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Abstract

In this paper, some wave-like equation was solved by using a new modified iterative method as an infinite force but
there is difficulty in calculating the infinite series, so the cut power series will be approximated using round the pillow.
Where the PADE approximation approaches a severed energy series as a ratio between polynomials to reduce
calculations and shortening of the power chain while maintaining the required accuracy. Through these methods the
successful use of approximate the solut.
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1. Introduction

Mathematical model plays an important role in described natural and engineering problems. Many important problems
are frequently modeled through linear and nonlinear differential equations. Due to this importance, researchers have
been interesting to find efficient and accurate solutions to their problems. One of these problems is the nonlinear
wave-like equations with variable coefficients.

However, it is difficult to obtain the exact solutions for many problems in real-life. There are many techniques and
methods that have been used to solve differential equations, some of this method is used to find the exact solution for a
specific problem such as separation of variables and the integral transforms (Laplace transform, Fourier transform and
it.), other methods are used to find a numerical solution such as finite element method, finite difference method and
it., other methods have been used to provide an analytical approximation solution for linear and nonlinear differential
problems, such as the variational iteration method (VIM), homotopy perturbation method (HPM) [1-3], combine LA-
transform with decomposition method [4] and Adomian decomposition method (ADM) [5-9]. Many classes of
differential equations have been solved using this decomposition methods. The analytical methods provide the solution
as an infinite power series, so the infinite power series must be truncated at a finite term to get numerical solution.

Consider the wave-like equation.

𝑈_𝑡𝑡 =
𝑖,𝑗=1

𝑛

∑ 𝐹_1𝑖𝑗 𝑋, 𝑈, 𝑡( ) ∂𝑘+𝑚
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𝑘 ∂ 𝑥

𝑗
𝑚  𝐹

2𝑖𝑗

𝑈
𝑥𝑖

,  𝑈
𝑥𝑗( ) +

𝑖=1

𝑛

∑ 𝐺
1𝑖

𝑋, 𝑈, 𝑡( ) ∂𝑝
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𝑥𝑖( ) + 𝐻 𝑋, 𝑡, 𝑈( ) + 𝑆 𝑋, 𝑡( )                                                       (1)

By the initial conditions

𝑈 𝑋, 0( ) = 𝑎
0

𝑋( ),   𝑈
𝑡

𝑋, 0( ) = 𝑎
1

𝑋( ),                                                                                                             (2) 
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1
,  𝑥

2
,  …, 𝑥

𝑛
) 𝐹

1𝑖𝑗
𝐺

1𝑖
𝑋,  𝑡 𝑈,  𝐹

2𝑖𝑗
 𝐺

2𝑖
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1. Modified New Iterative Method

In 2006, a new iterative method (NIM) was proposed by Gejji and Jafari to solve the linear and non-linear differential
equations [10]. In [11] Alaa modified new iterative method as following:

Rewrite a general initial value problem (IVP) as:

𝐿 ψ( ) + 𝑅 𝑢( ) + 𝑁 𝑢( ) = ϕ                                                                                                                                    (3)
With the initial condition:

∂𝑟ψ

∂𝑡𝑟 |
𝑡=0

= 𝑓
𝑟

𝑋( )  ,  𝑟 = 0, 1, 2…,  𝑛 − 1                                                                                                      (4)
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Where is an unknown function with X is a variable with one or more dimensions, a linear operatorψ(𝑋, 𝑡) 𝐿 .( ) = ∂𝑛(.)

