DOI: https://doi.org/10.24297/jam.v21i.9271

On hyper Z-algebras

Sahar Jaafar Mahmood I1, Dhirgam Allawy Hussein II2

¹I (Department of Multimedia, College of Computer Science and Information Technology, University of AlQadisiyah, P.O. Box 88, Al Diwaniyah, Al-Qadisiyah, Iraq, sahar.jaafar@qu.edu.iq.)

² II (Directorate of Education in Al-Qadisiyah , Diwaniyah , Iraq, dhirgam.allawy@qu.edu.iq)

Abstract:

This study introduces the concept of hyperZ-algebra and investigates its features. In addition, we establish and prove a number of theorems about the relation between(\underline{R} - $\underline{h}Z$, $\hat{\zeta}$ - $\underline{h}Z$, \underline{D} - $\underline{h}Z$, \underline{V} - $\underline{h}Z$, \underline{V} - $\underline{h}Z$). Moreover, we explain the hyper subalgebra ,a weakhyper Z-ideal and a strong hyper V-ideal, as well as their relationship. Finally, the hyper homomorphism Z-algebra is constructed and the isomorphism theorems are examined.

Keywords: Z-algebra, hyper Z-algebra, hyper Z-subalgebra, weak hyper Z-ideal, strong hyper Z-ideal, hyperZ-homomorphism.

1. Introduction

Marty's talk about hypergroups at the Eighth Congress of Scandinavian Mathematicians in [1] 1934 was the first step in the study of hyperstructures. Since then, a lot of mathematicians and scientists have looked at the hyperstructure idea from both an applied and a theoretical point of view and expanded it to a wide range of fields. It has been applied in several fields, including Euclidian and non-Euclidian geometries, probability, information sciences, etc. The book [2] has several intriguing uses of hyper-structures that are shown throughout.

In the paper [3], Jun et al. They came up with the idea of a hyperBCK-algebra, that's also extension of a BCK-algebra, and looked at the different properties it has. Borzooei et al. [4] presented and researched hyperK-algebras. In 2006, Xin came up with the idea of hyperBCI-algebras, which are just an extension of hyperBCK-algebras. He showed that any hyperBCK-algebra is also a hyperBCI-algebra [5].

Borzooei et al. have created the concept of hyperBCC-algebra as an extension of BCC-algebras and they have specifically investigated and defined the various types of hyperBCC-ideals in [6]. J.C. Endam introduced the idea of hyperB-algebra That is an extension of B-algebra and defined the subhyperB-algebras in [7]. A.L.O.Vicedo et al,[8] Proposed and analyzed (weak, strong) hyperB-ideals. In addition, they investigated the relationships between hyperB-ideals and subhyper B-algebras, as well as a few relationships between hyperB-algebras and hypergroups. S.Niazian[9] introduced the idea of hyperstructure to BI-algebras and he defined the types of hyperBI-algebras.

Z-algebra is a unique algebraic structure based on logic that was first proposed in 2017 by Chandramouleeswaran et al. [10].

This papers is structured following: in Part 2 We present some definitions and first observations regarding Z-algebras that will be used in the next Part. Hyper Z-algebra is a concept that is introduced and some of its characteristics are looked at in Part 3.

2.Preliminaries:

Denition 2.1: [8] The map $\circledast: Z \times Z \rightarrow P(Z)$ named a hyperoperation on $Z \neq \varphi$, where P(Z) is the powerset of Z. And $Z \neq \varphi$, with \circledast is called a hypergroupoid. If $\varphi \neq K \subseteq Z$, $\varphi \neq Y \subseteq Z$, then $X \in Y$ means for any $Z \in X$.

$$\mathbb{K} \circledast \mathbb{F} = \bigcup_{k \in \mathbb{K}, \, t \in \mathbb{F}} (k \circledast t), \, k \circledast \mathbb{F} = \{k\} \circledast \mathbb{F} = \mathbb{K} \circledast t = \mathbb{K} \circledast \{t\}$$

Definition2.2: [10] let $Z \neq \varphi$ and * is a binary operation with constant O then the algebra (Z, *, O) named Z-Algebra if satisfying the following axiom:

$$Z_1$$
: $\mathfrak{T} * O = O$

$$Z_2$$
: $O * \mathcal{T} = \mathcal{T}$

$$Z_{2}$$
: $\mathbb{T} * \mathbb{T} = \mathbb{T}$

 Z_{A} : $\mathfrak{T} * \mathfrak{F} = \mathfrak{F} * \mathfrak{F}$ When $\mathfrak{F} \neq 0$ and $\mathfrak{F} \neq 0$, $\forall \mathfrak{F}, \mathfrak{F} \in Z$.

3. HyperZ-algebras:

Definition 3.1: The triple $(Z, \circledast, 0)$ is named a hyperZ-algebra (briefly,hZ) where $Z \neq \varphi$, \circledast hyperoperation and O is a constant if $\forall \, \Im$, $\Im \in Z$, the following conditions hold:

 (HZ_1) $\mathbb{G} \ll 0$

 (HZ_2) $\Im \in \Im \otimes O$

 (HZ_2) $\mathbb{T} \in \mathbb{T} \oplus \mathbb{T}$

 $(HZ_{_{4}})\, \mathbb{T} \circledast \Im \,=\, \Im \circledast \mathbb{T} \ , \ \forall \ \mathbb{T}, \Im \in Z, \mathbb{T} \neq 0, \Im \neq 0$

Where \Im ≪ \Im if $0 \in \Im$ \Im .

 $\forall A, B \subseteq Z$, then $A \ll B \Leftrightarrow \exists a \in A, b \in B$ such that $a \ll b$. We signify $A \ll \{\Im\}(\{\Im\} \ll B)$ by $A \ll \Im(\Im \ll B)$

Example 3.2: Let = $\{0, \mathbb{T}, \mathbb{R}, \mathbb{A}\}$, the following table represents the hyperoperatic \circledast on Z.

