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Abstract: In this paper, we present a class of stochastic differential equations with terminal condition, called
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1 Introduction

Linear backward stochastic differential equations were first studied by Bismut [4] in 1973. The general nonlinear
backward stochastic differential equations were first studied by Pardoux and Peng, [12], in 1990.

Forward-backward stochastic differential equations (FBSDEs in short) were first studied by Antonelli (see [3]), where
the system of such equations is driven by Brownian motion on a small time interval. The proof there relies on the
fixed point theorem. Since then FBSDEs are encountered in stochastic optimal control problem and mathematical
finance. There are also many other methods to study FBSDEs on an arbitrarily given time interval. For example,
the four-step scheme approach of Ma et al. [9], in which the authors proved the existence and uniqueness of solutions
for fully coupled FBSDEs on an arbitrarily given time interval, where the diffusion coefficients were assumed to be
nondegenerate and deterministic. Their work is based on continuation method. See also Hu and Peng [7], Pardoux and
Tang [14], Peng and Wu [15], and Yong [18]. There is also a numerical approach for handling some linear FBSDEs as
e.g. in Delarue and Menozzi [5] and Ma et al. [11]; see also Ma and Yong [10], Hu et al. [6] and [8].

A new class of stochastic differential equations with terminal condition, called backward doubly stochastic differential
equations (BDSDEs) was introduced in 1994 by Pardoux and Peng in [13]. Precisely, they proved there the existence
and uniqueness of the solutions of this kind of systems and produced also a probabilistic representation of certain
quasi-linear stochastic partial differential equations (SPDEs) extending a Feynman Kac formula for linear SPDEs.

Peng and Shi [16], introduced fully coupled FBDSDEs and showed the existence and uniqueness of their solutions with
arbitrarily fixed time duration and under some monotone conditions.

In this paper, we will prove the existence and uniqueness of the solutions of FBDSDEs but under weaker conditions
than [16]. We establish in particular the existence and uniqueness of the solutions of the following Markovian fully
coupled FBDThe Existence and Uniqueness Theorem of FBDSDEs
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2 Existence and Uniqueness Theorem of FBDSDEsSDEs

Let

b : [0, T ]× Rn × Rm × Rn×l × Rm×d → Rn,

σ : [0, T ]× Rn × Rm × Rn×l × Rm×d → Rn×d,

f : [0, T ]× Rn × Rm × Rn×l × Rm×d → Rm,

g : [0, T ]× Rn × Rm × Rn×l × Rm×d → Rm×l,

Ψ : Ω× Rm → Rn,

h : Ω× Rn → Rm,

be a given mappings satisfying assumptions to be given shortly.

Consider the following system of equations, which we call forward-backward doubly stochastic differential equations
(FBDSDEs): 

dyt = b (t, yt, Yt, zt, Zt) dt+ σ (t, yt, Yt, zt, Zt) dWt − ztd
←−
B t

dYt = f (t, yt, Yt, zt, Zt) dt+ g (t, yt, Yt, zt, Zt) d
←−
B t + ZtdWt,

y0 = Ψ (Y0) , YT = h (yT ) .

(1)

A solution of (1) is a stochastic process (y, Y, z, Z) such that for each t ∈ [0, T ] we have a.s :
yt = Ψ (Y0) +

∫ t

0
b (s, ys, Ys, zs, Zs) ds+

∫ t

0
σ (s, ys, Ys, zs, Zs) dWs −

∫ t

0
ztd
←−
B s,

Yt = h (yT )−
∫ T

t
f (s, ys, Ys, zs, Zs) ds−

∫ T

t
g (s, ys, Ys, zs, Zs) d

←−
B s −

∫ T

t
ZtdWs.

(2)

We remark that this system is studied only if either we are given y0 = Ψ (Y0) or YT = h (yT ). Usually, we assume
y0 = x, a given element x of Rn, in which case Ψ : Rm → Rn is the construct mapping Ψ (Y ) = x ∀Y ∈ Rm. If this
is the case, however, the proof we shall introduce below can be reduced, and in particular, in the proof of Lemma 6
below, we would not have the cases I) below because β2 = 0 in this case.

We want now to set our assumptions for the system (2). Given an m × n full-rank matrix R let us introduce the
following notation:

υ = (y, Y, z, Z) ,

A (t, υ) := (R∗f,Rb,R∗g,Rσ) (t, υ) ,

〈A, υ〉 := 〈y,R∗f〉+ 〈Y,Rb〉+ 〈z,R∗g〉+ 〈Z,Rσ〉 ,

where (∗) denotes matrix transpose, and

R∗g = (R∗g1, · · · , R∗gl) , Rσ = (Rσ1, · · · , Rσd) .

