

Fully Pseudo Stable Systems Mehdi S. Abbas¹ and Mustafa A. Aziz² Department of Mathematics, College of Science Mustansiriyah University, Baghdad, Iraq.

- 1. m.abass@uomustansiriyah.edu.iq
- 2. Mustafa12345abass@yahoo.com

Abstract: In this work, the notion of full pseudo-stability has been introduced and studied, which is a generalization of full stability. We obtain a characterization of full pseudo-stability analogous to that of full stability. Certain class of subsystems which inheret this property have been considered. Finally, we studied the completely pseudo-injective systems and the relation between it and fully pseudo-stable systems.

Mathematics Subject Classification (2010): 20M30

Keywords: Fully (pseudo-) stable system; (completely) pseudo-injective system.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol .10, No. 3

www.cirjam.com, editorjam@gmail.com

1. INTRODUCTION

Throughout the paper S represents a semigroup with non-zero identity 1(monoid). A right S-system M_S is a set M together with a map(written multiplicatively) from M x S into M satisfying m(ab) = (ma)b and m1 = m for all m ∈ M and a, b ∈ S. A non-empty subset N of an S-system M_S is a subsystem if $NS \subset N$, it is clear that $xS = \{xs \mid s \in S\}$ where x in M_S is a subsystem of M called a principal subsystem. The right (resp. left) annihilator of a subset X of M (resp. X of S) is denoted by $r_S(X)$ (resp. $I_M(X)$) which is defined by $r_S(X) = \{(s, t) \in S \times S \mid xs = xt \text{ for all } x \in X\}$ (resp. $I_M(X) = \{(m, n) \in M \times M \mid xm = xn \in S\}$) for all $x \in X$) and for a subset Y of M × M (resp. Y of S × S) is defined by $r_S(Y) = \{s \in S | ms = ns \forall (m, n) \in y\}$ (resp. $l_M(Y)$ = $\{m \in M \mid ms = mt \ \forall \ (s, t) \in Y\}$). Let M_S and K_S be two S-systems. A mapping $\alpha : M_S \to K_S$ is called an S-homomorphism, if $\alpha(ms) = \alpha(m)s$ for all $m \in M$, $s \in S$. An S-homomorphism $\alpha : M_S \to K_S$ is called an S-isomorphism if α is bijective. In this case we say that M_S and K_S are isomorphic and write $M_S \cong K_S$ [4].Let M_S be an S-system. Then $xS \cong S / r_S(x)$ for each x in M_S .A non-zero subsystem N of an S-system M_S is called essential (or large) in M_S if for each S-homomorphism α : $M_S \rightarrow$ K_S, where K_S is any S-system, with restriction to N_S is a monomorphism, α itself is a monomorphism [2]. If N is essential in M_S , then we say that M_S is essential extension of N. We denote this situation by $N_S \subseteq M_S$. And a non-zero M_S is called reversible if each non-zero subsystem of M_S is essential in M_S . A subsystem N of M_S is called stable if $\alpha(N) \subseteq N$ for each S-homomorphism α of N into M_S. In case each subsystem of M_S is stable, then M_S is called fully stable. A monoid S is fully stable if it is fully stable S-system [7]. The stability condition can be reduced to the elements of the system, so an Ssystem M_S is fully stable if and only if each principal subsystem is stable. Also an S-system M_S is fully stable if and only if each principal subsystem satisfies the double annihilator condition, namely $I_M(r_S(x)) = xS$ for each x in M_S. An S-system M_S is called injective if for any monomorphism $\alpha: A_S \to B_S$ of S-systems A_S , B_S and any homomorphism $\mu: A_S \to M_S$, there exists a homomorpism $\beta: B_S \to M_S$ such that $\mu = \beta \alpha$ [2]. Any maximal essential extension of an S-system M_S is called an injective envelope of M_S it is unique up to isomorphism (denoted by E(M_S)) [2].A. M. Lopez in [8] introduced quasiinjective systems, an S-system M_S is quasi injective if each S-homomorphism of a subsystem of M_S into M_S is a restriction of some S-endomorphism of Ms. We mentioned here generalization of guasi-injective system which is relevant to our work. An S-system M_S is called pseudo-injective if each S-monomorphism of a subsystem of M_S into M_S extends to an Sendomorphism of M_S [5]. The above concept motivate to consider systems in which all subsystems are stable under monomorphisms, termed fully pseudo stable systems. We show that an S-system M is fully pseudo-stable if and only if $r_S(x) = r_S(y)$ implies that xS = yS for each x, y in M_S. Also we prove that the injective envelope of fully pseudo-stable systems is fully pseudo-stable. An S-system Ms is said to be completely pseudo-injective if every subsystem of Ms is pseudo-injective. We show that every fully pseudo-stable systems is completely pseudo-injective.