∂𝑡𝑛  

is a partial derivative with respect to with n=1, 2, … ,while denoted the remained of linear operator, the𝑡 𝑅(.)
nonlinear operator of IVP (3) was denoted by and finally the inhomogeneous part is a known function.𝑁(.) ϕ(𝑋, 𝑡)
The unknown function 𝑢 can be expressed as the power series:

ψ =
𝑘=0

∞

∑ ψ
𝑘
                                                                                                                                                      (5)

The Laplace transform (w.r.t. to t) can be taken on both sides of equation (3) to get:

𝐿 𝐿(ψ){ } + 𝐿 𝑅 ψ( ) + 𝑁(ψ){ } = 𝐿 ϕ{ }                                                                                                            (6)
Now, let and applied the properties of Laplace transform, the equation (6) becomes:𝑀 = 𝑅 + 𝑁

𝑠𝑛𝐿 ψ{ } −
𝑟=0

𝑛−1

∑ 𝑠𝑛−𝑟−1 ∂𝑟ψ

∂𝑡𝑟 |
𝑡=0

+ 𝐿 𝐻 ψ( ){ } = 𝐿 ϕ{ }                                                                                    (7)

From (4) we have:

𝑠𝑛𝐿 ψ{ } −
𝑟=0

𝑛−1

∑ 𝑠𝑛−𝑟−1𝑓
𝑟

+ 𝐿 𝐻 ψ( ){ } = 𝐿 ϕ{ }                                                                                            (8)

and hence:

𝐿 ψ{ } =
𝑟=0

𝑛−1

∑ 𝑠−𝑟−1𝑓
𝑟

+ 1

𝑠𝑛 𝐿 ϕ{ } − 1

𝑠𝑛 𝐿 𝐻 ψ( ){ }                                                                                         (9)

The inverse Laplace transform have been taken on both sides of equation (9), to get:

𝑢 =
𝑟=0

𝑛−1

∑ 𝑡𝑟

𝑟! 𝑓
𝑟

+ 𝐿−1 1

𝑠𝑛 𝐿 ϕ{ }{ } − 𝐿−1 1

𝑠𝑛 𝐿 𝐻 ψ( ){ }{ }                                                                               (10)

Then (10) and (1) are equivalent, i.e., they have the same solution.

Now, (5) have been Substituted in (10) then we have:

𝑘=0

∞

∑ ψ
𝑘
(𝑋, 𝑡) = 𝑓 − 𝐿−1 1

𝑠𝑛 𝐿 𝐻
𝑘=0

∞

∑ ψ
𝑘
(𝑋, 𝑡)( )⎰

⎱
⎱
⎰

⎰
⎱

⎱
⎰                                                                            (11)

Where

𝑓 =
𝑟=0
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∑ 𝑡𝑟

𝑟! 𝑓
𝑟

+ 𝐿−1 1

𝑠𝑛 𝐿 ϕ{ }{ }                                                                                                                (12)
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∞

∑ ψ
𝑘( )⎰

⎱
⎱
⎰

⎰
⎱
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𝑘=1

∞
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𝑟=0

𝑘
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𝑟=0

𝑘−1

∑ ψ
𝑟( )⎡⎢⎢⎣
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⎰
⎱

⎱
⎰

⎰
⎱

⎱
⎰                      (13) 

Substituting (13) in (11), we have:

𝑘=0

∞

∑ ψ
𝑘

= 𝑓 − 𝐿−1 1

𝑠𝑛 𝐿 𝐻 ψ
0( ) +

𝑘=1

∞

∑ 𝐻
𝑟=0

𝑘

∑ ψ
𝑟( ) − 𝐻

𝑟=0

𝑘−1

∑ ψ
𝑟( )⎡⎢⎢⎣

⎤⎥⎥⎦

⎰
⎱

⎱
⎰

⎰
⎱

⎱
⎰                                         (14)

Finally, the recurrence relation was defined as:

{ψ
0

= 𝑓                           ψ
1

=− 𝐿−1 1

𝑠𝑛 𝐿 𝐻 ψ
0( ){ }{ }                                                                                 

       ψ
𝑘+1

=− 𝐿−1 1

𝑠𝑛 𝐿 𝐻 ψ
0

+ … + ψ
𝑘( ) − 𝐻 ψ

0
+ … + ψ

𝑘−1( ){ }{ },   𝑘 = 1, 2, …   (15)

