 

x6 7.8 7.8 8.0 8.0 

x7 10.2 10.2 11.8 12.0 

x8 13.4 13.2 13.4 13.4 

x9 13.8 14.0 14.0 14.0 

 
-0.3977188 -0.4157371 -0.4312701 -0.4332420 

Iteration Max. Error 

1 0.0570232 

2 0.0744006 

3 0.0810631 
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Fig. 1: Plot of minimax approximation for n=14 and m=0. 

 

The behavior of the error curve is shown in Figures (2, 3 and 4) for the case n=14 and m=0 which means that the 
second algorithm of Remes converges after only three iterative. 

 
 

 
 
    

    Fig. 2: The behavior of the error curve (Iteration 1) 
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Fig. 3: The behavior of the error curve (Iteration 2) 

 
 

 
 
 

Fig. 4: The behavior of the error curve (Iteration 3) 

 
Comments  
 

     1. Numerical experiments have indicated that as m increase, it is not possible to determine the error with  the correct  
         sign changing properties. The algorithm then fails. However, with low m the new approach is perfectly satisfactory. 
     2. The second algorithm of Remes converges in just a few iterations. Sometimes, however, it does not converges after   
         a large number of iterations.   
     3. We have not observed case indicates that there is a pole in the range.       

 
4. Conclusions 
 
    1. Comparing our results with those of [1, 8, 9], the new approach is preferred, since we able to increase n and m to  
         n=14 and m=5, however, in [1, 8, 9], the maximum value of n and m are 4. 
     2. The algorithm can't converge for m>5 since several initial references always give error curve which do not have the       
         correct sign changes. 
     3. The convergence of the second algorithm of Remes is very rapid.  
     4. The new approach will produce quite satisfactory rational approximation. 
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