*	0	ፔ	ᡐ	À
0	{0}	{0, ፔ}	{ኄ}	{¾}
ፔ	{0, ፔ}	{ፔ}	{0}	{Ђ, ৸}
\Im	{0}	{0}	{ጌ}	{ঽ, ϡ}
À	{0}	{ፔ, Ϡ}	{ঝ, গ}	{ፔ, ኄ, ϡ}

Then $(Z, \circledast, 0)$ is $(\ddot{h}Z)$

Example 3.3: A Z-algebra (Z, *, 0) with a hyperoperation \circledast defined on Z as

 $𝔻 𝔻 𝔻 = { 𝔻 * 𝔄 } ∀ 𝔻 , 𝔄 ∈ Z then (Z, ♠, 0) is (\"hZ).$

Proposition3.4: Let (Z, \circledast, O) be a(hZ), then $\forall T, T \in Z, \forall (A, B, C, D) \neq \varphi, (A, B, C, D) \subseteq Z$ the following axioms hold:

 $(1)(\mathbb{T} \otimes \mathbb{T})[(\mathbb{T} \otimes \mathbb{T}) \otimes (\mathbb{T} \otimes \mathbb{T})] = \mathbb{T} \otimes \mathbb{T}, \ \mathbb{T} \neq 0, \mathbb{T} \neq 0$

 $(2)0 \circledast A = A$

 $(3)A \ll \{0\}$

 $(4)A \circledast 0 = \{0\}$

 $(5)A\subseteq B\Rightarrow A\ll B$

 $(6)A \subseteq B \text{ and } A \ll C \Rightarrow B \ll C$

 $(7)A \subseteq B \text{ and } C \subseteq D \Rightarrow A \circledast C \Rightarrow B \circledast D$

Definition3.5:

1) If $0 \circledast \mathbb{T} = {\mathbb{T}}$, $\forall \mathbb{T} \in \mathbb{Z}$ then $(\mathbb{Z}, \circledast, 0)$ is named Row hyperZ-algebra (briefly \mathbb{R} - $\mathbb{h}\mathbb{Z}$).

2) If $\mathfrak{T} \otimes O = \{0\}$, $\forall \mathfrak{T} \in \mathbb{Z}$ then $(\mathbb{Z}, \otimes, \mathbb{O})$ is named Column hyperZ-algebra (briefly $\hat{\mathcal{C}}$ -h\hat{\textit{Z}}).

3) If $\mathbb{T} \oplus \mathbb{T} = {\mathbb{T}}$, $\forall \mathbb{T} \in \mathbb{Z}$ then $(\mathbb{Z}, \oplus, 0)$ is named Diagonal hyperZ-algebra (briefly $\mathbb{D} - \mathbb{h}\mathbb{Z}$).

4) If $(Z, \circledast, 0)$ is satisfies (1and 2) then $(Z, \circledast, 0)$ is named Thin hyperZ-algebra (briefly T - hZ).

5) If $(Z, \circledast, 0)$ is satisfies (1, 2 and 3) then $(Z, \circledast, 0)$ is named Verythin hyperZ-algebra. (briefly V - hZ).

Example 3.6: (1) Let $Z = \{0, \mathbb{T}, \mathcal{F}, \mathcal{F}\}$, the following table represents the hyperoperatic \circledast on \mathbb{Z} .

*	0	ፔ	\Im	গ
0	{0}	{ፔ}	{ኄ}	{\bar{\bar{\bar{\bar{\bar{\bar{\bar
ፔ	{0, ፔ}	{0, ፔ}	{ፔ, ኄ}	{ፔ, ϡ}
\Im	{0, ₹}	{ፔ, ኄ}	{0, Ⴠ}	{ኄ, Ϡ}
À	{0, Ϡ}	{ፔ, ϡ}	{ঽ, গ}	{0, Ϡ}

 $(Z, \circledast, 0)$ is an $(\underline{\mathbb{R}}-\ddot{\mathbb{h}}Z)$, it is obvious that $(Z, \circledast, 0)$ isn't a $(\dot{\mathbb{C}}-\ddot{\mathbb{h}}Z)$ and $(\underline{\mathbb{R}}-\ddot{\mathbb{h}}Z)$, since $\forall \ \mathbb{T}\in Z$, $\mathbb{T}\circledast 0\neq \{0\}$, $\mathbb{T}\circledast \mathbb{T}\neq \{\mathbb{T}\}$.

(2) Let $Z = \{0, \mathbb{T}, \mathbb{R}, \mathbb{A}\}$, the following table represents the hyperoperatic \circledast on Z:

*	0	ፔ	પ	গ
0	{0}	{0, ፔ}	{0, Ⴠ}	{0, ₹}
ፔ	{0}	{0, ፔ}	{\mathfrak{n}}	{ኄ}
િ	{0}	{\mathfrak{n}}	{0, ₹}	{ፔ}
À	{0}	{ኄ}	{ፔ}	{0, ϡ}

Then $(Z, \circledast, \overline{O})$ is a $(\mathring{\zeta} - \ddot{h}Z)$, it is obvious that (Z, \circledast, O) isn't $\overline{a}(\underline{R} - \ddot{h}Z)$ and $(\underline{D} - \ddot{h}Z)$, since $\forall \, \overline{U} \in Z \,,\, O \circledast \overline{U} \neq \{\overline{U}\}$, $\overline{U} \circledast \overline{U} \neq \{\overline{U}\}$.

(3) Let $Z = \{0, T, 3, \lambda\}$, the following table represents the hyperoperatic \circledast on Z:

*	0	ፔ	₹	গ
0	{0}	{0, ፔ}	{0, Ⴠ}	{0, ₹}
ፔ	{0, ፔ}	{ፔ}	{0, ϡ}	{0, Ⴠ}
\Im	{0, ₹}	{0, Ϡ}	{ኄ}	{0, ፔ}
À	{0, ₹}	{0, ₺}	{0, ፔ}	{\bar{\bar{\bar{\bar{\bar{\bar{\bar

Then $(Z, \circledast, \overline{0})$ is a $(\underline{\mathbb{D}} - \ddot{\mathbb{h}} Z)$, it is obvious that $(Z, \circledast, \overline{0})$ isn't an $(\underline{\mathbb{R}} - \ddot{\mathbb{h}} Z)$ and $(\dot{\mathbb{C}} - \ddot{\mathbb{h}} Z)$, since $\forall \, \overline{\mathbb{U}} \in \mathbb{Z} \,$, $\partial \circledast \overline{\mathbb{U}} \neq \{\overline{\mathbb{U}}\}$, $\overline{\mathbb{U}} \circledast \partial \neq \{0\}$.