2. Fully Pseudo Stable Systems

We start with the following generalized concept of full stability and we give basic general facts.

Definition 2.1: Let M_S be an S-system. A subsystem N of M_S is said to be pseudo-stable, if $\mu(N) \subseteq N$ for each S-monomorphism $\mu: N \to M_S$. M_S is called fully pseudo-stable system if each subsystem of M_S is pseudo-stable. A monoid S is called fully pseudo-stable S-system.

It is clear that every stable subsystem is pseudo-stable and hence every fully stable S-system is fully pseudo-stable. The property of pseudo stability of subsystems can be reduced to elements, so it is easy to see that an S-system M_S is fully pseudo-stable if and only if each principal subsystem of M_S is pseudo-stable. Every subsystem of fully pseudo-stable system is fully pseudo-stable.

In the following proposition we give a simpler form of fully pseudo-stable systems which is more usable than the definition.

Proposition 2.2: The following are equivalent for an S-system M_S.

- 1. M_S is fully pseudo-stable.
- 2. Every subsystem of M_S is fully pseudo-stable.
- 3. Every 2-generated subsystem of $M_{\mbox{\scriptsize S}}$ is fully pseudo-stable.
- 4. If N, K are subsystems of M_S and $N \cong K$, then N = K.
- 5. $r_S(x) = r_S(y)$ implies that xS = yS for some x, y in M_S.

Proof: (1) \Rightarrow (2) and (2) \Rightarrow (3) are clear.

- (3) \Rightarrow (1) Suppose N is a subsystem of M_S and $\alpha: N \to M$ is an S-monomorphism. Let n be an element of N and let K = nSU α (n)S. Let $\beta = \alpha|_{nS}: nS \to M$. Then, clearly, α (n) = β (n). By assumption, K is fully pseudo-stable and so α (n) \in nS. It follows that M_S is fully pseudo-stable.
- (1) \Rightarrow (4) If N, K are two subsystems of M_S and $\alpha: N \to K$ is an S-monomorphism, then $K = \alpha(N) \subseteq N$. Since $\alpha^{-1}: K \to N$ is also S-isomorphism, then $N = \alpha^{-1}(K) \subseteq K$. Hence N = K.
- (4) \Rightarrow (5) Suppose $r_S(x) = r_S(y)$ for some $x, y \in M_S$. Define $\alpha : xS \to yS$ by $\alpha(xs) = ys$ for every $s \in S$. Clearly, α is a well-defined isomorphism and so xS = yS.
- (5) \Rightarrow (1) Let N be any subsystem of M_S and α : N \rightarrow M is an S-monomorphism. Let $n \in N$, then $r_S(n) = r_S(\alpha(n))$ and hence $\alpha(n) \in \alpha(n)S = nS \subseteq N$. Consequently, N is pseudo-stable.