3. Pade Approximation

Many types of problems, in various sciences as engineering and physical and it., have been successfully solved by Pade
approximation [12-15]. These problems of applied sciences have been solved as an infinite power series, but it is not
possible to compute the infinite series. So, the power series must be truncated at a certain term. The next step is to
approximate the truncated power series by constructing a rational function matches the truncated power series as far
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as possible which is called Pade approximant [16]. Pade approximant approximates a truncated power series as ratio of
two polynomials. The coefficients of polynomials in the numerator and denominator can be computed by matching the
terms with the coefficients of truncated power series [17]. The approximation of a function using the Pade
approximation is often better than the approximation by the truncated power series, because the convergence interval
is greater.

In many areas and fields, the rational series solutions have been approximated by Pade approximation [14,18]. This
approximation shows best performance over series approximations. Therefore, the Pade approximations are better than
approximation by polynomials in numerical results.

If the series expansion of a function is as following:ψ(𝑡)

ψ 𝑡( ) = ψ
0

+ ψ
1
𝑡 + ψ

2
𝑡2 + ψ

3
𝑡3 + ψ

4
𝑡4 + ψ

5
𝑡5 + … =

𝑘=0

∞

∑ ψ
𝑘
𝑡𝑘                                             (16)

The symbol [n/m]ψ(t) refers to the Pade approximant for the function of order [n,m] which is defined by:ψ(𝑡)

[𝑛, 𝑚]
𝑡( )

=
𝑃

𝑛
(𝑡)

𝑄
𝑚

(𝑡) =
𝑝

0
+𝑝

1
𝑡+…+𝑝

𝑛
𝑡𝑛

1+𝑞
1
𝑡+…+𝑞

𝑚
𝑡𝑚                                                                                                    (17)

where the denominator and numerator have no common factors and q0 = 1. The denominator and numerator in (17)
are constructed so that and [n/m]ψ(t) and their derivatives agree at t = 0 up to n+m. That isψ(𝑡)

ψ 𝑡( ) − 𝑛, 𝑚[ ]
ψ 𝑡( )

= 𝑂 𝑡𝑛+𝑚+1( )                                                                                                           (18)

From (18), we have

ψ 𝑡( )
𝑘=0

𝑚

∑ 𝑞
𝑘
𝑡𝑘 −

𝑘=0

𝑛

∑ 𝑝
𝑘
𝑡𝑘 = 𝑂 𝑡𝑛+𝑚+1( )                                                                                               (19)

From (19), we get the following systems with q0 = 1:

{ψ
𝑛+1

+ ψ
𝑛
𝑞

1
+ … + ψ

𝑛−𝑚+1
𝑞

𝑚
= 0    ψ

𝑛+2
+ ψ

𝑛+1
𝑞

1
+ … + ψ

𝑛−𝑚+2
𝑞

𝑚
= 0 ⋮  

                                                 ψ
𝑛+𝑚

+ ψ
𝑛+𝑚−1

𝑞
1

+ … + ψ
𝑛
𝑞

𝑚
= 0                                             (20) 

and

{𝑝
0

= ψ
0
                                            𝑝

1
= ψ

1
+ ψ

0
𝑞

1
                              ⋮ 

    𝑝
𝑛

= ψ
𝑛

+ ψ
𝑛−1

𝑞
1

+ … + ψ
0
𝑞

𝑛
                                                                                                     (21)    

Firstly, from (20) all the coefficients qi, 1 ≤ i ≤ m are calculated. Then, the coefficient pi, 0 ≤ i ≤ n are determined from
(21).

Note that, if the degree for numerator and denominator in (17) are equal or when the numerator has degree one higher
than the denominator then the error (18) is smallest for a fixed value of n+m+1.