(4) Let $Z = \{0, T, 3, \lambda\}$, the following table represents the hyperoperatic \circledast on Z:

*	0	ፔ	ᡐ	Ŋ
0	{0}	{ፔ}	{₹}}	{\mathrid{\gamma}}
ፔ	{0}	{0, ፔ}	{\bar{\bar{\bar{\bar{\bar{\bar{\bar	{ኄ}
\Im	{0}	{\bar{\bar{\bar{\bar{\bar{\bar{\bar	{0, Ⴠ}	{ፔ}
À	{0}	{ኄ}	{ፔ}	{0, Ϡ}

Then $(Z, \circledast, 0)$ is a $(\Upsilon - hZ)$, it is obvious that $(Z, \circledast, 0)$ isn't a $(\Upsilon - hZ)$, since it isn't a $(\mathring{D} - hZ)$.

(5) Let $Z = \{0, \Im, \Im, \lambda\}$, the following table represents the hyperoperatic \circledast on Z:

*	0	ፔ	ᡐ	À
0	{0}	{ፔ}	{ጌ}	{\gamma\}
ፔ	{0}	{ፔ}	{ፔ, ኄ}	{ፔ, ጓ}
\Im	{0}	{ፔ, ኄ}	{ኄ}	{ኄ, Ϡ}
À	{0}	{ፔ, ϡ}	{ኄ, Ϡ}	{\mathfrak{n}}

Then $(Z, \circledast, 0)$ is a V-hyper Z-algebra.

Definition3.7: A hyper subZ-algebra of Z is the set $S \neq \varphi$, $S \subseteq Z$, $O \in S$, which (S, \circledast, O) is a (hZ)w.r.t hyperoperation \circledast .

Remark 3.8: Let $S \neq \emptyset$, $S \subseteq \mathbb{Z}$, If $2 \circledast \uparrow \subseteq S$, $\forall \emptyset \uparrow \in S \Rightarrow \emptyset \in S$.

Theorem3.9: Let $S \neq \emptyset$, $S \subseteq \mathbb{Z}$, then S is a hyper subZ-algebra of \mathbb{Z} if and only if $If \ \mathbb{T} \circledast \mathbb{T} \subseteq S$, $\forall \mathbb{T}$, $\mathbb{T} \in S$.

Proof: \Rightarrow Let S is a hypersubZ-algebra of $Z \Rightarrow (S, \circledast, O)$ is a (hZ) w.r.t hyperoperation \circledast then $T \circledast T \subseteq S$, $\forall T$, $T \in S$. \Leftrightarrow Let $T \circledast T \subseteq S$, $\forall T$, $T \in S$. \Leftrightarrow Let $T \circledast T \subseteq S$, $\forall T$, $T \in S$. Hen $T \in S$. \Leftrightarrow Let $T \circledast T \subseteq S$.

Then $0 \in \mathbb{T} \circledast 0 \Rightarrow (HZ_1)$ valid in S. So also, It is possible to show that the (HZ_2) , $(HZ_3) & (HZ_4)$ are valid in S,

 \Rightarrow S is a hypersubZ-algebra of Z.

Definition 3.10: If $\mathbb{T} \otimes S = S = S \otimes \mathbb{T}$, $\forall \mathbb{T} \in S$ where S is a hypersubZ-algebra of \mathbb{Z} , in this case S is named a stronghyper subZ-algebra of \mathbb{Z} .

Example 3.11:

(1) Let $\mathbf{Z} = \{0, \mathbf{T}, \mathbf{T}, \mathbf{T}, \mathbf{T}\}$ in (Example 3.2) and let $S_1 = \{0\}$, $S_2 = \{0, \mathbf{T}\}$ and $S_3 = \{0, \mathbf{T}\}$, then S_1, S_2 is a stronghyper subZ-algebra of \mathbf{Z} since \mathbf{T} is a hyper subZ-algebra of \mathbf{Z} since \mathbf{T} is a hyper subZ-algebra of \mathbf{Z} since \mathbf{T} is a hyper subZ-algebra of \mathbf{T} is a hyper subZ-algebra of \mathbf{T} since \mathbf{T} is a hyper subZ-algebra of \mathbf{T} is a hyper subZ-alge

(2) Let \mathbb{Z} in (Example 3.3) then every subZ-algebra of \mathbb{Z} is a stronghyper sub Z-algebra of \mathbb{Z} .

(3) Let $Z = \{0, \mathbb{T}, \Im, \Im\}$, the following table represents the hyperoperatic \circledast on Z:

*	0	ፔ	\Im	À
0	{0, ፔ, ኄ, ϡ}	{ፔ}	{ኄ}	₹ Ϡ }
ፔ	{0}	{ፔ}	{ፔ, ኄ}	{ፔ,ϡ}
\Im	{0}	{ፔ, ኄ}	{ኄ}	{ኄ, ϡ}
À	{0}	{ፔ, ϡ}	{ঝ, গ}	{¾}

Which is a \mathbb{Z} , and $S = \{0\}$ is not a stronghyper subZ-algebras of \mathbb{Z} .

Remark 3.12: $S = \{0\}$ is a stronghyper subZ-algebras of \mathbb{Z} , if \mathbb{Z} satisfied(5) in Definition3.5.

Definition 3.13: Let $I \neq \emptyset$, $I \subseteq \mathbb{Z}$, I is named a hyperZ-ideal of \mathbb{Z} if (HZI_1) $0 \in I$

 $(\mathit{HZI}_{\scriptscriptstyle 2})\, \mathtt{T} \textcircled{*} \mathtt{3} \ll \mathit{I} \quad \& \ \mathtt{3} \boldsymbol{\in} \mathit{I} \boldsymbol{\to} \mathtt{T} \boldsymbol{\in} \mathit{I} \ , \forall \ \mathtt{T}, \mathtt{3} \boldsymbol{\in} \mathit{Z}.$

Definition 3.14: Let $I \neq \varphi$, $I \subseteq \mathbb{Z}$, I is named a weakhyper Z-ideal of \mathbb{Z} if (HZI_1) $0 \in I$

 $(HZWI_2)$ $\mathbb{T} \otimes \mathbb{T} \subseteq I \otimes \mathbb{T} \in I \to \mathbb{T} \in I$, $\forall \mathbb{T}, \mathbb{T} \in \mathbb{Z}$.