Examples and Remarks 2.3:

- 1- It follows from proposition (2.2) that an S-system M_S is fully pseudo-stable if and only if for each subsystem N of M_S and S-monomorphism $\alpha: N \to M$, we have $\alpha(N) = N$.
- 2- Recall that an element x of a semigroup S is left (resp. right) zero if xy = x (resp. yx = x) for all $y \in S$. S is called left (resp. right) zero semigroup, if every element of S is left (resp. right) zero. Let $S = \{a, b, c, e\}$ with a, b are left zero, ca = cb = cc = a, e is the identity, it is clear that S is a monoid. Consider S as S-system, then $cS = \{a, c\}$ is pseudo-stable subsystem of S_S which is not stable.
- 3- We say that a subsystem N of S-system M_S satisfies Baer's *m*-criterion if for each S-monomorphism $\alpha: N \to M$ there exists an element s in S such that $\alpha(x) = xs$ for each x in N. It is an easy matter to see that an S-system M_S is fully pseudo-stable if and only if each principal subsystem of M_S satisfies Baer's *m*-criterion.

Next, we consider conditions under which full pseudo stability versus full stability. First an equivalence relation ρ on an S-system M_S is congruence, if m ρ m' implies that (ms) ρ (m's) for m, m' \in M, s \in S.

Lemma 2.4: Let M_S be an S-system where S is a commutative monoid and ρ be a congruence on S. Then $I_M(\rho) \cong \text{Hom}_S(S / \rho, M)$.

Proof: Let $\alpha:I_M(\rho)\to \operatorname{Hom}_S(\mathbb{S}/\rho, \mathbb{M})$ be defined by $\alpha(m)([s]_\rho)=ms$ for each $m\in I_M(\rho)$, it is clear that α is S-homomorphism. Also define $g:\operatorname{Hom}_S(\mathbb{S}/\rho, \mathbb{M})\to I_M(\rho)$ by $g(f)=f([1]_\rho)$ for each $f\in\operatorname{Hom}(\mathbb{S}/\rho, \mathbb{M})$. Then g is S-homomorphism. Now, for each $f\in\operatorname{Hom}(\mathbb{S}/\rho, \mathbb{M})$ we have:

 $(\alpha \circ g)(f)([s]_p) = \alpha(g(f))([s]_p) = \alpha(f([1]))([s]_p) = f([1]_p)s = f([1]_ps) = f([1.s]_p) = f([s]_p)$ (i.e. $\alpha \circ g = I_{\text{Hom}(S/p, M)}$). Also, for each $m \in I_M(p)$ we have:

 $(g \circ \alpha)(m) = g(\alpha(m)) = \alpha(m)([1]_p) = m.1 = m$, then $g \circ \alpha = I_{M(p)}$. Hence α is S-isomorphism.

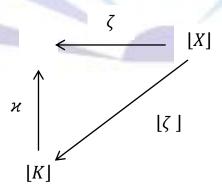
Proposition2.5: An S-system M_S is fully stable if and only if M_S is fully pseudo-stable and xS≅Hom(xS, M_S) for each x in M_S.

Proof: If M is a fully stable S-system, then $I_M(r_S(x)) = xS$ for each x in M_S. So by lemma(2.4),xS = $I_M(r_S(x)) \cong Hom(S/r_S(x), M) \cong Hom(xS, M)$. Conversely, for each $x \in M_S$ we have $xS \cong Hom(xS, M_S) \cong Hom(S/r_S(x), M_S) \cong I_M(r_S(x))$, then by proposition (2.2) implies that $xS = I_M(r_S(x))$. Thus M_S is fully stable.

In module theory, the injective envelope of fully pseudo-stable module over Noetherian ring is fully pseudo-stable [6]. In this part we study the injective envelop of fully pseudo-stable systems. First we need to recall some categorical concepts.

