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INTRODUCTION 

The theory of hemivariational inequalities introduced by Panagiotopoulos in the early eighties of the 20th century (see [20, 
22]). Indeed, theory of hemivariational inequalities may be considered as an extension of the theory of variational 
inequalities [15]. The existence of a solution of a hemivariational inequality, a generalized hemivariational inequality, and 
other related problems have became a basic research topic which continues to attract the attention of researchers in 
applied mathematics as well as in engineering sciences, since the main ingredient used in the study of these inequalities 
is the notion of Clarke subdifferential of a locally Lipschitz functional (see for instance [1,5,6,9,12,17,18, 19] and the 
references therein).                                                                                                                                                                    

In (1999) Panagiotopoulos, Fundo and Radulescu [21] extended the classical results of [10], by proving a number of 
versions of theorems of Hartman-Stampacchia’s type for the case of hemivariational inequalities on compact or on closed 
and convex subsets, in infinite and finite dimensional Banach spaces. In (2002)[8] L.Gasinski studied a hyperbolic 
hemivariational inequality with a nonlinear, pseudomonotone operator depending on the derivative of an unknown func- 
tion and a linear, monotone operator depending on an unknown function. In (2007) [3] Carl, S., and Le, V.K., provided 
existence results for multivalued quasilinear elliptic problems of hemivari- ational inequality type with measure data. In 
(2009)[5] N. Costea,V. Radulescu studied existence results for hemivariational inequalities with relaxed 𝜂 − 𝛼 monotone 

mappings on bounded, closed and convex subsets in reflexiveBanach spaces. Moreover, K. Teng. In (2013)[24] establ- 
ished  the existence of two nontrivial solutions of a class of nonlocal hemivariational inequality-es depending on two 
parametric.His methods are based on critical point theory for non-differentiable functional. In this paper, we introduce a 
new class of monotone operator namely α(u, v) monot- one mappings and prove the existence of solutions for non-
standard hemivariational inequality with α(u, v)- monotone mappings in Banach and reflexive Banach spaces, via fixed 
point theorem and the KKM technigue. In addition, we provide sufficient conditions for existence solute-on for the case of 
unbounded sets. The results presented in this paper improve and extend some corresponding results of several 
authors.[1], [5], [3],[8]. 

Definition 0.1.For functions  𝐀: 𝐗 → 𝟐𝐗∗
 𝐚𝐧𝐝 𝛂: 𝐝𝐨𝐦 𝐀 ×  𝐝𝐨𝐦 𝐀 → 𝐑, T is said to be α(x, y)-monotone if for each x, y ∊ 

dom A, such that < 𝐴 𝐱 − 𝐀 𝐲 , 𝐱 − 𝐲 > ≥  𝛂  𝐱, 𝐲 . 

Throughout this paper, we assume that K be a nonempty subset of X. and  𝛼 define as follows: 

D ={α:α:dom A×dom A→R }is continuous function with respect to first variable such that 

  

 limt→1+  
α(u+t v−u ,v)

1−t
= 0  for each u, v ∊ K, and α v, v = 0, for each v ∊ K.  

In the last years, a number of authors have introduced several generalization of monotonicity such as pre-monotonicity, st- 
rong monotone, γ −para-monotone and θ-monotone. 

Remark 0.2.(i) If 𝛂  𝐱, 𝐲  = 𝟎 , we obtain the concept of Minty monotonicity [16].         

 (ii)If  𝛂  𝐱, 𝐲  = − 𝐦𝐢𝐧 𝛂 𝐱 , 𝛂 𝐲  .  𝐱 − 𝐲 , we obtain the concept of Pre-monotone operator  [11]. 

(iii)If  𝛂  𝐱, 𝐲  = 𝐫 𝐱 − 𝐲 𝟐 we obtain the concept of strong monotone operator [25]. 

(iv) If  𝛂  𝐱, 𝐲  = 𝛉 𝐱, 𝐲 .  𝐱 − 𝐲  we obtain the concept of θ-monotone operator [14]. 