Theorem 3.15: Every hyperZ-ideal of Z is a weakhyper Z-ideal of Z. **Definition 3.16:** Let $I\neq \varphi$, $I\subseteq Z$, I is named a stronghyper Z-ideal of Z if (HZI_1) $0\in I$

 $(\mathit{HZSI}_{?}) \ (\mathtt{T} \circledast \mathtt{V}) \cap \mathit{I} \ \neq \ \varphi \ \ \& \ \mathtt{V} \in \mathit{I} \Rightarrow \mathtt{T} \in \mathit{I} \ , \ \forall \ \mathtt{T}_{"} \ \mathtt{V} \in \mathtt{Z}.$

Example 3.17:

(1) Let Z in (Example 3.3) then every ideal I of Z is a hyperZ-ideal(weakhyper Z-ideal, stronghyper Z-ideal) of Z. (2) If $Z = \{0, T, 3, T\}$, the following table represents the hyperoperatic \circledast on Z:

*	0	ፔ	ᡐ
0	{0, Ђ}	{0, ፔ}	{0, Ⴠ}
ፔ	{0}	{0, ፔ}	{0, ፔ}
\Im	{0}	{0,₺}	{0, ፔ, ኄ}

Which is a \mathbb{Z} , and $I_1 = \{0, \mathbb{T}\}$ is a hyperZ-ideal(weakhyper Z-ideal) of \mathbb{Z} , and converse of (theorem3.15) isn't true, let $I_2 = \{0, \mathbb{T}\}$ is a weakhyper Z-ideal of \mathbb{Z} but isn't hyperZ-ideal because

 $\overline{\mathtt{T} \otimes \mathtt{T}} = \{0, \mathtt{T}\} \ll I_2 \text{ and } \mathtt{T} \in I_2 \text{ but } \mathtt{T} \notin I_2 \text{ ,and } I_3 = \{0\}, \text{ and } I_4 = Z \text{ are only strong hyper} Z - ideal of Z.$

Theorem 3.18: Let I is a stronghyperZ - ideal of \mathbb{Z} , then

- (1) I is a weakhyperZ ideal of Z.
- (2) I is a hyperZ ideal of Z.

And converse is not true.

Proof: from Theorem 3.15, it is sufficient to show (2)

Let $\mathfrak{T}, \mathfrak{F} \in \mathbb{Z}$ such that $\mathfrak{T} \oplus \mathfrak{F} \ll I$ and $\mathfrak{F} \in I$,

Then $\forall \omega \in \mathbb{T} \otimes \mathbb{T} \exists \Psi \in I$, $such that \omega \ll \Psi \Rightarrow 0 \in \omega \otimes \Psi \Rightarrow 0 \in \omega \otimes \Psi \cap I \neq \emptyset$,

Then by $(HZSI_2)$

ω∈I⇒T⊕∃ ⊆ I and so T⊕∃∩<math>I ≠ φ,

 $using(HZSI_2) \Rightarrow \mathbb{T} \in I$, $\Rightarrow I$ is a hyperZ - ideal of \mathbb{Z} .

Let $I = \{0, \mathbb{T}\}$ in Example 3.17 (2) is a hyper Z-ideal (weakhyper Z-ideal) of \mathbb{Z} but isn't a stronghyper Z-ideal of \mathbb{Z} because $\Im \oplus \mathbb{T} \cap I = \{0, \mathbb{T}\} \neq \emptyset$ and $\mathbb{T} \in I$ but $\Im \notin I$.

Theorem 3.19: Let $\{I_{\gamma}: \gamma \in S\}$ and $I_{\gamma} \neq \Phi$ be a collection of subsets of a (hZ), such that $0 \in I_{\gamma}$, $\forall \gamma \in S$.

(1) if
$$I_{\gamma}a \ hyperZ - ideal \ of \ Z, \forall \gamma \in S \Rightarrow \bigcap_{\gamma \in S} I_{\gamma} \ a \ hyperZ - ideal \ of \ Z.$$

(2) if
$$I_{\gamma}a$$
 weakhyperZ - ideal of \mathbb{Z} , $\forall \gamma \in S \Rightarrow \bigcap_{\gamma \in S} I_{\gamma}a$ weakhyperZ - ideal of \mathbb{Z} .

(3) if
$$I_{\gamma}a$$
 stronghyperZ - ideal of \mathbb{Z} , $\forall \gamma \in S \Rightarrow \bigcap_{\gamma \in S} I_{\gamma}$ a stronghyperZ - ideal of \mathbb{Z} .

Proof: We only prove (3). (1) and (2) are easy to prove.

Suppose that $I_{\gamma}(\forall \gamma \in S)$ is a strong hyperZ – ideal of Ξ ,

since
$$0 \in I_{\gamma}$$
, $\forall \gamma \in S \Rightarrow 0 \in \bigcap_{\gamma \in S} I_{\gamma}$, and so $\bigcap_{\gamma \in S} I_{\gamma} \neq \emptyset$.

