Journal of Advances in Mathematics Vol 21 (2022) ISSN: 2347-1921 https://rajpub.com/index.php/jam

https://doi.org/10.24297/jam.v20 1.9253

Certain Families of Holomorphic and Salagean Type Bi-Univalent Functions Defined by (p,q)-Lucas
Polynomials Involving a Modified Sigmoid Activation Function
Ali Mohammed Ramadhan' and Najah Ali Jiben Al-Ziadi ?
! Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq
2 Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq

' edu-math.post15@qu.edu.iq 2 najah.ali@qu.edu.i

Abstract:

The aim of the present paper is to introduce a certain families of holomorphic and Sildgean type bi-univalent

functions by making use (p, q) —Lucas polynomials involving the modified sigmoid activation function ¢(§) = J?

& = 0in the open unit disk 4. For functions belonging to these subclasses, we obtain upper bounds for the second
and third coefficients. Also, we debate Fekete-Szegd inequality for these families. Further, we point out several
certain special cases for our results.
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Introduction

Symbolized by A the functions class of the form:

k(s)=s+ Z d,s", €Y
n=2

which are holomorphic in the open unit disk 4 ={s:s € Cand |s| <1} and normalized under the conditions
indicated by k(0) = k'(0) — 1 = 0. Furthermore, symbolized by § the class of all functions in A which are univalent
ind.

For each k € S, the Koebe one-quarter theorem [6] states that the image of the open unit disk 4 under k contains
a disk of radius 1/4. Thus, every univalent function k has an inverse k=, which is defined by

ki(k(s))=s (s€4)

and

k(k™1() =7 (lrl <o (K); To() = 2)
where
k™X(r) = h(r) = r — dyr? + (2d% — d3)r® — (5d3 — 5dyds + d)r* + . )
Let D be the class of function F which is holomorphic in 4 with
F(0)=0 and |F(s)| <1 (seaq).
Let k(s) and y(s) be holomorphic in 4 then the function k(s) is said to be subordinate to y(s) in 4 written by
k(s) < y(s) (s€d), (3)

such that k(s) = y(F(s)), (s € 4). From the definition of the subordination, it is easy to show that the subordination
(3) implies that
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k(0) = y(0) and k(4) < y(4). 4)
In particular, if y(s) is univalent in 4, then the subordination (3) is equivalent to the condition (4).

The function k € A is considered bi-univalent in 4 if both k and k™! are univalent in 4. Indicated by the Taylor-
Maclaurin series expansion (1), the class of all bi-univalent function in 4 can be symbolized by . In the year 2010,
Srivastava et al. [15] refreshed the study of various classes of bi-univalent functions. Moreover, many penmaus
explored bounds for different subclasses of bi-univalent function (see, for examples [1, 2, 3, 4, 5, 8, 13, 14, 16, 17]).
The coefficient estimate problem involving the bound of |d,| (n € N — {1,2},N = {1,2,3, ... }) is still an open problem.

Let p(x) and q(x) be polynomials with real coefficients. The (p, q) —polynomials L, ;. (x), or briefly L,(x) are given
by the following recurrence relation (see[9, 10]):

Lyp(x) = p()Lp—1(x) + q(x) L5 (x) (n e N—{1}),

with

Lo(x) =2,

L (x) = p(x),

Ly(x) = p*(x) + 2q(x),

Ly(x) = p*(x) + 3p(x)q (x), ... )
The generating function of the Lucas polynomials L, (x) (see [11]) is given by:

2-p)s
T 1-p@)s—q@)s?

Gr,(8) = Z Ly(x)s™

Note that for particular values of p and g, the (p, q) —polynomial L, (x) leads to various polynomials, among those,
we list few cases here (see, [11] for more details, also [2]):

1) For p(x) = x and q(x) = 1, we obtain the Lucas polynomials L, (x).

2) For p(x) = 2x and q(x) = 1, we attain the pell-Lucas polynomials Q,(x).

3) For p(x) =1 and q(x) = 2x, we attain the Jacobsthal-Lucas polynomials j, (x).

4) For p(x) = 3x and q(x) = —2, we obtain the Fermat-Lucas polynomials f,(x).

5) For p(x) = 2x and q(x) = —1, we have the Chebyshev polynomials T,,(x) of the first kind.