(v)If α(x, y)= −𝐜 𝐱 − 𝐲 𝛄  we obtain the concept of  γ-para-monotone operator[25]. 

(vi) If α(x,y) = 𝐟( 𝐱 − 𝐲  ).  𝐱 − 𝐲 ) we obtain the concept of strong monotone operator [13].                                                  

                                                                   

1. PRELIMINARIES . 

For the convenience of the reader.We mention here some notations and properties that will be used during this paper.  

Let X be a Banach space with dual space X∗and < . , . > denoted the pairing between X and X∗. 𝐓: 𝐗 → 𝐋𝐩(Ω , 𝐑𝐤) will be a 

linear and compact operator where p ∊ (1,∞) and Ω is a bounded and open subset of RN . We will denote by Tv = v  and p  
the conjugated exponent of p. The Clarke’s generalized gradient ∂f(x,y) of the locally Lipschitz map f(x, .) is defined by:       

𝛛𝐟(𝐱, 𝐲)={ 𝐳 ∊ 𝐑𝐤: 𝐳. 𝒉 ≤ 𝒇𝟎 𝐱, 𝐲;  𝐡 , 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝐡 ∊ 𝐑𝐤} , 

Where the symbol "." means the inner product on Rk . The euclidian norm in Rk, k ≥ 1, resp. the duality pairing between a 

Banach space and its dual will be denoted by |・|, respectively < ., .>. We also denote by  .  p the norm in the space 

Lp (Ω, Rk) defined by:                                                                                                                                                                  

 𝐯  𝐩 = (      𝐯 (𝐱) 𝐩 𝐝𝐱
𝛀

)
𝟏

𝐩, 𝒑 ∊ (𝟏,∞). 

Let f = f(x, y): 𝛀 ×  𝐑𝐤 → R be a Caratheodory function, locally Lipschitz with respect to the second variable which satisfies 

the following condition:                          
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                                                              𝐳 ≤ 𝐂 𝟏 +  𝐲 𝐩−𝟏    for some C >0                                                                                                         (1.1)   

a.e. x ∊  𝛀, 𝐟𝐨𝐫 𝐚𝐥𝐥 𝐲 ∊ 𝐑𝐤 𝐚𝐧𝐝 𝐚𝐥𝐥 𝐳 ∊ 𝛛𝐟(𝐱, 𝐲).                                                                    

We shall use the notation 𝑓0(x, y; h) for the Clarke’s generalized directional derivative (see e.g. [4]) of the locally Lipschitz 

mapping f(x, .) at the point y∊ Rk  with respect to the direction h ∊ Rk , where x ∊ Ω , i.e.,                                                         
                                            

𝐟𝟎 𝒙, 𝒚; 𝒉 =
𝐥𝐢𝐦𝐬𝐮𝐛

𝐮 → 𝐲, 𝐭 ↓ 𝟎
 
𝒇 𝐱,𝐮+𝐭𝐡 −𝒇 𝐱,𝐮  

𝒕
. 

Definition 1.1. [13] A mapping N: K → 2E (by 2E we understand the family of all the subsets of E) is said to be a KKM 

mapping if for any  u1 , u2 , … un ∊ k, co u1 , u2 , … un  ⊂  N(ui)
n
i=1 , where, co u1 , u2 , … un  is denotes the convex hull 

of  {u1, u2 , … un }. 

Lemma 1.2. [7] Let K be a nonempty subset of a Hausdorff topological vector space E and N: K → 2E  be a KKM 

mapping. If N (u) is closed in E for each u ∊ K and compact for some u0 ∊  K, then  N u ≠ ∅u∊k . 

Lemma 1.3. [23]. Let K  be a nonempty convex subset of a Hausdorff topological vector space E. Let F ∶  K → 2K  be a 

set valued map such that: 

(𝐶1) For each v ∊  K, F(v) is a nonempty convex subset of K. 

(𝐶2) For each u ∊  K,   F−1 u  = {v ∊ K: u ∊ F (v)} contains an open set 𝑆𝑢  . 