suppose that
$$\forall \, \mathbb{T}$$
, $\Im \in \mathbb{Z}$, $(\mathbb{T} \circledast \Im) \cap \bigcap_{\gamma \in \mathcal{S}} I_{\gamma} \neq \emptyset$ and $\Im \in \bigcap_{\gamma \in \mathcal{S}} I_{\gamma}$

since
$$\bigcap_{\gamma \in S} I_{\gamma} \subseteq I_{\gamma}$$
, $\forall \gamma \in S$. by $(A \cap B \neq \varphi \ and \ B \subseteq C \Rightarrow A \cap C \neq \varphi) \Rightarrow$

$$(\mathring{\text{\bf T}} \circledast \Im) \cap I_{_{\gamma}} \neq \ \varphi \ \ and \ \Im \in I_{_{\gamma}}, \forall \gamma \in S,$$

since
$$I_{y}(\forall \gamma \in S)$$
 is a strong hyper Z – ideal of Z

$$\Rightarrow \mathbb{T} \in I_{\gamma}, \forall \gamma \in S \Rightarrow \mathbb{T} \in \bigcap_{\gamma \in S} I_{\gamma} \ \Rightarrow \ \bigcap_{\gamma \in S} I_{\gamma} \ is \ a \ strong \ hyperZ \ - \ ideal \ of \ \mathbb{Z}.$$

Theorem 3.20: Let $\{I_{\gamma}: \gamma \in S\}$ and $I_{\gamma} \neq \Phi$ be a collection of subsets of a ($\ddot{h}Z$), such that $I_{1} \subseteq I_{2} \subseteq ...$

(1) if
$$I_{\gamma} a \ hyperZ - ideal \ of \ Z$$
, $\forall \gamma \in S \Rightarrow \bigcup_{\gamma \in S} I_{\gamma} a \ hyperZ - ideal \ of \ Z$.

(2) if
$$I_{\gamma}a$$
 weakhyperZ - ideal of \mathbb{Z} , $\forall \gamma \in S \Rightarrow \bigcup_{\gamma \in S} I_{\gamma}$ a weakhyperZ - ideal of \mathbb{Z} .

(3) if
$$I_{\gamma}a$$
 stronghyperZ - ideal of \mathbb{Z} , $\forall \gamma \in S \Rightarrow \bigcup_{\gamma \in S} I_{\gamma}a$ stronghyperZ - ideal of \mathbb{Z} .

Proof: We only prove (3),(1) and (2) are easy to prove.

Suppose that $I_{\gamma}(for\ some\ \gamma{\in}S)\ is\ a\ strong\ hyper Z\ -\ ideal\ of\ Z$,

since
$$0 \in I_{\gamma}$$
, for some $\gamma \in S \Rightarrow 0 \in \bigcup_{\gamma \in S} I_{\gamma}$, and so $\bigcup_{\gamma \in S} I_{\gamma} \neq \Phi$.

$$Let \ \forall \ \mathbb{t} \ , \mathbb{t} \ \in Z \ , (\mathbb{t} \circledast \mathbb{t}) \cap \ \bigcup_{\gamma \in S} I_{\gamma} \neq \ \varphi \ \ and \ \mathbb{t} \in \bigcup_{\gamma \in S} I_{\gamma}$$

$$since \ \ I_{\gamma} \subseteq \bigcup_{\gamma \in S} I_{\gamma}, \forall \gamma \in S, and \ I_{1} \subseteq I_{2} \subseteq ... \ \Rightarrow$$

$$(\operatorname{\mathbb{T}}\circledast\operatorname{\mathbb{Y}})\cap I_{_{\gamma}}\neq \ \varphi \ \ and \ \ \operatorname{\mathbb{Y}}\in I_{_{\gamma}}, for \ some \ \gamma\in S,$$

since
$$I_{y}$$
 is a strong hyper Z – ideal of Z

$$\Rightarrow \mathbb{T} \in I_{\gamma'}, \forall \gamma \in S \Rightarrow \mathbb{T} \in \bigcup_{\gamma \in S} I_{\gamma'}$$

$$\Rightarrow \bigcup_{y \in S} I_y$$
 is a strong hyperZ - ideal of \mathbb{Z} .

Example 3.21: This example demonstrates that a hyper subZ-algebra and a hyper Z-ideal (weak hyper Z-ideal) of Z are different concepts..

(1) Let $Z = \{0, \mathbb{T}, \mathbb{F}^{1}\}$,

*	0	ፔ	ᡐ
0	{0}}	{0, ፔ}	{0, ኄ}
ፔ	{0, ፔ}	{0, ፔ}	{0, ⅌}
પ	{0}	{0, ७}	{0, ⅌}

Which is a \mathbb{Z} , $S = \{0, \Im\}$ is a hyper subZ-algebra , but S isn't a hyperZ-ideal(weakhyper Z-ideal) of \mathbb{Z} because $\mathbb{T} \otimes \mathbb{T} = \{0, \Im\} \subseteq S$ and $\Im \in S$ and $\Im \notin S$.

(2) Let $Z = \{0, T, T\}$, the following table represents the hyperoperatic \circledast on Z:

*	0	ፔ	પ
0	{0}	{0, ፔ}	{0, ₺}
ፔ	{0, ፔ}	{ፔ, ኄ }	{ፔ, ኄ }
િ	{0, ₺}	{ፔ, ኄ }	{ፔ, ኄ }

Which is a \mathbb{Z} , and $I = \{0, \Im\}$ is a hyperZ-ideal(weakhyper Z-ideal) of \mathbb{Z} , but I isn't a hyper subZ-algebra because $\mathbb{Z} = \{\mathbb{T}, \Im\} \not\subseteq I$.

Theorem 3.22: Let *S* a hyper subZ-algebra of **Z** then

(1) *S* is a weakhyper Z-ideal of $\mathbb{Z} \Leftrightarrow \forall \ \mathbb{T} \in \mathbb{Z} - S$, and $\mathbb{T} \in \mathbb{S}$ we have $\mathbb{T} \oplus \mathbb{T} \not\subseteq S$.

(2) S is a hyperZ-ideal of $\mathbb{Z} \Leftrightarrow \forall \mathbb{T} \in \mathbb{Z} - S$, and $\mathbb{T} \in S$ we have $(\mathbb{T} \oplus \mathbb{T}) \cap S = \emptyset$.

Proof:

(1) Suppose S be a weakhyper Z-ideal of \mathbb{Z} , $\mathbb{T} \in \mathbb{Z} - S$ and $\mathbb{T} \in S$.