Let A4 denoted the class of functions of the form:
k¢(s)—s+zl+ ~d,, 5" —s+z¢(6)d s (6)

where ¢(8) = ﬁ is the sigmoid activation function and § = 0. Also, A, = A (see[7]).
We consider a differential operator D!, t € N U {0}, (see[12]) for kg4 belongs to Ay, defined by
D%k () = ky(s); D ky(s) = Dhy(s) = skip(s); D'ky(s) = D (D' ky(s)).

We note that
t N Znt n N t n
Dk¢(s)=s+zmdns =s+zn¢(6)dns. %)
n=2 n=2

In this paper, we introduce a certain families of bi-univalent functions defined through the (p,q) —Lucas
polynomials. Furthermore, we derive coefficient estimates and Fekete-Szeg0 inequality for functions defined in those
classes.

Cofficient bounds and Fekete-Szeg6 inequality for the class Wy (a, t, $(8); x)
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Definition 1 A function k € X is said to be in the class Wy(a, t,$(6);x) for0 <a <1, t € NU {0} and ¢(5) = 2

1+e=6’
& = 0, if the following conditions of subordination are satisfied:
s(Dtkg(s) , + (2a® — a) s* (D'ky(s) !
( ) 7 ( ) < GLmws)—1 ®)
4(a — a?)s + (2a? — a)s (ka¢(s)) + (2a? —3a + 1)Dky(s)
and
(D hy(r) 4 a?—a)r?(Dthy(r) !
¢ ¢
( ) ( ) <GLm -1, €))

4(a — a®)r+ Qa2 — a)r (Dthd,(r)), + (2a? = 3a + 1)Dthy(r)
where the function h = k™1 is indicated by (2).
Remark 1

1) Fora = 0, the function class W (a, t, $(5); x) shortens to the function class Ss (¢ (6); x) presented and investigated
by Swamy et al. [16].

2) Fora=0,t =0 and ¢(8) = 1, the function class Wy(a, t, $(5); x) shortens to the function class S(x) presented
and investigated by Altinkaya [1].

3) Fora = % t = 0 and ¢(8) =1, the function class Wy(a,t, $(5); x) shortens to the function class W (7t = 1; x)

presented and investigated by Altinkaya and Yalgin [3].
Theorem 1 Let the function k € T indicated by (1) be in the class Wx(a, t, $(5); x). Then

lpx|y/ Ipx|
|d,| < (10)
2t (5) \/l[(12a4 —28a3 + 15?2+ 2a+ 1) — (1 + 3a — 2a?)?]p?(x) — 2(1 + 3a — 2a?)2q(x)|
and
lp ()l p*(x)
lds] < 22a2 +1)3t¢p(8) (1 + 3a — 2a2)3t¢(5)’ an
and for some u € R,
ld; — #d%|
lp ()l .
22+ 3590 T
L 3t - [[(12a* — 28a® + 15a? + 2a + 1) — (1 + 3a — 2a?)?]p?(x) — 2(1 + 3a — 2a?)?q(x)|
‘ ‘”22t¢(6)‘ = 2Q2a? + Dp*(x)
<4 (12)

3 3
lpC]° |1 — llm _
[(12a% = 28a® + 1522 + 2a + 1) — (1 ¥ 32 = 2a2)7p2(x) — 2(1 + 3a = 2a2qO3' @)
3¢ - [[(12a* — 28a® + 15a? + 2a + 1) — (1 + 3a — 2a?)?]p?(x) — 2(1 + 3a — 2a?)?q(x)|
B “22t¢(6)‘ = 2Q2a% + NP2 (@) '

:

Proof. Let k € Wy(a,t, ¢(5);x) be given by Taylor-Maclaurin expansion (1). Then, there are two holomorphic
functions u and v such that

u(0) =0, v(0) =0,
[lu(s)| = |mys + mys? + | <1, |[v(@)| = |r+n,r2 +--] <1 (Vs,r €A).

Hence, we can write
s (Dtkd,(s))’ + (2a? — a) s? (Dtk(p(s))”

4(a — a?®)s + 2a? — a)s (Dtkd,(s))’ + (2a? —3a + 1)Dtky(s)

= Gr,m(u() -1

and
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r (Dthd,(r))l + Qa? —a)r? (Dthd,(r))”

4(a —a®)r+ Qa? —a)r (thd,(r)), + (2a? = 3a + 1)Dthy (1)

= G, (v@) - 1.