Definition 2.6 [4]: Let Cbe a concrete category. For $A \in C$ by $[A] \in S$ et (category of sets) denote the underlying set of A. For $f \in Mor_C(A_1, A_2)$, A_1 , $A_2 \in C$ by $[f] : [A] \to [A]$ denoted the mapping in Set underlying f. Now $[-] : C \to S$ et defined as indicated is a covariant functor which is called the forgetful functor from C into Set. In particular, we have the forgetful functor [-] : S-system $\to S$ et.

Definition 2.7[4]: Let **C**be a concrete category. The object $K \in \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} | = \mathbb{C}$ is called a cofreein **C**, if there exists $| \mathcal{L} |$



Recall that any cofree right S-system is isomorphic to asystem of the form $X^S = \{f \mid f : S \to X\}$ where X is a non-empty set and (fs)(t) = f(st) for every $s,t \in S$ and every cofree is injective system [4].

Theorem 2.8: If M_S is a right fully pseudo-stable S-system, then

the right system M^S is fully pseudo-stable.

Proof: Let $\alpha \in M^S$, and $\theta : \alpha S \to M^S$ be an S-monomorphism. Then $\alpha(t) \in M$ for each $t \in S$. Define $\alpha' : \alpha(t)S \to M$ by $\alpha'(\alpha(t)s) = \theta(\alpha t)(s)$.

If $\alpha(t)s_1 = \alpha(t)s_2 \Leftrightarrow \alpha(ts_1) = \alpha(ts_2) \Leftrightarrow \theta(\alpha(ts_1)) = \theta(\alpha(ts_2)) \Leftrightarrow \alpha'(\alpha(t)s_1) = \alpha'(\alpha(t)s_2)$, this shows that α' is well-defined and injective mapping.

 $\alpha'((\alpha(t)s_1)s_2) = \alpha'(\alpha(ts_1)s_2) = \theta(\alpha ts_1)(s_2) = \theta(\alpha(t))s_1(s_2) = \alpha'(\alpha(t)s_1)(s_2) \text{ and hence } \alpha'(\alpha(t)s_1) = \alpha'(\alpha(t))s_1. \text{ This shows that } \alpha' \text{ is S-homomorphism. So by full pseudo-stability of } M_S, \text{ one has } \alpha'(\alpha(t)S) \subseteq \alpha(t)S. \text{ There exists } s_1 \in S \text{ such that } \alpha'(\alpha(t)) = \alpha(t)s_1. \text{ Thus } \theta(\alpha t)(1) = \alpha'(\alpha(t)) = \alpha(t)s_1 = \alpha(ts_1) \in \alpha S \text{ so } \theta(\alpha t) \in \alpha S. \text{ This shows that } M^S \text{ is fully pseudo-stable.}$

Theorem 2.9: Every fully pseudo-stable system has fully pseudo-

stable injective envelope.

Proof: Let M_S be a fully pseudo-stable system. M_S can be embedded in injective fully pseudo-stable system M^S [4]. If E(M) is the injective envelope of M, then by the definition of injective envelope, it is a minimal injective system which conteains M_S . So E(M) is a subsystem of M^S and hence E(M) is fully pseudo-stable.

3. Completely pseudo-injective systems

Definition 3.1: An S-system M_S is called completely pseudo-injective if each subsystem of M_S is pseudo-injective. A semigroup S is called right completely self pseudo-injective, if each right ideal is pseudo-injective S-system. It is clear that every completely pseudo-injective is pseudo-injective system, in fact the injective envelop of non pseudo-injective system is pseudo-injective system which is not completely pseudo-injective.

Example3.2: If S is a left zero semigroup. Then S_S is completely pseudo-injective. Since for each subsystem N_S of S_S and for each S-monomorphisma: $K_S \to N_S$, where K_S is a subsystem of N_S . Define $\beta: N \to N$ by:

$$\beta(n) = \begin{cases} \alpha(n) & \text{if } n \in K \\ a & \text{if } n \notin K \end{cases}$$

it is clear that β is S-homomorphism and extension of α . Then N is pseudo-injective subsystem of S_S . Hence S_S is completely pseudo-injective S-system.