(𝐶3)  𝑆𝑢 = Ku∊k . 

(C4) There exists a nonempty set U0 contained in a compact convex subset U1 of K such that L = 

  Su
c   is empty or compactu∊k , where  Su

c  is the complement of Su  in K. 

Then there exists a point  v0 ∊  K in which v0 ∊  F v0 . 

Lemma 1.4.[21] Suppose that f satisfies the assumption (1.1) and X1 , X2 are nonempty subsets of X, and T: X→ L
p
(Ω ; 

R
K
) is a linear compact operator. Then the mapping from    X1  ×  X2   to R defined by: 

 𝑣, 𝑢 →  𝑓0 𝑥, 𝑣  𝑥 , 𝑢  𝑥 − 𝑣  𝑥  𝑑𝑥   
Ω

. 

is weakly upper semicontinuous. 

Throughout this paper  f 0 x, v , u − v  dx,
Ω

 will denote  f 0 x, v  x , u  x − v  x  dx
Ω

.  

Definition 1.5.[2] Let A: K → X∗ be mappings. A is called hemicontinuous at a point u in K if 

 limt→0 < 𝐴𝑢 + 𝑡𝑕 , 𝑣 > = < Au, v >   for each h , v ∊ K and  t ∊ (0,1). 

2. MAIN RESULTS  

In order to prove the existence results. We will consider the following problem: 

Find v ∊ K, such that 

< Au, u − v > +  f 0 x, v , u − v  dx ≥ α u, v       ∀u ∊ K                                                                       2.1  
Ω

. 

Lemma 3.1 Let K be a nonempty, convex and subset of a reflexive Banach space X, Assume that: 

(C1)A: K → X∗ be hemicontinuous and α(u,v)-monotone operator and continuous with respect to first variable.  

(𝐶2) v→ <Az, u-v> is convex for each u, z ∊ K. 

 C3  α v, v = 0, for each u,v ∊ K. 

Then v ∊ K is a solution of (2.1) iff it solves the following hemivariational inequality problem.                                                  

 Find v ∊ k such that 

< 𝐴𝑣, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥 ≥ 0    ∀𝑢 ∊ 𝑘                                                                                            2.2 
Ω

. 

Proof. Assume that v is a solution of (2.1) and fix u ∊ K, letting z = u + t(v-u), t ∊ (0,1], then z∊ K. It follows from (2.1),   

< 𝐴𝑧, 𝑧 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑧 − 𝑣  𝑑𝑥 ≥ 𝛼 𝑧, 𝑣 = 𝛼 (𝑢 + 𝑡 𝑣 − 𝑢 , 𝑣                                                     2.3  
Ω

. 

Take left side, by   𝐶1 ,  𝐶2 𝑎𝑛𝑑 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑡𝑕𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔  𝑢 →  𝑓0 𝑥, 𝑣 , 𝑢  , 

< 𝐴𝑧, 𝑧 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑧 − 𝑣  𝑑𝑥 ≤
Ω

 𝑡 < 𝐴𝑧, 𝑣 − 𝑣 > + 1 − t < 𝐴𝑧, 𝑢 − 𝑣 > 
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+𝑡  𝑓0 𝑥, 𝑣 , 𝑣 − 𝑣  𝑑𝑥 + (1 − 𝑡)
Ω  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥

Ω
.                                                

So, by (2.3) 

   1 − t  < 𝐴𝑧, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥
Ω

 ≥ 𝛼 (𝑢 + 𝑡 𝑣 − 𝑢 , 𝑣                                                                                                  (2.4) 

   < 𝐴𝑧, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥
Ω

 ≥
𝛼 (𝑢+𝑡 𝑣−𝑢 ,𝑣 

 1−t 
                                                                                                                           (2.5)   

Letting t→ 1+ , 𝑢𝑠𝑖𝑛𝑔  𝐶1 − (𝐶3), v solves (2.2). 