We set the following assumptions.

59



Journal of Advances in Mathematics Vol 21 (2022) ISSN: 2347-1921 https://rajpub.com/index.php/jam

(A1) (Monotonicity condition): ∀ υ = (y, Y, z, Z) , υ =
(
y, Y , z, Z

)
∈ Rn+m+n×l+m×d, ∀ t ∈ [0, T ],

〈A (t, υ)−A (t, υ) , υ − υ〉 ≤ −θ1
(
|R (y − y)|2 + ‖R (z − z)‖2

)
− θ2

(∣∣R∗ (Y − Y )∣∣2 +
∥∥R∗ (Z − Z)∥∥2) .

(A2) We have 〈
Ψ (Y )−Ψ

(
Y
)
, R∗

(
Y − Y

)〉
≤ −β2

∣∣R∗ (Y − Y )∣∣2 , ∀ Y, Y ∈ Rm,

〈h (y)− h (y) , R (y − y)〉 ≥ β1 |R (y − y)|2 , ∀ y, y ∈ Rn.

Here θ1, θ2, β1, and β2 are given nonnegative constants with θ1 + θ2 > 0, β1 + β2 > 0, θ1 + β2 > 0, θ2 + β1 > 0. More-
over, we have θ1 > 0, β1 > 0 (resp. θ2 > 0, β2 > 0) when m > n (resp. n > m).

(A3) For each υ ∈ H2, A (t, υ) is an Ft-measurable vector process defined on [0, T ] with Ã (., 0) ∈ H2 and ∀ y ∈ Rn, h (y)

is an FT -measurable vector process with h (0) ∈ L2 (Ω,FT ,P;Rm) , and for each Y ∈ Rm,Ψ (Y ) is an F0-measurable
vector process with Ψ (0) ∈ L2 (Ω,F0,P;Rn) .

(A4) (Lipschitz condition): ∃ c > 0, 0 < γ < 1 and 0 < γ′ < 1 such that∣∣b (t, y, Y, z, Z)− b
(
t, y, Y , z, Z

)∣∣2
≤ c

(
|y − y|2 +

∣∣Y − Y ∣∣2 + ‖z − z‖2 +
∥∥Z − Z∥∥2) ,∣∣f (t, y, Y, z, Z)− f

(
t, y, Y , z, Z

)∣∣2
≤ c

(
|y − y|2 +

∣∣Y − Y ∣∣2 + ‖z − z‖2 +
∥∥Z − Z∥∥2) ,∣∣σ (t, y, Y, z, Z)− σ

(
t, y, Y , z, Z

)∣∣2
≤ c

(
|y − y|2 +

∣∣Y − Y ∣∣2 +
∥∥Z − Z∥∥2)+ γ′ ‖z − z‖2 ,∣∣g (t, y, Y, z, Z)− g

(
t, y, Y , z, Z

)∣∣2
≤ c

(
|y − y|2 +

∣∣Y − Y ∣∣2 + ‖z − z‖2
)

+ γ
∥∥Z − Z∥∥2 ,∣∣Ψ (Y )−Ψ

(
Y
)∣∣ ≤ c ∣∣Y − Y ∣∣ , |h (y)− h (y)| ≤ c |y − y| ,

for all argument written in the right hand side of each inequality and for all t ∈ [0, T ] whenever they appear.

(1) Remark. Assumptions (A1) and (A2) can be replaced by the following ones with essentially the same proofs of
the solution theorem and its lemmas.

(A1)′ ∀ υ = (y, Y, z, Z) , υ =
(
y, Y , z, Z

)
∈ Rn+m+n×l+m×d, ∀ t ∈ [0, T ]

〈A (t, υ)−A (t, υ) , υ − υ〉 ≥ θ1
(
|R (y − y)|2 + ‖R (z − z)‖2

)
+ θ2

(∣∣R∗ (Y − Y )∣∣2 +
∥∥R∗ (Z − Z)∥∥2) ,

and

(A2)′ 〈
Ψ (Y )−Ψ

(
Y
)
, R∗

(
Y − Y

)〉
≥ β2

∣∣R∗ (Y − Y )∣∣2 , ∀ Y, Y ∈ Rm,

〈h (y)− h (y) , R (y − y)〉 ≤ −β1 |R (y − y)|2 , ∀ y, y ∈ Rn.