Or, equivalently,
s (Dtk¢(s))’ + (2a? — a) s? (Dtk¢(s))”

4(a —a?®)s+ a? —a)s (Dtk¢(s)), + (2a? —3a + 1)Dtky(s)

= =1+ Ly(x) + L, GO)uls) + Ly, [u(s)]? + -

and

r (Dth¢(r))’ + (2a? — a) r? (Dth¢(r))”

4(a —a®)r+ QRa? —a)r (Dth¢(r)), + (2a? —3a + 1)Dthy(r)

=—1+4Lo(x) + L (x)v(r) + L) [v(r)]* + -

From the above equalities, we obtain

s (Dtk¢,(s))’ + (2a? — a) s? (Dtkd,(s))”
4(a —a?)s + 2a? — a)s (Dtkd,(s))’ + 2a? = 3a + 1)Dtky(s)

=1+ L (x)mys + [Ly(x)my + L,(x)m?]s? + .. (13)

and

r (Dthd,(r))’ + QRa?—a)r? (Dthd,(r))”
4(a — a?)r + 2a? — a)r (th¢(r))’ + (2a? = 3a + 1)Dthy(r)

=1+ L (xX)nyr + [L)ny, + Ly()n?]r2 +---. (14)

Additionally, it is fairly well known that

Im;] <1 and |n;| <1 (i€eN). (15)
Thus upon comparing the corresponding coefficients in (13) and (14), we have
(14 3a—2a?)2t¢(8)d, = Ly (x)m, (16)
(12a* — 28a3 + 11a? + 2a — 1)2% $2(8)d3 + (4a? + 2)3'p(8)d; = L (x)m, + L,(x)m?, a7
—(1+3a—2a?)2'¢p(8)d, = Li(x)n, (18)
and
(12a* — 28a® + 19a? + 2a + 3)2% ¢p2(85)d% — (4a? + 2)3t¢(6)d; = L1 (x)n, + L, (x)n2. (19
From (16) and (18), we can easily see that
my = -ny (20)
and
(1 + 3a — 2a?)222*1p2(8)d? = L2 (x)(m? + n?). 2D
If we add (17) to (19), we get
(24a* — 56a3 + 30a? + 4a + 2)2% $p2(8)d? = Ly (x)(my + ny) + Ly(x)(m? + n?). (22)

By using (21) in equation (22), we have
L3 (x)(m, +ny)

d? = , 23
27 [(24a* — 56a3 + 30a? + 4a + 2)L2(x) — 2(1 + 3a — 2a?)2L,(x)] 22t ¢p2(5) (23)
1
which yields
\d,| < Ipx!+/Ipx|
21 =

2tp(5) \/l [(12a* — 28a3 + 15a? + 2a + 1) — (1 + 3a — 2a?)?]p?(x) — 2(1 + 3a — 2a?)?q(x)| .
By subtracting (19) from (17) and in view of (20), we obtain
4Q2a? + D[3°¢p(8)d; — 22° $2(8)d5] = L1 (x)(my — nz) + L (x)(mf — nf)
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de = Ly (x)(m; — n,) 2% ¢(8)
3

"~ 4(2a? + 1)3t¢(5) 3t ds- (24)

Then, in view of (21), (24) becomes

_ Ly(x)(my —ny) L (x)(m +n?)
37 42a? 4+ 1)3tp(5) + 2(1 4 3a — 2a2)23tp ()

Applying (5), we deduce that

.| < lp ()| N p?(x)
317 2Qa2+1)3t¢p(8) (1 +3a—2a?)3t¢p(6)
From (24), for 4 € R, we write
_ Ly (x)(m; —n,) 2% ¢()
s~k = o T 1)37(0) < 3t “) az- (25)

By substituting (23) in (25), we get
L?(x) (my +ny)

d. — Hdz — Ll(x)(mz - nz) (ZZt ¢(6) _ H)
3 27 42a% + 1)3tp(5) 3t [(24a* — 56a3 + 30a? + 4a + 2)[3(x) — 2(1 + 3a — 2a2)2L,(x)]22t $p*(5)
L) 1 _ 1
T2 [(Q(u, x) + 2(2a2+1)3f¢>(5)) my + ('Q('“' x) 2(2a2+1)3f¢(6)) nz],
where

e (249 -4

[(12a* — 28a3 + 15a2 4+ 2a + 1)L2(x) — (1 + 3a — 2a?)2L,(x)] 22t $2(5)

