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Abstract— 

A hypergraph is a generalization of a graph since, in a graph an edge relates only a pair of points, but the edges 

of a hypergraph known as hyperedges can relate groups of more than two points. The representation of complex 

systems as graphs is appropriate for the study of certain problems. We give several examples of social, biological, 

ecological and technological systems where the use of graphs gives very limited information about the structure 

of the system. We propose to use hypergraphs to represent these systems. 
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INTRODUCTION 

A graph is a representation of a set of objects where some pairs of the objects are connected by links. The 

interconnected objects are represented by mathematical abstractions called vertices, and the links that connect 

some pairs of vertices are called edges. The edges may be directed or undirected [1,4]. 

Hypergraphs generalization of graphs, have been widely and deeply studied in Berge (1973, 1984, 1989), and 

quite often have proved to be a successful tool to represent and model concepts and structures in various areas 

of Computer Science and Discrete Mathematics. In a graph an edge relates only a pair of points, but the edges 

of the hypergraphs  known as hyperedges can relate groups of more than two points [1, 5]. 

The study of graphs represents an important area of multidisciplinary research involving physics, mathematics, 

chemistry, biology, social sciences, and information sciences. In some cases the use of simple or directed graphs 

to represent complex systems does not provide a complete description of the real-world systems under 

investigation. For instance, in a collaboration network represented as a simple graph we only know whether 

scientists have collaborated or not, but we cannot know whether three or more authors linked together in the 

network were coauthors of the same paper or not. collaboration network as a hypergraph in which points 

represent authors and hyperedges represent the groups of authors that have published papers together. We 

will show some applications of complex systems for which hypergraph representation is necessary. Specially, we 

will more investigate the food web case [1, 4, 5]. 

HOMOGENEOUS RELATION 

Relations between elements of the same set are called homogeneous; they are the easier ones to investigate. 

The homogeneous case already presents many of the essential features and is notationally simpler. 

Definitions 1.  

1)  A homogeneous relation R on V is a subset of the Cartesian product V × V. 

2)  If R is a relation between the finite indexed sets X and Y then R can be represented by the Boolean matrix B 

whose row and column indices index the elements of X and Y , respectively, such that the entries of B are defined 

by:  

𝐵𝑖𝑗 = {
1   (𝑥𝑖 , 𝑦𝑗) ∈ 𝑅

0   (𝑥𝑖 , 𝑦𝑗) ∉ 𝑅
 

The calculus of relations has been an important component of the development of logic and   algebra since the 

middle of the nineteenth century. George Boole, in his. Mathematical Analysis of Logic [1], initiated the treatment 

of logic as part of mathematics, specifically as part of  algebra. 
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GRAPHS  

Relations and graphs are closely related. Any homogeneous relation can be interpreted as the transition relation 

of a graph and vice versa.  

Definition 2. 

 A graph G = (V,B) consists of a set V of points (also vertices) and a relation B ⊂ V × V  the associated relation. 

A loop is an arrow whose head and tail coincide, in the example 1, a loop   (b, b) is attached to point b. 

Example 1. We present V = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} and  

B = {(𝑎, 𝑏), (𝑏, 𝑏), (𝑐, 𝑒), (𝑑, 𝑎), (𝑑, 𝑏), (𝑒, 𝑐)} 

which is also shown as a graph and a matrix in Fig. 1.                      

Fig. 1: A graph and its associated relation as a Boolean matrix. 

Particular relations on V are the identity and nonidentity of elements 

𝐼 = {(𝑥, 𝑦)|𝑥 = 𝑦} ⊂ 𝑉 × 𝑉 

 

𝐼 ̅ = {(𝑥, 𝑦)|𝑥 ≠ 𝑦} ⊂ 𝑉 × 𝑉 

The identity relation is helpful for defining the following simple properties of 

relations.  

Definition 3.  

Let R be a homogeneous relation. Then we define: 

𝑅 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒: ⇔ 𝐼 ⊂ 𝑅 ⇔  𝑅 ∪ 𝐼 = 𝑅 ⇔  ∀𝑥: (𝑥, 𝑥) ∈ 𝑅; 

𝑅 𝑖𝑟𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒: ⇔ 𝑅 ⊂ 𝐼̅  ⇔  𝑅 ∩ 𝐼 ̅ = 𝑅 ⇔  ∀𝑥: (𝑥, 𝑥) ∈ 𝑅̅. 

Transposition of a Relation.   

A relation can be transposed this is a characteristic trail of a relation algebra as opposed to mere subset algebra. 

We define the transpose or converse of a relation R as follows        

       \\ 

 \\        𝑅𝑇 = {(𝑥, 𝑦)|(𝑦, 𝑥) ∈ 𝑅}. 