4. Numerical Application

In this section, the Pade approximation method has been used to approximate the analytical solutions, obtained by
modified new iterative method, of some cases of wave-like equation, illustrations have been given for comparison
between the approximate solution and the exact solution to indicate the accuracy of this method.

4.1 Case 1:

Consider the following nonlinear wave-like equation:

𝑢
𝑡𝑡

− ∂2

∂𝑥 ∂𝑦 𝑢
𝑥𝑥

𝑢
𝑦𝑦( ) + ∂2

∂𝑥 ∂𝑦 𝑥𝑦𝑢
𝑥
𝑢

𝑦( ) + 𝑢 = 0

with initial conditions

𝑢 𝑥, 𝑦, 0( ) = 𝑒𝑥𝑦 ,      𝑢
𝑡

𝑥, 𝑦, 0( ) = 𝑒𝑥𝑦

      

Then , i.e. n=2,𝐿(𝑢) = ∂2𝑢

∂𝑡2
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, then𝑅 𝑢( ) = 𝑢 𝑁 𝑢( ) =− ∂2

∂𝑥 ∂𝑦 𝑢
𝑥𝑥

𝑢
𝑦𝑦( ) + ∂2

∂𝑥 ∂𝑦 𝑥𝑦𝑢
𝑥
𝑢

𝑦( )
𝐻 𝑢( ) = 𝑢 − ∂2

∂𝑥 ∂𝑦 𝑢
𝑥𝑥

𝑢
𝑦𝑦( ) + ∂2

∂𝑥 ∂𝑦 𝑥𝑦𝑢
𝑥
𝑢

𝑦( )
, .ϕ = 0 𝑓

0
= 𝑒𝑥𝑦  𝑎𝑛𝑑  𝑓

1
= 𝑒𝑥𝑦

By (15) and (12) we have:

𝑢
0

= 𝑓 =
𝑖=0

𝑛−1

∑ 𝑡𝑖

𝑖! 𝑓
𝑖

+ 𝐿−1 1

𝑠2 𝐿 ϕ{ }{ } = 𝑓
0

+ 𝑡 𝑓
1

= 𝑒𝑥𝑦 + 𝑡 𝑒𝑥𝑦

𝑢
1

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0( ){ }{ } =− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑒𝑥𝑦 + 𝑡 𝑒𝑥𝑦( ){ }{ } =− 1
6( )𝑒𝑥𝑦 𝑡3 + 3 𝑡2( )

𝑢
2

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0

+ 𝑢
1( ) − 𝐻 𝑢

0( ){ }{ } = 1
120( )𝑒𝑥𝑦 𝑡5 + 4 𝑡4( )

𝑢
3

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0

+ 𝑢
1

+ 𝑢
2( ) − 𝐻 𝑢

0
+ 𝑢

1( ){ }{ } =− 1
5040( )𝑒𝑥𝑦 𝑡7 + 7 𝑡6( )

Then from (5), we have:

𝑢(𝑥, 𝑦, 𝑡) = 𝑒𝑥𝑦 1 + 𝑡 − 𝑡2

2 − 𝑡3

6 + 𝑡4

24 + 𝑡5

120 − 𝑡6

720 − 𝑡7

5040 + …( )
The series can be approximated by as following:4, 3[ ]

𝑢 𝑡( )

4, 3[ ]
𝑢 𝑡( )

=
𝑝

0
+𝑝

1
𝑡+…+𝑝

4
𝑡4

1+𝑞
1
𝑡+…+𝑞

3
𝑡3 = 𝑎

0
+ 𝑎

1
𝑡 + … + 𝑎

7
 𝑡7    

where

𝑎
0

= 1,  𝑎
1

= 1,  𝑎
2

=− 1
2 ,  𝑎

3
=− 1

6 ,  𝑎
4

= 1
24 ,  𝑎

5
= 1

120 ,  𝑎
6

=− 1
720 ,  𝑎

7
=− 1

5040

From (20) and (21) we get:

{𝑎
5

+ 𝑎
4
𝑞

1
+ 𝑎

3
𝑞

2
+ 𝑎

2
𝑞

3
= 0 𝑎

6
+ 𝑎

5
𝑞

1

+ 𝑎
4
𝑞

2
+ 𝑎

3
𝑞

3
= 0 𝑎

7
+ 𝑎

6
𝑞

1
+ 𝑎

5
𝑞

2
+ 𝑎

4
𝑞

3
= 0                                                                       (22) 

and

  𝑝
2

= 𝑎
2

+ 𝑎
1
𝑞

1
+ 𝑎

0
𝑞

2
                𝑝

3
= 𝑎

3
+ 𝑎

2
𝑞

1
+ 𝑎

1
𝑞

2
+ 𝑎

0
𝑞

3
 𝑝

4

 = 𝑎
4

+ 𝑎
3
𝑞

1
+ 𝑎

2
𝑞

2
+ 𝑎

1
𝑞

3
                                                                                                             (23) 

By solving the system (22) we get:

{𝑞
0

= 1                              𝑞
1

=− 0. 146                   𝑞
2

= 0. 0345        

            𝑞
3

=− 0. 007                                                                                                                             (24) 

and substitute (24) in (23) we have:

{𝑝
0

= 1                            𝑝
1

= 0. 85393                 𝑝
2

=− 0. 6                  

      𝑝
3

=− 0. 066       𝑝
4

= 0. 041747                                                                                                (25) 

Then we obtain:

4, 3[ ]
𝑢 𝑡( )

= 0.041747 𝑡4−0.066 𝑡3−0.6 𝑡2+0.85393 𝑡+1

−0.007 𝑡3+0.0345 𝑡2−0.146 𝑡+1

Then we have:

𝑢(𝑥, 𝑦, 𝑡)≅𝑒𝑥𝑦 0.041747 𝑡4−0.066 𝑡3−0.6 𝑡2+0.85393 𝑡+1

−0.007 𝑡3+0.03451 𝑡2−0.146 𝑡+1

4



Journal of Advances in Mathematics Vol 23 (2024) ISSN: 2347-1921 https://rajpub.com/index.php/jam

In the following figure, a comparison was made between the approximate solution and the exact solution in different
values for x and y and t=[0 ,1], where the exact solution is: .𝑢 𝑥, 𝑦, 𝑡( ) = 𝑒𝑥 𝑦(sin 𝑠𝑖𝑛 𝑡( ) + cos 𝑐𝑜𝑠 𝑡( ) )

Figure 1: Illustrate case1 with t=0:1 and different values of x and y
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4.2 Case 2:

Consider the following nonlinear wave-like equation:

𝑢
𝑡𝑡

− 𝑢2 ∂2

∂𝑥2 𝑢
𝑥
𝑢

𝑥𝑥
𝑢

𝑥𝑥𝑥( ) + 𝑢
𝑥
2 ∂2

∂𝑥2 𝑢
𝑥𝑥
3( ) − 𝑢 = 0,     0 < 𝑥 < 1,  𝑡 > 0  

with initial conditions

𝑢 𝑥, 0( ) = 𝑒𝑥 ,      𝑢
𝑡

𝑥, 0( ) = 𝑒𝑥

Then , i.e. n=2,𝐿(𝑢) = ∂2𝑢

∂𝑡2

, then𝑅 𝑢( ) =− 𝑢 𝑁 𝑢( ) =− 𝑢2 ∂2

∂𝑥2 𝑢
𝑥
𝑢

𝑥𝑥
𝑢

𝑥𝑥𝑥( ) + 𝑢
𝑥
2 ∂2

∂𝑥 ∂𝑦 𝑢
𝑥𝑥
3( )