Conversely, assume that v is a solution of (2.2).From definition of α(u,v)-monotone operator,  

< 𝐴𝑢 − 𝐴𝑣, 𝑢 − 𝑣 ≥ 𝛼 𝑢, 𝑣                                                                                                                 2.6 .  

Hence by (2.2) and (2.6) we have solution of (2.1).This completes the proof.                                                                        

Theorem. 2.2 Let K be a nonempty, convex and closed subset of reflexive Banach space X. Assume that: 

(𝐶1) 𝛼 𝑣, 𝑣 = 0 , 𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝑢, 𝑣 ∊ 𝐾.   

(𝐶2) 𝑣 → < 𝐴𝑧, 𝑢 − 𝑣 > 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  ∀ 𝑢, 𝑧 ∊ 𝐾. 

(C3) A: K→ X∗ is hemicontinuous map and α(u,v)-monotone operator such that α is continuous with respect to first variable.  

(C4) For any sequence {vn} ⊂ X in which vn → v, then  limsub
n

α u, vn ≥ α u, v . 

Then there exists at least one solution for (2.1).  

Proof: By contradiction, assume that (2.1) has no solution. Then for each v ∊ K, there exists u ∊ K, 

   < 𝐴𝑢, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥 < 𝛼 𝑢, 𝑣                                                                                                2.7 
Ω

.  

Using Lemma (2.1), we get for each 𝑣 ∊ 𝐾, there exist𝑠 𝑢 ∊ 𝐾, 

< 𝐴𝑣, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥 < 0 .                                                                                                          2.8 
Ω

. 

Define two set valued mappings F, Su ∶  K → 2K   as follows: 

𝐹 𝑣 = {𝑢 ∊ 𝐾: < 𝐴𝑣, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥 < 0 
Ω

} 

𝑆𝑢 𝑣 = {𝑣 ∊ 𝐾: < 𝐴𝑢, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥 < 𝛼 𝑢, 𝑣  
Ω

} 

Our claim F satisfies the conditions of Lemma 1.3. Proof is divided into the following six steps. 

Step 1: F (v) is a nonempty. This is directly from (2.8). 

Step 2: F (v) is a convex for each 𝑣 ∊ K. 

Let v ∊ K be fixed, choose  𝑟, 𝑚 ∊  𝐹 𝑣 , 𝑎𝑛𝑑 𝑧 =  1 − 𝑡 𝑟 + 𝑡𝑚, 𝑤𝑕𝑒𝑟𝑒 𝑡 ∊ [0,1]. By (𝐶2) and convexity of the mapping  𝑢 →
 𝑓0 𝑥, 𝑣 , 𝑢  ,                                                                         

< 𝐴𝑣, 𝑧 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑧 − 𝑣  𝑑𝑥 ≤
Ω

 𝑡 < 𝐴𝑣, 𝑚 − 𝑣 > + 1 − t < 𝐴𝑣, 𝑟 − 𝑣 > 

+𝑡  𝑓0 𝑥, 𝑣 , 𝑚 − 𝑣  𝑑𝑥 +  1 − 𝑡 
Ω  𝑓0 𝑥, 𝑣 , 𝑟 − 𝑣  𝑑𝑥                                                 

Ω
      (2.9) 

Since  𝑟, 𝑚 ∊  𝐹 𝑣 , 

< Av, z − v > +  f 0 x, v , z − v  dx ≤  
Ω

0 

Therefore, z ∊ F(v) and F(v) is convex for each v ∊ K. 

𝐒𝐭𝐞𝐩 𝟑:  Su
c   is weakly closed. 

Let {𝑣𝑛} ⊂ 𝑆𝑢
𝑐   be a sequence that converge weakly to v as n →∞. We will prove v ∊ 𝑆𝑢

𝑐 . 

Since f satisfy conditions Lemma 1.4. The application v, u →  f 0 x, v , u − v  dx 
Ω

is weakly upper semicontinuous, 

and by (C2) − (C4). 