Qu,x) =

Hence, in view of (15), we conclude that

iG] if 12(120] < 1
2(2a? + 1)3t¢p(8) 2(2a? + 1)3t¢(6)

) 1
LGNGO if 10080 2 505,

lds — pd3| <

which evidently completes the proof of Theorem 1.
Remark 2

1) If we put @ = 0 in Theorem 1, we get the outcomes which were indicated by Swamy et al.[16].
2) fweputa=0, t=0and ¢(8) =1in Theorem 1, we get the outcomes which were indicated by Altinkaya [1].
3) Ifweputa = % t = 0and ¢(6) = 1 in Theorem 1, we get the outcomes which were indicated by Altinkaya and

Yalgin [3].
Cofficient bounds and Fekete-Szeg6 inequality for the class Kz (a, t, p(6); x)

Definition 2 A function k € X is said to be in the class ¥ (a,t,¢(6);x) for0 < a <1, t € NU {0} and ¢(6) = 2

1+e~6"’
§ = 0, if the following conditions of subordination are satisfied:
/ s{Dtky(s) !
(1-a) (ka¢(s)) +al1+ (%d’) < Gy () — 1 (26)
(Dtky(s))
and
/ 7 (Dthy(r) !
(1—a)(D'hy() +a| 1+ m < Gp@ -1, 27)
(Dthy (™)

where the function h = k™1 is indicated by (2).
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Remark 3

1) Fora=1,t = 0and ¢(6) =1, the function class K5 (a,t, $(5); x) shortens to the function class C(x) presented
and investigated by Altinkaya [1].

2) Fora=0, t =0 and ¢(6) = 1, the function class Kx(a,t, $(5); x) shortens to the function class Wg(t = 1;x)
presented and investigated by Altinkaya and Yalgin [3].

Theorem 2 Let the function k € T indicated by (1) be in the class ¥ (a, t, (5); x). Then

Ipx|y/1px| 28)

ld,| <
27 2t9(8) V1A + P2 () + 84 ()]
and
Ip(x)| p*(x)
lds] < 1+ a)3t*1p(8) 4 ¢p(5) 3¢’ (29)
and for some u € R,
[p ()| . 3t < [(1+ a)p?(x) + 8q(x)|
T+a03g0 7 ' TFEG®| ST 30+ 0@
ds—pddl <3 sl 3 | (30)
p(x) #—22t¢(5) i |- 3t [(1+ a)p?(x) + 8q(x)|
(1 + a)p?(x) + 8q(x)|3t¢p(5) # 228¢(8)| — 3(1 + a)p?(x)

Proof. Let k € Ks(a,t,$(5);x) be given by Taylor-Maclaurin expansion (1). Then, there are two holomorphic
functions u and v such that

u(0) =0, v(0) =0,
[u(s)| = |mys + mys? + -+ < 1, lv(M)| = lmr+n,r2 ++| <1 (Vs,r € A).

Hence, we can write

1-a) (Dtkd,(s)), +a (1 + m> = GLn(x)(u(s)) -1
(Dtky(s))
and
1-a (Dthqb(r))’ +a (1 + M) = GL,(v) -1
(Dthy(r))

Or, equivalently,

' s (Dtkd,(s))”
(1—a) (Diky(s)) +a| 1+ W = 1+ Lo(x) + Ly (¥)u(s) + L () [u(s)]? + -+
D ¢ S
and
/ T (Dthd,(r))”
(1-a) (Dthy()) +a| 1+ W = —1+ Lo(x) + L ()v(r) + Ly () [w(r)]? + -+
t ® r
From the above equalities, we obtain
' S (Dtk¢(5)),’
(1-a) (Dtkd,(s)) tall+———F | =1+ L, (x)mys + [Li(x)m, + L,(x)m?]s? + - (3D
(Dtky(s))

and
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Dth !
m = 1+ Ly (Ony + [y (Ony + Ly (ndlr? + - (32)
(Dthy(r)

Additionally, it is fairly well known that

(1-a) (Dthd,(r)), +a (1 +

Im;] <1 and In;]<1 (i€N). (33)
Thus upon comparing the corresponding coefficients in (31) and (32), we have
271 (8)d, = Ly(x)m,, (34)
(14 )3t p(8)d; — a 22D $2(8)d3 = L, (x)my + Ly(x)m?2, (35)
—2"*1¢(8)d, = L, (x)n, (36)
and
— (1 +a)3t*1p(8)d; + (a + 3)22 41 p2(8)d3 = Ly (x)ny + Ly(x)n3. (37)
From (34) and (36), we can easily see that
my =-ny (38)
and
2203¢2(8)d3 = L1 (x)(m] + nf). (39)
If we add (35) to (37), we get
(B — a)22* p2(8)d? = L, (x)(my + ny) + Ly(x)(m? + n?). (40)