𝐻 𝑢( ) =− 𝑢 − 𝑢2 ∂2

∂𝑥2 𝑢
𝑥
𝑢

𝑥𝑥
𝑢

𝑥𝑥𝑥( ) + 𝑢
𝑥
2 ∂2

∂𝑥 ∂𝑦 𝑢
𝑥𝑥
3( )

, .ϕ = 0 𝑓
0

= 𝑒𝑥  𝑎𝑛𝑑  𝑓
1

= 𝑒𝑥

By (15) and (12) we have:

𝑢
0

= 𝑓 =
𝑖=0

𝑛−1

∑ 𝑡𝑖

𝑖! 𝑓
𝑖

+ 𝐿−1 1

𝑠2 𝐿 ϕ{ }{ } = 𝑓
0

+ 𝑡 𝑓
1

= 𝑒𝑥 + 𝑡 𝑒𝑥

𝑢
1

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0( ){ }{ } =− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑒𝑥 + 𝑡 𝑒𝑥( ){ }{ } = 1
6( )𝑒𝑥 𝑡3 + 3 𝑡2( )

𝑢
2

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0

+ 𝑢
1( ) − 𝐻 𝑢

0( ){ }{ } = 1
120( )𝑒𝑥 𝑡5 + 4 𝑡4( )

𝑢
3

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0

+ 𝑢
1

+ 𝑢
2( ) − 𝐻 𝑢

0
+ 𝑢

1( ){ }{ } = 1
5040( )𝑒𝑥 𝑡7 + 7 𝑡6( )

Then from (5), we have:

𝑢(𝑥, 𝑡) = 𝑒𝑥 1 + 𝑡 + 𝑡2

2 + 𝑡3

6 + 𝑡4

24 + 𝑡5

120 + 𝑡6

720 + 𝑡7

5040 + …( )
The series can be approximated by as following:4, 3[ ]

𝑢 𝑡( )

4, 3[ ]
𝑢 𝑡( )

=
𝑝

0
+𝑝

1
𝑡+…+𝑝

4
𝑡4

1+𝑞
1
𝑡+…+𝑞

3
𝑡3 = 𝑎

0
+ 𝑎

1
𝑡 + … + 𝑎

7
 𝑡7    

where

𝑎
0

= 1,  𝑎
1

= 1,  𝑎
2

= 1
2 ,  𝑎

3
= 1

6 ,  𝑎
4

= 1
24 ,  𝑎

5
= 1

120 ,  𝑎
6

= 1
720 ,  𝑎

7
= 1

5040

From (20) and (21) we get:

{𝑎
5

+ 𝑎
4
𝑞

1
+ 𝑎

3
𝑞

2
+ 𝑎

2
𝑞

3
= 0 𝑎

6
+ 𝑎

5
𝑞

1
+ 𝑎

4
𝑞

2

+ 𝑎
3
𝑞

3
= 0 𝑎

7
+ 𝑎

6
𝑞

1
+ 𝑎

5
𝑞

2
+ 𝑎

4
𝑞

3
= 0                                                                                           (26) 

and

𝑝
0

= 𝑎
0
                                            𝑝

1
= 𝑎

1
+ 𝑎

0
𝑞

1
                              𝑝

2
= 𝑎

2
+ 𝑎

1
𝑞

1
+ 𝑎

0
𝑞

2
   

{             𝑝
3

= 𝑎
3

+ 𝑎
2
𝑞

1
+ 𝑎

1
𝑞

2
+ 𝑎

0
𝑞

3
 𝑝

4
= 𝑎

4
+ 𝑎

3
𝑞

1
+ 𝑎

2
𝑞

2
+ 𝑎

1
𝑞

3
                                       (27) 

By solving the system (26) we get:

{𝑞
0

= 1                       𝑞
1

=− 3
7                    𝑞

2
= 1

14                    𝑞
3

=− 1
210                                   (28) 

and substitute (28) in (27) we have:

{𝑝
0

= 1                  𝑝
1

= 4
7                    𝑝

2
= 1

7                   𝑝
3

= 2
105   𝑝

4
= 1

840                           (29) 