Recall that an S-system M_S is multiplication if each subsystem of M_S of the form MI for some ideal I of S [9]. This is equivalent to saying that every principal subsystem is of this form. Multiplication systems and fully pseudo-stable systems are independent, since Z is multiplication Z-system which is not fully pseudo-stable and consider $S = \{a, b, c\}$ with the product as in the table:

ŀ	а	b	С
а	а	b	С
a b	b	a	С
С	С	b	С

Then (S, .) is fully pseudo-stable S-system which is not multiplication.

In the following proposition, we consider conditions under which pseudo-injective system being completely pseudo-injective.

Proposition 3.3: Every multiplication pseudo-injective system is completely pseudo-injective.

Proof: Let M_S be a multiplication pseudo-injective S-system, N be a subsystem of M_S and $\alpha: K \to N$ be an S-monomorphism where K be any subsystem of N. By pseudo-injectivity of M_S implies that α can be extended to an S-endomorphism β of M_S . Since M_S is multiplication S-system, then there exists an ideal A of S such that N = MA. Hence $\beta(N) = \beta(MA) = \beta(M)A \subseteq MA = N$ and hence $\beta(N) = MA =$

Now, we ask the following question. Is there a relation between the fully pseudo-stable system and completely pseudo-injective?, the following theorem and its corollary gives the answer positively.

Theorem 3.4: Every fully pseudo-stable system is pseudo-injective.

Proof: Let M_S be a fully pseudo-stable S-system. It was proved in theorem 2.9, that the injective envelope E(M) of M is fully pseudo-stable S-system. Let N be a subsystem of M_S and $\alpha: N \to M$ be an S-monomorphism. Then $\alpha: N \to N$ by hypothesis. There is an S-homomorphism $\beta: E(M) \to E(M)$ which extends α . Full pseudo-stability of E(M) implies that $\beta'(=\beta|_M): M \to M$ is an extension of α . Thus M_S is pseudo-injective.

Corollary 3.5: Every fully pseudo-stable system is completely pseudo-injective.

Proof: Let M_S be a fully pseudo-stable S-system and N be a subsystem of M_S. It is clear that N is a fully pseudo-stable subsystem. Then by above theorem we have N is pseudo-injective subsystem. Hence M_S is completely pseudo-injective The convers of above corollary may not be true in general. For example, let S be a left zero semigroup, then S as S-system is completely pseudo-injective S-system (example 3.2) but it is not fully pseudo-stable S-system.

We knew from example 3.2 the (completely) pseudo-injective S-system need not be fully pseudo-stable S-system. Is there a condition make the above true? The answer in the following concept.

A subsystem N of an S-system M_S is called fully invariant if $\alpha(N) \subseteq N$ for every endomorphism α of M_S . M_S is called duo if every subsystem of M_S is fully invariant [10].

Proposition 3.6: Every pseudo-injective duo S-system is fully pseudo-stable.

Proof: Let M_S be a pseudo-injective duo S-system, N be a subsystem of M_S , and $\alpha : N \to M$ be any S-monomorphism. Then α can be extended to an S-endomorphism $\beta : M \to M$. Now, $\alpha(N) = \beta(N) \subseteq N$. Thus M_S is fully pseudo-stable.

4. Fully Pseudo Stable Extension

In this part we can raise the question: Is for every proper subsystem of any system there exists proper pseudo-stable subsystem contains it? First we introduce the following.

Definition 4.1: Let X_S, Y_S be two S-systems. Define the mono-trace of X_S in Y_S denoted by m-tr_{YS}(X_S) by

 $m-tr_Y(X_S) = \bigcup_{f:X\to Y} f(X_S)$, where f is S-monomorphism.

If N_S is a subsystem of M_S, then the mono-trace m-tr(N) in M is the mono-trace of N_S in M_S.