We shall consider only assumptions (A1)–(A4).
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(2) Remark. Note that, since R : Rn → Rm (a matrix m× n) has a full-rank, if m > n, then R is injective and there
exists C1, C2 > 0 such that

C1 |y|Rn ≤ |Ry|Rm ≤ C2 |y|Rn , ∀ y ∈ Rn.

In fact C1 = min{|Rx|Rm , x ∈ Sn−1}, which is positive since R is injective, and C2 = max{|Rx|Rm , x ∈ Sn−1} = ‖R‖.

In the case m < n, we have a similar inequality for the transpose matrix R∗, which is injective as a mapping from Rm

to Rn, namely:

C3 |Y |Rm ≤ |R∗Y |Rn ≤ C4 |Y |Rm , ∀Y ∈ Rm,

where C3 = min{|R∗Y |Rn ;Y ∈ Sm−1} > 0, and C4 = max{|R∗Y |Rn ;Y ∈ Sm−1} = ‖R∗‖.

If m = n, then rank(R) = m = n, and so R is invertible. Therefore we get the following result:

C5 |y|Rn ≤ |Ry|Rn ≤ C6 |y|Rn , ∀ y ∈ Rn,

where C5 = ‖R−1‖−1 and C6 = ‖R‖.

Let us state on Itô’s formula (see e.g. [17]), that will be used throughout the paper.

(3) Proposition. Let (α, α̂) ∈
[
M2(0, T ;Rn)

]2
, (β, β̂) ∈

[
M2(0, T ;Rn)

]2
, (γ, γ̂) ∈

[
M2(0, T ;Rn×l)

]2
, and (δ, δ̂) ∈[

M2(0, T ;Rn×d)
]2 Assume that

αt = α0 +

∫ t

0

βsds+

∫ t

0

γs
←−
dBs +

∫ t

0

δsdWs,

and

α̂t = α̂0 +

∫ t

0

β̂sds+

∫ t

0

γ̂s
←−
dBs +

∫ t

0

δ̂sdWs,

for t ∈ [0, T ]. Then, for each t ∈ [0, T ],

〈αt, α̂t〉 = 〈α0, α̂0〉+

∫ t

0

〈αs, dα̂s〉+

∫ t

0

〈dαs, α̂s〉+

∫ t

0

d 〈α, α̂〉s P− a.s.,

and

E
[
〈αt, α̂t〉

]
= E

[
〈α0, α̂0〉

]
+ E

[ ∫ t

0

〈αs, dα̂s〉
]

+ E
[ ∫ T

0

〈dαs, α̂s〉
]

−E
[ ∫ t

0

〈γs, γ̂s〉ds
]

+ E
[ ∫ t

0

〈δs, δ̂s〉ds
]
.

In the following, our main theorems will be given.

(4) Theorem.[Uniqueness] Under assumptions (A1)–(A4) (or (A1)′, (A2)′, (A3)–(A4); cf. Remark 1) FBDSDEs (1)
has at most one solution (y, Y, z, Z) in H2.

Proof. Let υ := (y, Y, z, Z) and υ′ := (y′, Y ′, z′, Z ′) be two solutions of (1). Denote

υ̂ =
(
ŷ, Ŷ , ẑ, Ẑ

)
= (y − y′, Y − Y ′, z − z′, Z − Z ′) .
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Applying integration of parts (Proposition 3) to
〈
Rŷ, Ŷ

〉
on [0, T ] we get

0 ≤ E [〈RŷT , h (yT )− h (y′T )〉]− E
[〈
R (Ψ (Y0)−Ψ (Y ′0)) , Ŷ0

〉]
= E

[∫ T

0

〈A (t, υt)−A (t, υ′t) , υ̂t〉 dt

]

≤ −θ1 E

[∫ T

0

(
|Rŷt|2 + ‖Rẑt‖2

)
dt

]

− θ2 E

[∫ T

0

(∣∣∣R∗Ŷt∣∣∣2 +
∥∥∥R∗Ẑt

∥∥∥2) dt] .
Thus by using (A2)

θ1 E

[∫ T

0

(
|Rŷt|2 + ‖Rẑt‖2

)
dt

]
+ θ2 E

[∫ T

0

(∣∣∣R∗Ŷt∣∣∣2 +
∥∥∥R∗Ẑt

∥∥∥2) dt] ≤ 0.