Then we obtain:

6
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4, 3[ ]
𝑢 𝑡( )

=
1+ 4

7 𝑡+ 1
7  𝑡2+ 2

105 𝑡3+ 1
840  𝑡4 

1− 3
7 𝑡+ 1

14 𝑡2− 1
210 𝑡3   

Which can be simplified as following:

4, 3[ ]
𝑢 𝑡( )

=−  𝑡4+16 𝑡3+120 𝑡2+840 𝑡+840

 4 𝑡3−60 𝑡2+360 𝑡−840
    

Then we have:

𝑢(𝑥, 𝑡)≅ − 𝑒𝑥 𝑡4+16 𝑡3+120 𝑡2+840 𝑡+840

 4 𝑡3−60 𝑡2+360 𝑡−840

In the following figure, a comparison was made between the approximate solution and the exact solution in different
values for x and t=[0 ,1], where the exact solution is: .𝑢 𝑥, 𝑡( ) = 𝑒𝑥+ 𝑡

Figure 2: Illustrate case 2 with t=0:1 and different values of x

7
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4.3 Case 3:

Consider the following nonlinear wave-like equation:

𝑢
𝑡𝑡

− ∂
∂𝑥 𝑢

𝑥
𝑢

𝑥𝑥( ) + 𝑥2𝑢
𝑥𝑥
2 + 𝑢 = 0,     0 < 𝑥 < 1 ,   𝑡 > 0  

By initial conditions

𝑢 𝑥, 0( ) = 0 ,      𝑢
𝑡

𝑥, 0( ) = 𝑥2

Then , i.e. n=2𝐿(𝑢) = ∂2𝑢

∂𝑡2

, then𝑅 𝑢( ) = 𝑢 𝑁 𝑢( ) =− ∂
∂𝑥 𝑢

𝑥
𝑢

𝑥𝑥( ) + 𝑥2𝑢
𝑥𝑥
2

𝐻 𝑢( ) = 𝑢 − ∂
∂𝑥 𝑢

𝑥
𝑢

𝑥𝑥( ) + 𝑥2𝑢
𝑥𝑥
2

, .ϕ = 0 𝑓
0

= 0  𝑎𝑛𝑑  𝑓
1

= 𝑥2

By (15) and (12) we have:

𝑢
0

= 𝑓 =
𝑖=0

𝑛−1

∑ 𝑡𝑖

𝑖! 𝑓
𝑖

+ 𝐿−1 1

𝑠2 𝐿 ϕ{ }{ } = 𝑓
0

+ 𝑡 𝑓
1

= 𝑡 𝑥2

𝑢
1

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0( ){ }{ } =− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑒𝑥 + 𝑡 𝑒𝑥( ){ }{ } =− 1
6 𝑥2 𝑡3

𝑢
2

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0

+ 𝑢
1( ) − 𝐻 𝑢

0( ){ }{ } = 1
120 𝑥2 𝑡5

𝑢
3

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0

+ 𝑢
1

+ 𝑢
2( ) − 𝐻 𝑢

0
+ 𝑢

1( ){ }{ } =− 1
5040 𝑥2 𝑡7

𝑢
4

=− 𝐿−1 1

𝑠2 𝐿 𝐻 𝑢
0

+ 𝑢
1

+ 𝑢
2

+ 𝑢
3( ) − 𝐻 𝑢

0
+ 𝑢

1
+ 𝑢

3( ){ }{ } = 1
3628800 𝑥2 𝑡9

Then from (5), we have:

𝑢(𝑥, 𝑦, 𝑡) = 𝑥2 𝑡 − 𝑡3

6 + 𝑡5

120 − 𝑡7

5040 + 𝑡9

3628800  + …( )
The series can be approximated by as following:4, 3[ ]

𝑢 𝑡( )

4, 3[ ]
𝑢 𝑡( )