Examples 4.2:

- (1) Let (N, *) be a monoid defined by $n * m = max\{n, m\}$ for each n, m in N. Since the only N-momomorphism from any subsystem of N_N into N_N is the inclusion map. Hence $tr_N(K) = K$ for each subsystem K in N.
- (2) Let S be a monoid in example (2.3)(3). Consider S as an S-system, then:m-tr_S($\{a, b\}$) = m-tr_S($\{a\}$) = m-tr_S($\{b\}$) = $\{a, b\}$, m-tr_S($\{a, b, c\}$) = $\{a, b, c\}$ and m-tr_S($\{a, c\}$) = $\{a, c\}$.

we shall consider the pseudo-stable extension of S-system. First, let M_S be an S-system and N be a subsystem of M_S (not necessarly pseudo-stable). Define:

m-tr_M(N) = $< \alpha(x) : x \in N \text{ and } \alpha : N \to M \text{ is S-monomorphism} > =$

 $\bigcup_{f: N \to M} f(N)$ where f is S-monomorphism,

the subsystem generated by all the images of elements of N under the S-monomorphism from N into M. Clearly $N \subseteq m$ -tr_M(N). In fact M is fully pseudo-stable S-system if and only if N = m-tr_M(N) for each subsystem N of M_S this is equivalent to saying that $N = \bigcup \theta(N)$ for each subsystem N of M where the union is taken over all S-monomorphisms θ from N into M.

Proposition 4.3: Let N_Sbe a subsystem of an S-system M_S. Then

- 1. m-tr_M(N) is a pseudo-stable subsystem of M_S.
- 2. If M_S is pseudo-injective and N is essential subsystem of M_S , then m-tr_M(N) is the smallest pseudo-stable subsystem of M_S containing N.

Proof: (1) let β : m-tr_M(N) \rightarrow M be an S-monomorphism and f(x) \in m-tr_M(N) where x \in N, then β (f(x)) = ($\beta \circ$ f)(x) \in m-tr_M(N), and hence m-tr_M(N) is pseudo-stable.

(2) Let K be a pseudo-stable subsystem of M containing N and $f(x) \in m$ -tr_M(N). Pseudo-injectivity of M implies that there is an S-homomorphism $\beta: M \to M$ which extends f. Since f is S-monomorphism, then the definition of essential subsystem implies that β is S-monomorphism also. Now $x \in N \subseteq K$, thus $f(x) = \beta(x) \in K$, since K is pseudo-stable subsystem in M_S. Hence m-tr_M(N) $\subseteq K$.

Proposition 4.4: If N_S is an essential subsystem of a pseudo-injective S-system M_S , then the intersection of two pseudo-stable subsystems of M_S which are containing N_S is pseudo-stable.

Proof: Let A_1 , A_2 be two pseudo-stable subsystems of M with $N \subseteq A_1$, $N \subseteq A_2$. To show that $A_1 \cap A_2$ is pseudo-stable. Let $\mu : A_1 \cap A_2 \to M$ be an S-monomorphism. Pseudo-injectivity of M implies that there is an S-homomorphism $\beta : M \to M$ which extend μ . Put $\beta_i = \beta|_{A_i} : A_i \to M$ for i=1, 2. Since N is essential and $\beta|_N = \alpha = \mu \circ i : N \to M$, then β is S-monomorphism, and hence β_i is S-monomorphism. Since A_1 , A_2 are pseudo-stable subsystem of m, then for each a in $A_1 \cap A_2$ we have $\mu(a) = \beta_i(a) \in A_1 \cap A_2$. Hence $\mu(A_1 \cap A_2) \subseteq A_1 \cap A_2$.

Let M_S be an S-system and E(M) be the injective envelop of M. We can consider M as essential subsystem of E(M) [2]. We denote PS(M) the pseudo-stable extension of M in E(M) and call it the pseudo-stable envelop of M. It is clear that PS(M) is an essential extension of M [4]. On the other hand, in each injective envelop, the pseudo-stable envelope is

ISSN 2347-1921

unique, proposition 4.3. Since the injective envelop is unique up to isomorphism, then any two pseudo-stable envelops of M_S are isomorphic. Thus we have the following.