If m > n then θ1 > 0, and so we have |Rŷt|2 ≡ 0 and ‖Rẑt‖2 ≡ 0 a.s. ∀ t ∈ [0, T ]. Thus yt = y′t and zt = z′t a.s.
∀ t ∈ [0, T ]. In particular, h (yT ) = h (y′T ). The system (2) implies

0 = Ψ (Y0)−Ψ (Y ′0) +
∫ t

0
b̂ (s, Ys, Zs) ds+

∫ t

0
σ̂ (s, Ys, Zs) dWs,

Ŷt = −
∫ T

t
f̂ (s, Ys, Zs) ds−

∫ T

t
ĝ (s, Ys, Zs) d

←−
B s −

∫ T

t
ẐtdWs,

where

π̂ (t, Yt, Zt) := π(t, yt, Yt, zt, Zt)− π(t, yt, Yt, zt, Zt)

for π := b, σ, f, g. Consequently, from the uniqueness of the solution of BDSDEs and forward SDEs by Itô’s formula
(Proposition 3) to

∣∣∣Ŷt∣∣∣, it follows that Yt = Y ′t , and Zt = Z ′t a.s. ∀ t ∈ [0, T ].

If m < n then θ2 > 0, and so we have Yt = Y ′t and Zt = Z ′t. In particular, Ψ (Y0) = Ψ (Y ′0) , and so system (2) yields
ŷt =

∫ t

0
b̂ (s, ys, zs) ds+

∫ t

0
σ̂ (s, ys, zs) dWs −

∫ t

0
ẑtd
←−
B s

0 = −
∫ T

t
f̂ (s, ys, zs) ds−

∫ T

t
ĝ (s, ys, zs) d

←−
B s.

As done earlier, we deduce that yt = y′t and zt = z′.

By arguments similar to the above cases, the desired uniqueness property of solutions can be obtained easily in the
case m = n

(5) Theorem.[Existeness] Assume (A1)–(A4) or ((A1)′, (A2)′, (A3)–(A4)) with 0 < γ′ ≤ γ/2 when m ≤ n. Then
FBDSDEs (1) has a solution (y, Y, z, Z) in H2.

We divide the proof into three case: m > n,m < n and m = n.
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Case 1: m > n (θ1 > 0) . Consider the following family of FBDSDEs parameterized by α ∈ [0, 1] :

dyt =
[
αb (t, υt) + b̃0 (t)

]
dt+ [ασ (t, υt) + σ̃0 (t)] dWt − ztd

←−
B t

dYt =
[
αf (t, υt)− (1− α) θ1Ryt + f̃0 (t)

]
dt+ ZtdWt

+ [αg (t, υt)− (1− α) θ1Rzt + g̃0 (t)] d
←−
B t,

y0 = αΨ (Y0) + ψ, YT = αh (yT ) + (1− α) θ1RyT + φ,

(3)

where υt := (yt, Yt, zt, Zt) ,
(
b̃0, f̃0, σ̃0, g̃0

)
∈ H2, ψ ∈ L2 (Ω,F0,P;Rn) and φ ∈ L2 (Ω,FT ,P;Rm) are given arbitrarily.

Note that when α = 1 the existence of the solution of (3) implies clearly that of (2) simply by letting (̃b0, f̃0, σ̃0, g̃0) =

(0, 0, 0, 0), while when α = 0, (3) becomes a decoupled FBDSDEs of the form:

dyt = b̃0 (t) dt+ σ̃0 (t) dWt − ztd
←−
B t

dYt = −θ1Rytdt+ ZtdWt + [−θ1Rzt + g̃0 (t)] d
←−
B t,

y0 = ψ, YT = θ1RyT + φ, 0 ≤ t ≤ T.