𝛼 𝑢, 𝑣 ≤  limsub
𝑛

𝛼 𝑢, 𝑣𝑛      

≤ limsub
𝑛

< 𝐴𝑢, 𝑢 − 𝑣𝑛 > +limsub
𝑛

 𝑓0 𝑥, 𝑣𝑛  , 𝑢 − 𝑣  𝑑𝑥 
Ω

.                                                                                   
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≤ −liminf
𝑛

< 𝐴𝑢, 𝑣𝑛 − 𝑢 > +limsub
𝑛

 𝑓0 𝑥, 𝑣𝑛  , 𝑢 − 𝑣  𝑑𝑥                                                                  
Ω

                                             

≤ − < 𝐴𝑢, 𝑣 − 𝑢 > +  𝑓0 𝑥, 𝑣  , 𝑢 − 𝑣  𝑑𝑥
Ω

                                                                                                                                            

≤ < 𝐴𝑢, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣  , 𝑢 − 𝑣   𝑑𝑥
Ω

.                                                                                                                        

This means that  v ∊ Su
c  . 

Step4:  𝑆𝑢  ⊆  𝐹−1(u). 

Let  v ∉  F−1 u . This is equivalent to u ∉ F v . Then 

< 𝐴𝑣, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥 ≥  
Ω

0. 

And from definition of α(u,v)-monotonicity of A,   

< 𝐴𝑢, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥 ≥ 𝛼 𝑢, 𝑣 
Ω

. 

Hence, v ∉ Su . This implis that Su  ⊆  F−1 u . 

Step 5:  𝑆𝑢 = K . It is enough to show that K ⊆  𝑆𝑢 .u∊k  u∊k                                                         

For any v ∊ K, by (2.8), there exists u ∊ K such that 

< 𝐴𝑢, 𝑢 − 𝑣 > +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥 < 𝛼 𝑢, 𝑣  
Ω

. 

Therefore, v ∊ Su .  

Step 6: L = Su
c   is empty or weakly compactu∊k . 

Since L is the intersectin of weakly closed sets  Su
c  , so, L is weakly closed. K is a nonempty, bounded closed and convex 

subset of a reflexive Banach space. So, K is weakly compact. Then L is also weakly compact. Thus, the conditions of 
Lemma 1.3 satisfiy in the weak topology. There is a fixed point v0 ∊ K , i.e, v0∊ F(v0) which implies that :                           

                                 0 =< 𝐴𝑣0 , 𝑣0 − 𝑣0 > +  𝑓0 𝑥, 𝑣0 , 𝑣0 − 𝑣0  𝑑𝑥 < 
Ω

0.                                                   

This is a contradiction. Hence (2.1) has at least one solution.                                                                                                 

Theorem 2.3. Assume that the assumptions as in Theorem 2.2 hold without the hypothesis of boundedness of K. In 

addition, suppose that A(0) = 0 ∊ 𝐾 and there exists r ≥  m> 1 such that 

𝛼(0, 𝑣𝑛)

 𝑣𝑛 𝑟 → ∞ 𝑎𝑠  𝑣𝑛 → ∞. 

Then the inequality problem (2.1) admits at least one solution. 

Proof. Define Kn  =   u ∊  K ∶   u ≤  n . By Theorem 3.2, there exists  vn ∊ Kn , 

< 𝐴𝑢, 𝑢 − 𝑣𝑛 > +  𝑓0 𝑥, 𝑣𝑛 , 𝑢 − 𝑣𝑛  𝑑𝑥 ≥ 𝛼 𝑢, 𝑣𝑛       ∀𝑢 ∊ 𝐾.                                                              2.10  
𝛺

.   

Claim 1.There exist 𝑛0  ∊ N such that   𝑣𝑛0
 < 𝑛0. 

by contradiction , assume that  𝑣𝑛 = n for each n ∊  0, ∞ . Setting u = 0 in (2.10), then  

𝛼(0, 𝑣𝑛) ≤  𝑓0 𝑥, 𝑣 , −𝑣𝑛  𝑑𝑥      ∀𝑢 ∊ 𝐾                                                                                                    2.11  
𝛺

.            