Theorem 4.5: Every S-system M_S has pseudo-stable envelope, and any two pseudo-stable envelops of M_S are isomorphic.

Proposition 4.6: If M_S is a reversible pseudo-injective S-system, then every pseudo-stable subsystem of M_S is pseudo-injective.

Proof: Suppose N_S is a pseudo-stable subsystem of a reversible pseudo-injective S-system M_S . Let K be a subsystem of N and $\alpha: K \to N$ be an S-monomorphism. Then $i \circ \alpha: K \to M$ is monomorphism where i is the inclusion map of N into M_S . Pseudo-injectivity of M_S implies that there is $\beta: M_S \to M_S$ which extends $i \circ \alpha$. Essential property of K gives that β is monomorphism and by pseudo-stablity of N, we have $\beta_1 = \beta|_N: N \to N$ is the extension of α . Hence N is pseudo-injective subsystem of M_S .

Let M_S be an S-system. The pseudo-injective envelope of M_S denoted by P(M), is defined as the minimal pseudo-injective extension of M_S , which is an essential extension of M_S .

Proposition 4.7: If M_S is a reversible S-system. Then for any S-system M, the pseudo-stable envelop PS(M) of M in E(M) is the pseudo-injective envelop of M, that is PS(M) = P(M).

Proof: PS(M) is the smallest pseudo-stable subsystem of E(M) containing M. Thus PS(M) is the smallest pseudo-injective system containing M, proposition 4.6. Further it is essential extension of M. Hence PS(M) is the pseudo-injective envelope of M i.e. PS(M) = P(M).

Proposition 4.8: For every reversible pseudo-injective S-system M_S, the following are equivalent:

- 1. N_S is pseudo-stable subsystem of M_S;
- 2. N_S is pseudo-injective.

Proof: N_S is essential pseudo-stable subsystem of M_S , if and only if $N_S = PS(N)$, proposition 4.3. proposition 4.7 implies that PS(N) (and hence N_S) is the pseudo-injective envelope of N_S , if and only if N_S is pseudo-injective.

References

- 1. M. S. Abbas, (1991), On fully stable modules, Ph.D. Thesis, College of Science, University of Baghdad.
- 2. P. Berthiaume, The injective envelope of S-sets, Canad. Math. Bull. 10 (1967):261-273.
- 3. J. Kim, PI-S-systems. Journal of the Chungcheong Mathematical Society. Vol. 21, no. 4(2008):591-599.
- 4. M. Kipl and U. Knauer and A. Mikhalev, **Monoids, acts and categories.** De gruter expositions in mathematics 29, Berlin. New York (2000).
- Y. Tongjiang: Generalized injective S-acts on a Monoid. Advances in Mathematics. Vol. 40, no.4, (2011):421-432.
- 6. M. S. Abbas. **Fully Pseudo Stable Modules**, Zanco, Journal of Pure and Applied Sciences/Salahaddin University. Vol.22, (2010):166-176.
- 7. Hiba R. Baanoon. On fully stable acts. MSC Thesis, Mustansiriyah University, 2014.
- 8. A. M. Lopez, Jr. and J. K. Luedeman. **Quasi-injective S-systems and their S-endomorphism semigroup.** Czechoslovak Math. Journal Vol.29, no. 1,(1979): 97-104.
- 9. Khaksari, A., Moghimi, GH., JahanpanahBavaryani, S., **Dual basis projective system**, International Journal of Algebra, Vol. 5, no. 5,(2011): 251-253.
- M. Roueentan and M. Ershad. Strongly Duo and Duo right S-act, Italian journal of pure and applied mathematics, N. 32, (2014): 143-154.