=
𝑝

0
+𝑝

1
𝑡+…+𝑝

5
𝑡5

1+𝑞
1
𝑡+…+𝑞

4
𝑡4 = 𝑎

0
+ 𝑎

1
𝑡 + … + 𝑎

9
 𝑡9    

where

𝑎
0

= 𝑎
2

= 𝑎
4

= 𝑎
6

= 𝑎
8

= 0,  𝑎
1

= 1,  𝑎
3

=− 1
6 ,  𝑎

5
= 1

120 ,  𝑎
7

=− 1
5040 ,   𝑎

9
= 1

3628800

From (20) and (21) we get:

{𝑎
6

+ 𝑎
5
𝑞

1
+ 𝑎

4
𝑞

2
+ 𝑎

3
𝑞

3
+ 𝑎

2
𝑞

4
= 0 𝑎

7
+ 𝑎

6
𝑞

1
+ 𝑎

5
𝑞

2
+ 𝑎

4
𝑞

3
+ 𝑎

3
𝑞

4

= 0 𝑎
8

+ 𝑎
7
𝑞

1
+ 𝑎

6
𝑞

2
+ 𝑎

5
𝑞

3
+ 𝑎

4
𝑞

4
= 0 𝑎

9
+ 𝑎

8
𝑞

1
+ 𝑎

7
𝑞

2
+ 𝑎

6
𝑞

3
+ 𝑎

5
𝑞

4
= 0                      (30) 

and

{𝑝
0

= 𝑎
0
         𝑝

1
= 𝑎

1
+ 𝑎

0
𝑞

1
             𝑝

2
= 𝑎

2
+ 𝑎

1
𝑞

1
+ 𝑎

0
𝑞

2
             𝑝

3
= 𝑎

3
+ 𝑎

2
𝑞

1
+ 𝑎

1
𝑞

2
+ 𝑎

0
𝑞

3
     

    𝑝
4

= 𝑎
4

+ 𝑎
3
𝑞

1
+ 𝑎

2
𝑞

2
+ 𝑎

1
𝑞

3
+ 𝑎

0
𝑞

4
 𝑝

5
= 𝑎

5
+ 𝑎

4
𝑞

1
+ 𝑎

3
𝑞

2
+ 𝑎

2
𝑞

3
+ 𝑎

1
𝑞

4
                    (31) 

By solving the system (30) we get:

{𝑞
0

= 1                                  𝑞
1

= 0                                  𝑞
2

= 0. 032828                   𝑞
3

= 0                       𝑞
4

= 0. 00045                                     

and substitute (32) in (30) we have:

8
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{𝑝
0

= 0                                𝑝
1

= 1                                𝑝
2

= 0                        

        𝑝
3

=−  0. 13384  𝑝
4

= 0                   𝑝
5

= 0. 0033                                                                         (33) 

Then we obtain:

5,  4[ ]
𝑢 𝑡( )

= 𝑡− 0.13384𝑡3+0.0033 𝑡5 

1+0.032828 𝑡2+0.00045 𝑡4   

Then we have:

𝑢(𝑥, 𝑡)≅𝑥2 𝑡− 0.13384𝑡3+0.0033 𝑡5 

1+0.032828 𝑡2+0.00045 𝑡4

In the following figure, a comparison was made between the approximate solution and the exact solution in different
values for x and t=[0 ,1], where the exact solution is: .𝑢 𝑥, 𝑡( ) = 𝑥2𝑠𝑖𝑛 (𝑡)

Figure 3: Illustrate case 3 with t=0:1 and different values of x

5. Conclusion

9
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In Figures 1, 2 and 3, the solutions obtained by Pade approximation, of the non-linear wave-like equations with variable
coefficients are illustrated numerically by taking different values of variables to compare these solutions with the exact
solutions. These cases are shown the successful use of solution approximation by Pade approximation compared to
power series expansion.
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