On the other hand, for any y, h ∊ Rk  there exists z ∊ ∂f x, y  see  4  Prop.  2.1.2 , in which 

𝑓0 𝑥, 𝑦; 𝑕 = 𝑧. 𝑕 = max⁡{𝑧. 𝑕 ∶ 𝑧 ∈ 𝜕𝑓 𝑥, 𝑦 }.  

It follows from (1.1) that  

 𝑓0 𝑥, 𝑦; 𝑕  ≤  z  h ≤ C 1 +  y p−1  h .  

Using Holders inequality and the fact that T: X → Lp (Ω, Rk) is a linear and compact, so 

  𝑓0 𝑥, 𝑣𝑛 , −𝑣𝑛  𝑑𝑥
𝛺

 ≤ (𝐶1 𝑣𝑛  𝑚 + 𝐶2  𝑣𝑛  𝑚
𝑚 ) ≤ (𝐶3 𝑣𝑛 + 𝐶4  𝑣𝑛 𝑚 )                                         (2.12). 

For some suitable constants  𝐶1, 𝐶2, 𝐶3, 𝐶4  > 0 .Therefore, from (2.11) and (2.12), 

𝛼(0,𝑣𝑛 )

 𝑣𝑛  𝑟 ≤ (𝐶3 𝑣𝑛 1−𝑟 + 𝐶4  𝑣𝑛 𝑚−𝑟) . 

Passing to the limit as n→ ∞ we reach a contradiction, since r ≥ m>1.                                          
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Claim 2. vn0
solves inequality problem (2.1) 

Since  vn0
 < n0, for each u ∈ K. Definie t ∈   0,1  as follows 

t=  

1                          𝑖𝑓    𝑣𝑛0
= 𝑢

𝑚𝑖𝑛
𝑛0−  𝑣𝑛 0 

 𝑢− 𝑣𝑛 0 
           𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 . 

We conclude 𝑧 =  𝑡 𝑣𝑛0
 +  1 − 𝑡 𝑢0  satisfies z in Kn0

. From (2.10) and the positive homogeneity of the mapping 

 u →  f 0 x, v , u  . We get 

𝛼 𝑧, 𝑣𝑛0
 ≤ < 𝐴𝑧, 𝑧 − 𝑣𝑛0

> +  𝑓0 𝑥, 𝑣𝑛0
 , 𝑧 − 𝑣𝑛0

  𝑑𝑥 
𝛺

. 

So, 

𝛼  𝑡 𝑣𝑛0
+ (1 − 𝑡)𝑢0 , 𝑣𝑛0

 ≤  𝑡[< 𝐴𝑧, 𝑣𝑛0
− 𝑣𝑛0

> +  𝑓0 𝑥, 𝑣𝑛0
 , 𝑣𝑛0

 − 𝑣𝑛0
  𝑑𝑥  

𝛺
 ] 

+(1 − t)[< Az, u0 − vn0
> +  f 0 x, vn0

 , u0  − vn0
  dx

Ω
]                                                        (2.13) 

Letting t→ 0+ in (2.13) and using the hemicontinuous of A,                                                                                                      

      

                                          α u0 , vn0
 ≤ < Au0 , u0 − vn0

> +  f 0 x, vn0
 , u0  − vn0

  dx 
Ω

. 

That means vn0
 is a solution of (2.1).  

Here, we will give the sufficient conditions for which Theorem 2.2 for the case X Banach space by using KKM technique.  

Theorem. 2.4. Assume that K is a nonempty convex and compact subset of a Banach space X, and the 

assumption𝑠 (𝐶1) − (𝐶4) in Theorem 2.2 hold. Then there exists at least one solution for (2.1).                                               

Proof. Define two set valued mappings N, M ∶  K → 2K   as follows : 

N(u) = {v ∊ k: < Av, u − v ≥ +  f 0 x, v , u − v  dx ≥ 0 
Ω

} 

𝑀(𝑢) = {𝑣 ∊ 𝑘: < 𝐴𝑢, 𝑢 − 𝑣 ≥ +  𝑓0 𝑥, 𝑣 , 𝑢 − 𝑣  𝑑𝑥 ≥ 𝛼 𝑢, 𝑣  
Ω

} 

Obviously, N u , M u  are nonempty for each u ∊ k. The proof is divided into the following four steps. 