By using (39) in equation (40), we have
Lgi(x)(mz +ny)

2
© G- DB - 4L, 27 §7(6) “D
which yields
\d,| < Ipx|y/Ipx|
21 = .
2¢(8) I(1 + a)p?(x) + 8q(x)|
By subtracting (37) from (35) and in view of (38), we obtain
A+ a)[2¢(8)3 1 d3 — 3¢*(8)2°*1d3] = Ly (x)(m, — ny) + Ly(x)(m — ni)
_ Ly (x)(my — n,) 2% ¢(8)
ds = 2(1 + a)3t+1¢p(5) AT dz. (42)
Then, in view of (39), (42) becomes
de = Li(x)(my —np) | Li(x)(mi + ni)
3721 + a)3t+1¢p(8) 8 ¢(8) 3t
Applying (5), we deduce that
Ip(x)| p*(x)
45l < T390 T 760) 3
From (42), for u € R, we write
_ Ly (x)(my — ny) 2% ¢(6)
b= 1 = S )37 14(5) < 3t ”) dz. (43)

By substituting (41) in (43), we get

,  Li)(m, —ny) 22 ¢(6) L3(x)(m, +ny)
2721+ a)p(8)3t+! ( 3t )[(3—a)L§(x)—4Lz(x)] 22641 p2(8)’
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1

Lq1(x) -t
(1+a)3“’1¢(6)) my ¥ (Q(“’ x) (1+a)3“‘1¢(6)) nz],

2

(.(2 (u,x) +

where

3t
[B = a)Li(x) — 4Ly (x)] 2% ¢2(8)

1300 (222 )

2, x) =

Hence, in view of (33), we conclude that

1Ly ()] ;)| < 1
A+ a)351¢@) HO1= T+ 0)3t7¢(6)

L2 if 12

O 2 o
1+ a)3**19(8)

which evidently completes the proof of Theorem 2.

Remark 4

1) Ifweputa=1,t=0and ¢(d) =1 in Theorem 2, we get the outcomes which were indicated by Altinkaya [1].
2) fweputa =0,t=0and ¢(6) =1 in Theorem 2, we get the outcomes which were indicated by Altinkaya and
Yalgin [3].

Cofficient bounds and Fekete-Szeg6 inequality for the class 7'5(B,t, ¢(5); x)
2

Definition 3 A function k € X is said to be in the class T5(B,t, ¢(6); x) for =0, t e NU {0} and ¢(5) = T8 6=
0, if the following conditions of subordination are satisfied:
(s(0ks2) +8 (52 (0%s9) )
7 < GL,m(s)—1 (44)
(Dtky(s))
and
(r(ohe) +.8(2 (0hy ) )
<G, -1, (45)

(Dthy ™)
where the function h = k™1 is indicated by (2).

Remark 5 For § =0, t = 0 and ¢(8) = 1, the function class 75(B,t, ¢(s); x) shortens to the function class C(x)
presented and investigated by Altinkaya [1].

Theorem 3 Let the function k € T indicated by (1) be in the class T3(8,t, $(8); x). Then

Ipx|y/Ipx|
2t9(8) /12(1 + 38 + 8B2)p?(x) + 8(1 + 28)%q(x)|

da| < (46)

and

lp(x)] N p*(x)
2(1+3B)3*1¢(8) 41 +2p)? 3tp(8)’

ds| < (47)

and for some u € R,
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[p ()l
2(1+3p)3*1¢(8)
3 | _ 1A +38+88%)p*(x) +4(1 +28)*q()]
H22ep)| = 3(1+38)p2(x)

lpCo)? |1 - M% _
21011 36 + 8P (o) + 4L+ 26240139 (0)
3¢ | 1a+38+ 88%)p*(x) + 4(1 + 28)*q(x)|
gy < 3(1 +3B8)p2(®) '

if

‘1
ld3 — pd3| < 3

:

(48)

Proof. Let k € T3 (B, t, $(5); x) be given by Taylor-Maclaurin expansion (1). Then, there are two holomorphic functions

u and v such that
u(0) =0, v(0) =0,

[u(s)| = |mys + mys? + -+ | < 1, lv(™)| = |nr + nr2 ++ | < 1 (Vs,r € 4).