Let $\mathbb{T} \otimes \mathbb{T} \subseteq S$, by hypothesis we have $\mathbb{T} \in S$ which is contradictory. $\Rightarrow \mathbb{T} \otimes \mathbb{T} \otimes \mathbb{T}$

Conversely, Suppose $\mathfrak{T} \circledast \mathfrak{T} \subseteq S$ and $\mathfrak{T} \in S$, let $\mathfrak{T} \notin S$ then by hypothesis $\mathfrak{T} \circledast \mathfrak{T} \notin S$. which is contradictory. $\Rightarrow \mathfrak{T} \in S$ $\Rightarrow S$ is a weakhyper Z-ideal of \mathfrak{Z} .

(2) If S a hyperZ-ideal of $\mathbb{Z}, \mathbb{T} \in \mathbb{Z} - S \& \mathbb{T} \in \mathbb{S}$.

Let $(\mathfrak{T} \circledast \mathfrak{F}) \cap S \neq \emptyset$, since $\mathfrak{F} \in S \& S$ is a hyperZ-ideal of \mathfrak{Z} , we have

 \mathfrak{T} ∈S Which is contradictory \Rightarrow (\mathfrak{T} ⊕ \mathfrak{F}) $\cap S = \varphi$.

Conversely, let for any $\Im \in Z - S$, $\Im \in S$, and $(\Im \Im) \cap S = \varphi$,

If $(\mathbb{T} \otimes \mathbb{T}) \cap S \neq \emptyset \Rightarrow \exists k \in (\mathbb{T} \otimes \mathbb{T}) \text{ and } k \in S \text{ since } S \text{ a hyper subZ-algebra of } \mathbb{Z} \Rightarrow (\mathbb{T} \otimes \mathbb{T}) \in S \Rightarrow \mathbb{T} \in S \text{ which is contradictory } \Rightarrow S \text{ is a hyperZ-ideal of } \mathbb{Z}.$

Definition 3.23: Let $X \neq \emptyset$, $X \subseteq Z$ is named a downset if $\mathbb{T} \ll \Im$ and $\Im \in X \Rightarrow \Im \in X$, $\forall \Im , \Im \in Z$.

Remark 3.24: If X is a hyperZ-ideal of Z⇒ X is a downset. Because if $\mathfrak{T} \ll \mathfrak{F}$ and $\mathfrak{T} \in X$. Then $\in (\mathfrak{T} \otimes \mathfrak{F}) \cap X$. Since $\mathfrak{T} \in X$. and X is a hyperZ-ideal of Z, we get $\mathfrak{T} \in X$.

Definition 3.25: A mapping $f: Z_1 \to Z_2$ where $(Z_1, \circledast, 0) \& (Z_2, \otimes, 0)$ be two (hZ),

is named a "hyperZ -homomorphism" if , $\forall \ \ \ \ \ \ \ \ \in Z_{_1}$ we have

$$(1)f(0) = 0 \qquad (2)f(\mathbb{T} \circledast \mathbb{T}) = f(\mathbb{T}) \otimes f(\mathbb{T}), \forall \mathbb{T}, \mathbb{T} \in \mathbb{Z}_1$$

If f is 1–1 and onto $\Rightarrow f$ is named a hyper Z-isomorphism

 $\text{kernel of } f \text{ (briefly) } \check{\text{Ker}}(f) = \left\{ \operatorname{T} \in Z_1 : f(\operatorname{T}) = \mathcal{O} \right\}, \text{ image of } f \text{ (briefly) } Im (f) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ inverse image of } f \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T} \in Z_1 \right\}, \text{ (briefly) } f(\operatorname{T}) = \left\{ f(\operatorname{T}) : \operatorname{T$

 $f\left(briefly\right)Im\left(f^{-1}\right)=\left\{ \mathbb{T}\in Z_{1}^{};f(\mathbb{T})\in Z_{2}^{}\right\} .$

respectively as the follows:

*	0	ፔ	\Im
0	{0}}	{ፔ}	{%}
Ъ	{0, Ђ}	{ፔ}	{ፔ, ኄ }
\Im	{0, ₹₃}	{ፔ, ኄ }	{ ጌ}

\otimes	Ø	Ь	Ч
Ø	{∅}	{Ь}	{P}
Ь	{О, Ь}	{Ь}	{Ь,Ч}
q	{∅, Ч}	{Ь,Ч}	{ P}

Then $(Z_1, \circledast, 0)$ and $(Z_1, \circledast, 0)$ are a hyper Z-algebras.

Let $f\colon\! Z_1\to Z_2$ define as $f(0)=-0, f(\mathfrak{T})=\mathfrak{H}$, $f(\mathfrak{F})=\mathfrak{H}$

Then "f is a hyper Z –homomorphism".

Lemma3.27: If $f: Z_1 \to Z_2$ is a hyperZ – "homomorphism"

- (1) if $\mathbb{T} \circledast \mathbb{T} = 0$, $\forall \mathbb{T}, \mathbb{T} \in \mathbb{Z}_1$ then $f(\mathbb{T}) \odot f(\mathbb{T}) = 0$.
- (2) Ker(f), Im(f) is a hyperZ-ideal (weakhyper Z-ideal) of Z_1 , Z_2 respectively.

Theorem 3.28: If $f:Z_1\to Z_2$ is a hyperZ-"homomorphism", if $\mathfrak T\ll \mathfrak T$ in Z_1 then $f(\mathfrak T)\ll f(\mathfrak T)$ in Z_2 .

Proof: Let \mathbb{T} , $\Im \in \mathbb{Z}_1$, if $\mathbb{T} \ll \Im \Rightarrow 0 \in \mathbb{T} \otimes \Im$.

And $f(0) = 0' \in f(\mathbb{T} \circledast \mathbb{T}) = f(\mathbb{T}) \otimes f(\mathbb{T}) \Rightarrow 0' \in f(\mathbb{T}) \otimes f(\mathbb{T})$ $\Rightarrow f(\mathbb{T}) \otimes f(\mathbb{T}).$

Remark 3.29: Let $f: Z_1 \to Z_2$ is onto hyper Z –homomorphism. If Z_1 is a/an (($\mathring{\zeta}$ - $\mathring{h}Z$), (\mathring{L} - $\mathring{h}Z$), (\mathring{L} - $\mathring{h}Z$), (\mathring{L} - $\mathring{h}Z$) and (\mathring{L} - $\mathring{h}Z$) therefore Z_2 is as well .