(4)

We can rewrite ∫ t

0

σ̃0(s)dWs = −
∫ T

T−t

˘̃σ0(s)
←−−
dW̆ s,

where
˘̃σ0(s) = σ̃0(T − s),

i.e., as a backward Itô integral, and ∫ t

0

Zs
←−
dBs = −

∫ T

T−t
Z̆sdB̆s, Z̆s = ZT−s,

as a forward Itô integral, and similarly, for Lebesgue integrals (with respect to dt) in (2), which then enable us to
rewrite the first (forward) equation as a BDSDE as follows:

y̆t = y̆T +

∫ T

t

˘̃
b0(s)ds−

∫ T

t

˘̃σ0(s)
←−−
dW s −

∫ T

t

z̆sdB̆s, 0 ≤ t ≤ T, (5)

where y̆t = yT−t, (hence y̆T = y0),
˘̃
b0(s) = b̃(T − s). So under our assumptions (A3) we deduce that (4) has a

unique solution (y̆, z̆) inM2 (0, T ;Rn)×M2
(
0, T ;Rn×l) . Alternatively, one can simply apply a generalized martingale

representation theorem (as in Al-Hussein and Gherbal [1]) to get an explicit formula for this unique solution (y̆, z̆) since
all integrals here do not depend on y̆ or z̆. Consequently, {(ys, zs) := (y̆T−s, z̆T−s), 0 ≤ t ≤ T} is the unique solution
of the forward equation of (4). By substituting (y, z) in the second equation of (3), it becomes a BDSDE of type (4)
discussed earlier, and so it admits a unique solution (Y,Z). Therefore, we derive a unique solution υ = (y, Y, z, Z) of
(4) in H2.

The following apriori lemma is a key step in the proof of the method of continuation. It shows that for a fixed
α = α0 ∈ [0, 1), if (3) is uniquely solvable, then it is also uniquely solvable for any α ∈ [α0, α0 + δ0], for some positive
constant δ0 independent of α0.
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(6) Lemma. We assume m > n. Under assumption (A1)–(A4), there exists a positive constant δ0 such that if,
apriori, for each ψ ∈ L2 (Ω,F0,P;Rn) , φ ∈ L2 (Ω,FT ,P;Rm) and

(
b̃0, f0, σ̃0, g̃0

)
∈ H2, (3) is uniquely solvable for

some α0 ∈ [0, 1), then for each α ∈ [α0, α0 + δ0] , ψ ∈ L2 (Ω,F0,P;Rn) , φ ∈ L2 (Ω,FT ,P;Rm) and
(
b̃0, f̃0, σ̃0, g̃0

)
∈ H2,

(3) is uniquely solvable.

The proof of this lemma is very long and it can be found in [?]

Case 3. m = n. We assume (A1)-(A4) with 0 < γ′ ≤ γ/2. From (A1) and (A2) we only need to consider two cases:
1) If θ1 > 0, θ2 ≥ 0, β1 > 0, and β2 ≥ 0, we can have the same result.
2) If θ1 ≥ 0, θ2 > 0, β1 ≥ 0, and β2 > 0, we can have the same result.

We are now ready to complete the proof of Theorem 5.

Proof completion of Theorem 5. For Case 1, we know that, for each

ψ ∈ L2 (Ω,F0,P;Rn) , φ ∈ L2 (Ω,FT ,P;Rm) ,
(
b̃0, f̃0, σ̃0, g̃0

)
∈ H2,

FBDSDEs has a unique solution as α = 0. It follows that there exists a positive constant δ0 = δ0 (c, γ, β1, θ1, R, T ) such
that for any δ ∈ [0, δ0] and ψ ∈ L2 (Ω,F0,P;Rn) , φ ∈ L2 (Ω,FT ,P;Rm) ,

(
b̃0, f̃0, σ̃0, g̃0

)
∈ H2, has a unique solution

for α = δ. Since δ0 depends only on c, γ, β1, θ1, R and T . In particular, for α = 1 with
(
b̃0, f̃0, σ̃0, g̃0

)
≡ 0, φ ≡ 0, ψ ≡ 0,

FBDSDEs has a unique solution in H2.

For Case 2, we know that, for each

ψ ∈ L2 (Ω,F0,P;Rn) , φ ∈ L2 (Ω,FT ,P;Rm) ,
(
b̃0, f̃0, σ̃0, g̃0

)
∈ H2,

FBDSDEs has a unique solution as α = 0. It follows from that there exists a positive constant δ0 = δ0 (c, γ, β2, θ2, R, T )

such that for any δ ∈ [0, δ0] and ψ ∈ L2 (Ω,F0,P;Rn) , φ ∈ L2 (Ω,FT ,P;Rm) ,
(
b̃0, f̃0, σ̃0, g̃0

)
∈ H2, has a unique

solution for α = δ. Since δ0 depends only on c, γ, β2, θ2, R and T , and then deduce as in the preceding case that
FBDSDEs has a unique solution in H2.

Similar to these cases, the desired result can be obtained in Case 3.
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