Hence, we can write

r

(s (0ks0) +8 (52 (0s9) )
(Dtky())

= G0 (u() -1

and

r
"

(r(oe) +8 (2 (0% )')
(Dthy ™)

= G0 (v(M) — 1.

Or, equivalently,

<s (Dtks()) +B (52 (Dtk¢(s))")>

(Dtks(s))

!

and

(r (Dths ™) +B (r (Dthd,(r))")),
(Dthe@))

From the above equalities, we obtain

<s (Dtky(s)) +B (52 (Dtk¢(5))”))’

(Dtky(s))

=1+ L(x)mys + [Ly(x)m, + L,(x)m?]s% + -+

and

((ohe) +8 (2 (ph ) ))
(Dthe ™)

Additionally, it is fairly well known that

=1+ L, )nyr + [Li(x)n, + L,(x)n?]r? + -

lm;l <1, |ml<1 (i€N).
Thus upon comparing the corresponding coefficients in (49) and (50), we have
(1+2p) 281 (8)d, = L (x)m,4,

@ @ 104

= —14 Lo(x) + Li()u(s) + L, (x)[u(s)]? + -

= —1+4 Lo(x) + Ly ()v(r) + L) [v(r)]? + -

(49)

(50)

6D
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2(1+38)31p(8)ds — (1 + 2B) 22D ¢2(8)d3 = Ly (x)my + L, (x)m3,
- (1 +2B)2¢p(8)d; = Ly ()
and
(2 +7B)22E D p2(8)d2 — 2(1 + 38)3+1p(8)ds = Ly (x)ny + Ly (x)n?.
From (52) and (54), we can easily see that
m; =-n

and

(1+2p)? 2273¢2(8)d3 = Li(x)(m] + n}).
If we add (53) to (55), we get

(1 + 58)22E+D $2(8)d? = L, (x)(my + ny) + Ly(x)(m? + nd).
By using (57) in equation (58), we have

d2 = L3 (x)(m; + ny)
2T [+ 582 (x) — 2(1 + 28)2L, (x)] 22¢+D) ¢2(8)’

which yields
< Ipx|y/Ipx] _
2'¢(8) V12(1 + 38 + 8F2)p2(x) + 8(1 + 28)2q ()]
By subtracting (55) from (53) and in view of (56), we obtain
(1 +3B)[40(8)3+1ds — 3¢2(8)2°T*Vd3] = Ly (x)(m, — ny) + Ly(x)(md — nd)

_ L, (x)(my —n,) n 2% ¢(8)
T 4(1 + 3B)3t1¢(68) 3t

|da|

d3 d%

Then, in view of (57), (60) becomes

_ Li)(my —ny) L2(x)(m} +n?)
T 4(143B)31p(8)  8(1+2B)2 $(5) 3

Applying (5), we deduce that

lp ()| N p*(x)
21 +3p)31¢(8)  4(1+28)?3° Pp(6)

lds| <

From (60), for u € R, we write

(53)
(54)

(55)

(56)

(57)

(58)

(59)

(60)

2 Ly (x)(my —ny) 2% ¢(8) 9
G = A1 38)3519(0) < 3 “) @
e — pd? = @Mz — 1) 2% $(8) Li(x)(m; + n,)
TR T 3R)37T 9(6) < 3¢ H) [+ 58)L3(x) — 2(1 + 2B)*Ly (x)] 220441 ¢2(8)’

Iy E1C)) - r - r
- 2 [(Q(M’ x) + 2(1+3ﬁ)3t+1¢(6)) my + ('Q(”’ x) 2(1+3B)35+1¢(6)) nz],

where

12 (249 -4

[(1+5B8)L7(x) — 2(1 + 2B)*L, ()] 224+ $2(8)

Hence, in view of (51), we conclude that

2 x) =

Ly () | < 1
2(1 +3B)371$(5) #

T 2(1+3p)3t+19(8)
1L (OI2 0l if 2@ x)] 2

@ @ 105

|d3 — ud3| <

2(1+3p)3*1¢(8)’
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which evidently completes the proof of Theorem 3.

Remark 6 If we put § = 0,t =0and ¢(5) =1 in Theorem 3, we get the outcomes which were indicated by Altinkaya

[1].
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