Proof: We just proof $(\underline{R}-hZ)$, and the explanation in all other cases is same.

Let Z_1 be an $(\underline{R} - \dot{h}Z)$ and $\underline{b} \in Z_2 \Rightarrow \exists \ \exists \in Z_1 \Rightarrow \underline{b} = f(\exists b)$,

$$0'\otimes \mathfrak{h}=f(0)\otimes f(\mathfrak{T})=f(0\circledast \mathfrak{T})=\{f(\mathfrak{U})\colon \mathfrak{U}\in 0\circledast \mathfrak{T}\}=\{f(\mathfrak{T})\}=\mathfrak{h}$$

Then Z_2 is an(\underline{R} - $\underline{h}Z$).

Remark 3.30: Let $f: Z_1 \to Z_2$ is 1–1 hyper Z-homomorphism. If Z_2 is a/an

 $((\not \zeta - \ddot h Z), (\not \underline N - \ddot h Z), (\not \underline Y - \ddot h Z), (\not \underline V - \ddot h Z) \text{ and } (\underline R - \ddot h Z)) \text{ therefore } Z_2 \text{ is as well.}$

Proof: We just proof $(\underline{R}-\dot{h}Z)$, and the explanation in all other cases is same.

Let Z_2 be an($\underline{\mathbf{R}}$ - $\underline{\mathbf{h}}Z$) and $\underline{\mathbf{T}}$ \in Z_1 and $f(\underline{\mathbf{T}}) = \underline{\mathbf{b}}$. Then

$$\{f(\mathfrak{U}):\mathfrak{U}\in\mathcal{O}\circledast\mathfrak{T}\}=f(\mathcal{O}\circledast\mathfrak{T})=f(\mathcal{O})\otimes f(\mathfrak{T})=\mathcal{O}'\otimes\mathfrak{H}=\{\mathfrak{h}\}=\{f(\mathfrak{T})\}$$

Since f is 1-1, we get that $0 \circledast \mathbb{T} = {\mathbb{T}}$. Therefore, Z_1 is an $(\underline{\mathbb{R}} - \ddot{\mathbb{n}} Z)$.

Theorem 3.31: If $f: Z_1 \to Z_2$ is a hyperZ – "homomorphism",

- (1) If I a hyperZ-ideal of $Z_2 \Rightarrow f^{-1}(I)$ a hyperZ-ideal of Z_1 .
- (2) If I a weakhyper Z-ideal of $Z_2 \Rightarrow f^{-1}(I)$ a weakhyper Z-ideal of Z_1 .
- (3) If I a stronghyperZ ideal of $Z_2 \Rightarrow f^{-1}(I)$ a stronghyperZ ideal of Z_1 .

Proof:

(1) Since $0' \in I$ and $f(0) = 0' \Rightarrow 0 \in f^{-1}(I)$

Let ${\mathbb T}$, ${\mathbb T}\in {\mathbb Z}_1$, and ${\mathbb T}\otimes {\mathbb T}\ll f^{-1}(I)$, ${\mathbb T}\in f^{-1}(I)$, then $f({\mathbb T})\in I$ and

 $\forall \Upsilon \in \mathbb{T} \otimes \mathbb{T} \exists \uparrow \in f^{-1}(I) \Rightarrow \Upsilon \ll \uparrow \Rightarrow 0 \in \Upsilon \otimes \uparrow$, then

 $\mathcal{O} = f(\mathcal{O}) \in f(\Upsilon \otimes \uparrow) = f(\Upsilon) \otimes f(\uparrow) \subseteq f(\mathbb{T} \otimes \Im) \otimes I = f(\mathbb{T}) \otimes f(\Im) \otimes I.$

So that $f(\mathfrak{T}) \otimes f(\mathfrak{T}) \ll I$ since I a hyperZ-ideal of $Z_2 \Rightarrow$