Step 1: N is a KKM mapping,  

In fact, if N is not a KKM mapping, then there exist {u1 , u2 , … … un } ⊆ K such that:                

co u1 , u2 , … … un ⊄  N ui 
n
i=1 . There exist a u0 ∊ co u1 , u2 , …… un , u0= tiui ,  ti

n
i=1 ≥  0, ∀ 𝑖 = 1,2, … 𝑛,  ti = 1, in  n

i=1 which 

 u0 ∉  N ui . By n
i=1 definition of N, 

< Au0 , ui −  u0 > +  f 0 x,  u0 , ui −  u0  dx < 0 , i = 1,2, ….   
Ω

n. 

Since  ti = 1, ti ≥ 0 ∀ i = 1,2, … . n,n
i=1  so  

                            0 >   < 𝐴𝑢0, 𝑢𝑖 −  𝑢0 ≥ +  𝑓0 𝑥,  𝑢0 , 𝑢𝑖 −  𝑢0  𝑑𝑥 
Ω

  𝑡𝑖
𝑛
𝑖=1 

 < 𝐴𝑢0,  𝑡𝑖  
n
i=1 𝑢𝑖 −  𝑢0 ≥ +  𝑓0 𝑥,  𝑢0 ,   𝑡𝑖 

n
i=1 𝑢𝑖
 −  𝑢0  𝑑𝑥                                                                                       

Ω
       =

= < 𝐴𝑢0, 𝑢0 −  𝑢0 ≥ +  𝑓0 𝑥,  𝑢0 , 𝑢0 −  𝑢0  𝑑𝑥 
Ω

= 0.                                                      

Which is contradiction and this implies that N is a KKM map.                                                   

Step 2: N(u) ⊆ M(u)  for each u ∊ K. This satisfies from Lemma.2.1. It implies that M(u) is also a KKM map .                     

Step 3: M (u) is closed for each u ∊ K. This is satisfies (see Theorem 2.2, step 3).     

Step 4: M (u) is compact for each u ∊ K. 

Because M (u) is closed subset of compact K for each u ∊ K. Thus, M (u) is compact for each u ∊ K. According to Lemma 

1.2. We have  M u ≠ ∅ u∈K . It follows that there exists u ∊ K 

< Au, u − v ≥ +  f 0 x, v , u − v  dx ≥ α u, v 
Ω

. 

Therefore, (2.1) has at least one solution. The proof is complete.                                                                                          
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Corollary. 2.5. Assume that K is a nonempty, convex subset of a Banach space X, and the assumptions (C1 − C4) in 

Theorem 2.2 hold. In addition, assume that: 

C5 :  f 0 x, v , 0 − v  dx = 0
Ω

. 

C6: σ =  v ∊ K: α 0, v ≤ 0  is relative compact in which A(0) = 0 ∊ K. 

Then there exists at least one solution for (2.1).  

Proof. It suffices to prove M (u) is compact for some u ∊ K. Since   

M(u) = {v ∊ k: < Au, u − v ≥ +  f 0 x, v , u − v  dx ≥ α u, v  
Ω

.         

So,                                                                                                                                                                                        

M(u) ⊆ {v ∊ k: < Au, u − v ≥
α u,v 

2
} { f 0 x, v , u − v  dx ≥

α u,v 

2
} 

Ω
. 

Since A 0 = 0 ∊ K, we get  

M(0) ⊆ {v ∊ k: < A(0),0 − v ≥
α 0,v 

2
} { f 0 x, v , 0 − v  dx ≥

α 0,v 

2
} 

Ω
. 

Hence, M(0) is a closed subset of relative compact set σ. That means M (u) is compact for some u ∊ k. 
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