 $f(\mathfrak{T}) \in I \Rightarrow \mathfrak{T} \in f^{-1}(I) \Rightarrow f^{-1}(I) \text{ a hyper } Z - \text{ideal of } Z_1.$


```
(2) Since 0' \in I and f(0) = 0' \Rightarrow 0 \in f^{-1}(I)
Let \mathfrak{T}, \mathfrak{F} \in \mathbb{Z}_1, and \mathfrak{F} \circledast \mathfrak{F} \subseteq f^{-1}(I), \mathfrak{F} \in f^{-1}(I),
 \Rightarrow f(\Im) \in I (by Proposition 3.4 (5))
 \mathbb{T} \otimes \mathbb{T} \ll f^{-1}(I), \forall \Upsilon \in \mathbb{T} \otimes \mathbb{T} \Rightarrow \exists \uparrow \in f^{-1}(I) 
Then \Upsilon \ll \uparrow \Rightarrow 0 \in \Upsilon \circledast \uparrow ,then
\mathcal{O} = f(\mathcal{O}) \in f(\Upsilon \circledast \uparrow) = f(\Upsilon) \otimes f(\uparrow) \subseteq f(\mathfrak{T} \circledast \mathfrak{F}) \otimes I = f(\mathfrak{T}) \otimes f(\mathfrak{F}) \otimes I.
So that f(\mathfrak{T}) \otimes f(\mathfrak{T}) \subseteq I since I a weakhyper Z-ideal of Z_2 \Rightarrow
f(\mathfrak{T}) \in I \Rightarrow \mathfrak{T} \in f^{-1}(I), hence forth f^{-1}(I) a weakhyper Z - ideal Z_1.
(3) Since 0' \in I and f(0) = 0 \Rightarrow 0 \in f^{-1}(I)
Let \mathbb{T}, \mathbb{T} \in \mathbb{Z}_1, and (\mathbb{T} \oplus \mathbb{T}) \cap f^{-1}(I) \neq \emptyset, \mathbb{T} \in f^{-1}(I), then f(\mathbb{T}) \in I
Since (\mathfrak{T} \circledast \mathfrak{F}) \cap f^{-1}(I) \neq \emptyset
\Phi = f(\Phi) \neq f \Big[ (\mathbb{T} \circledast \mathbb{T}) \cap f^{-1}(I) \Big] \subseteq f(\mathbb{T} \circledast \mathbb{T}) \cap f(f^{-1}(I)) \subseteq f(\mathbb{T}) \otimes f(\mathbb{T}) \cap I
\Rightarrow f(\mathcal{T}) \otimes f(\mathcal{T}) \cap I \neq \phi,
Since \Im \in f^{-1}(I) \Rightarrow f(\Im) \in I, I a stronghyperZ - ideal of <math>Z_2,
\Rightarrow f(\mathbb{T}) \in I \Rightarrow \mathbb{T} \in f^{-1}(I), \Rightarrow f^{-1}(I) a stronghyper Z - ideal of Z_{I}.
Theorem 3.32: If f: Z_1 \to Z_2 be an onto hyper Z –homomorphism,
(1) If I a hyperZ-ideal of Z_1 containing ker(f) \Rightarrow f(I) a hyperZ-ideal of Z_2.
(2) If I a weakhyper Z-ideal of Z_1 containing ker(f) \Rightarrow f(I) a weakhyper Z-ideal of Z_2.
(3) If I a stronghyper Z - ideal of Z_1 containing ker(f) \Rightarrow f(I) a stronghyper Z - ideal of Z_2.
Proof:
  (1) Let I a hyper Z – ideal of Z_1 containing ker(f) \Rightarrow 0 \in ker(f) \subseteq I
        0' = f(0) \in f(I),
Let \mathbb{T}, \Im \in \mathbb{Z}_2 such that \mathbb{T} \otimes \Im \ll f(I), and \Im \in f(I),
since f is onto\Rightarrow \exists \uparrow, \omega \in Z_1, f(\uparrow) = \Im, f(\omega) = \Im. Thus
f(\uparrow \circledast \omega) = f(\uparrow) \otimes f(\omega) = \mathfrak{T} \otimes \mathfrak{I} \otimes f(I)
then \forall b \in \uparrow \circledast (a), \exists q \in I, f(b) \ll f(q) \Rightarrow
0' \in f(\mathfrak{h}) \otimes f(\mathfrak{q}) = f(\mathfrak{h} \otimes \mathfrak{q}), \text{ then }
       \mathfrak{h} \otimes \mathfrak{q} \subseteq ker(f) \subseteq I, by Proposition 3.4(5) \Rightarrow (\mathfrak{h} \otimes \mathfrak{q}) \ll I
Used (HZI_2) \Rightarrow b \in I, then
       \uparrow \circledast \omega \subseteq I, \Rightarrow \uparrow \circledast \omega \ll I, \text{ and } \omega \in I
        Used\ (HZI_{2}) \Rightarrow \uparrow \in I
        then f(\uparrow) = \Im \in f(I) \Rightarrow f(I) a hyperZ-ideal of Z_2.
  (2) Let I a weakhyper Z-ideal of Z_1 containing ker(f)
          \Rightarrow 0 \in ker(f) \subseteq I, 0' = f(0) \in f(I),
        Let \mathbb{T}, \Im \in \mathbb{Z}_{2'} and \mathbb{T} \otimes \Im \subseteq f(I), \Im \in f(I),
        since f is onto\Rightarrow \exists \ (x) \in I \ and \ \uparrow \in Z_1, f(\uparrow) = \ T_1, f((x)) = \ T_2,
        \mathfrak{T} \otimes \mathfrak{F} = f(\uparrow) \otimes f(\mathfrak{G}) = f(\uparrow \otimes \mathfrak{G}) \subseteq f(I)
      \Rightarrow \uparrow \circledast \omega \subseteq I, since I a weakhyper Z-ideal of Z_1
      And (\omega) \in I \Rightarrow \uparrow \in I, f(\uparrow) \in f(I) \Rightarrow \Im \in f(I)
      f(I) is a weakhyper Z-ideal of Z_2.
(3) Let I a strong hyperZ – ideal of Z_1 containing ker(f)
```


Conclusions

This work introduces a new hyper algebra This is an extension of Z-algebra ,and defined hyper(subalgebras, $weakhyper\ Z-ideal$, $strong\ hyper\ Z-ideal$, Z-homomorphism), and particular hyperZ-algebra types were studied. isomorphism theorems were finally studied. In future publications, we will study Z-superhyperalgebra and several forms of ideals in Z-superhyperalgebra.

References:

- [1] F. Marty, Sur une generalization de la notion de group, 8th Congress Math. Scandinaves, Stockholm, (1934), 45{49.
- [2] P. Corsini, Prolegomena of hypergroup theory, (Second Edition), Aviani Editor, 1993.
- [3] Y.B. Jun, M.M. Zahedi, X.L. Xin, R.A. Borzooei, On hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics, 8 (2000), 127-136.
- [4] R.A. Borzooei, A. Hasankhani, M.M. Zahedi, Y.B. Jun, On hyper K-algebras, Japanese Journal of Mathematics, 52(1) (2000), 113-121.
- [5] X.L. Xin, Hyper BCI-algebras, Discuss Mathematics Society, 26 (2006), 5-19.
- [6] R.A. Borzooei, W.A. Dudek, N. Kouhestani, On hyper BCC-algebras, International Journal of Mathematics and Mathematical Sciences, (2006), 1-18. DOI:org/10.1155/IJMMS/2006/49703
 [7] J.C. Endam, On hyper B-Algebras, Dissertation, MSU-IIT, 2019.
- [8] A.L.O. Vicedo, J.P. Vilela, Hyper B-ideals in hyper B-algebra, Journal of Ultra Scientist of Physical Sciences, 29(8) (2017), 339–347. DOI: 10.22147/jusps-A/290805
- [9] S.Niazian, On hyper BI-algbras, JAHLA, vol(2), N(1)(2021), P 47-67. DOI:10.52547/HATEF.JAHLA.2.1.4
- [10] Chandramouleeswaran M., Muralikrishna P., Sujatha K. and Sabarinathan S., A note on Z-algebra, Italian Journal of Pure and Applied Mathematics-N.38, 707–714 (2017). <u>Google Scholar</u>.