 

Next we recall the notions of symmetry for homogeneous relations which we shall then reexpress using the 

transpose: 

Definition 4. 

be homogeneous relation. Then we have 

𝑅 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 ∶⇔  𝑅𝑇 ⊂ 𝑅 ⇔ 𝑅𝑇 = 𝑅; 

𝑅 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 ∶⇔  𝑅 ∩ 𝑅𝑇 ⊂ 𝑂 

                    ⇔ 𝑅𝑇 ⊂ 𝑅̅. 
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These notions can easily be expressed in terms of relations; the proposition below could also serve as a de 

“finition. 

Example 2. Reflexive and symmetric relation as a graph 

                   

For drawing symmetric relations one therefore prefers undirected graphs, as 

in Fig. 2, where the (undirected) edges represent pairs of arrows pointing in 

opposite directions. 

                     

Fig. 2: Irreflexive and symmetric relation as an undirected graph 

A simple graph G = (V,Γ) consists of a set V of points and an irreflexive, symmetric relation Γ on V called the 

adjacency relation of the graph. So Γ = Γ
𝑇 ⊂ 𝐼 ̅holds.  

HETEROGENEUOUS RELATIONS 

We now pass from homogeneous to heterogeneous relations. In terms of matrices this amounts to passing from 

square matrices to general rectangular ones.  

Definitions 5.  

1) Given possibly different sets X and Y, a subset R of X × Y is called a heterogeneous relation between X and 

Y. For representing a heterogeneous relation one can use a rectangular Boolean matrix and also a bipartitioned 

graph.  

 2) A quadruple (X,Y,R, S) is called a bipartitioned graph, if 

a) X and Y are nonempty disjoint point sets. 

b) R ⊂ X × Y and S ⊂ Y × X are heterogeneous relation. 

Example 3.  If  V = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑥, 𝑦, 𝑧}= 

 X ∪ Y . Then associated relation of a bipartitioned graph 
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Thus, a bipartitioned graph (X, Y, R, S) leads to a graph (V, B) with point ]=[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[set 

 V = X ∪ Y and an associated matrix of special form 

  𝐵 = (
𝑂 𝑅
𝑆 𝑂

). 

HEYPERGRAHS 

Basically, a hypergraph is just a heterogeneous relation disguised as a graph which will be called incidence in 

this context. 

Definition 6. 

The triple 𝐺 =  (𝑃, 𝑉, 𝑀) is called a hypergraph, if   

a) P is a set of hyperedges. 

b) V is a set of points . 

c) 𝑀 ⊂  𝑃 × 𝑉 is a relation called the incidence. 

Example 4. A hypergraph, with V = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7}; P = {𝑒1, 𝑒2, 𝑒3, 𝑒4} 

and          

SOME APPLICATIONS OF HYPERGRAPHS 

We will show some examples of complex systems for which hypergraph representation is necessary. Specially, 

we will more investigate the food web case. Most of applications are taken from [1,4, 7]. 

a) Numerical Linear Algebra. 

The runtime of linear algebra computations can vary dramatically depending on the sparsity of input matrices 

and their patterns of non-zero values, which can affect the sparsity of intermediate matrices appearing during 

computations. In particular, many linear algebra operations (such as matrix-vector multiply, matrix- matrix 
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multiply, eigenvalue problems, etc.) are faster for block-diagonal matrices. Computing these operations on 

matrices with permuted rows or columns will give an answer that differs by the same permutation. Therefore 

the result can be interpreted in the same way, and it is desirable to swap rows in order to bring non-zero 

elements in input matrices as close to the diagonal as possible before applying such operations. One way to 

chieve this is through recursive calls to hypergraph partitioning on a hypergraph representation of the matrix. 

Fig. 3, shows a small example of a sparse block-diagonal matrix with its corresponding hypergraph . 

                  

Fig. 3: An example of a nearly block- diagonal matrix and corresponding   Hypergraph.  

b) Social Networks 

In social networks nodes represent people or groups of people, normally called 

actors, that are connected by pairs according to some pattern of contact or interactions between them. Such 

patterns can be of friendship, collaboration, business  relationships, etc. There are some cases in which 

hypergraph representations of the social network are indispensable. These are, for instance, the commercial 

transactions in social networks in which it is necessary to   consider the coordinated actions of more than two 

actors, such as a buyer, a seller and a broker. In hypergraphs the nodes represent actors related by a common 

process, which is represented by a hyper edge, such as a commercial transaction. 

c) Reaction and Metabolic Networks 

A chemical reaction is a process in which a set of chemical compounds known as educts, 𝐸𝑖 react in certain 

stoichiometric proportions, 𝑒𝑖 to be transformed into a set of other chemical compounds named products, 𝑃𝑖 

which are produced in certain stoichiometric quantities 𝑝𝑖 : 

𝑒1𝐸1 + 𝑒2𝐸2 + ⋯ → 𝑝1𝑃1 + 𝑝2𝑃2 + ⋯ 

A chemical reaction can be described as a weighted directed hyperedge in a directed hypergraph where nodes 

are the chemicals and hyper-edges are the reactions. The absence of a well-developed theory for the structural 

analysis of (directed) hypergraphs means that two alternative representations of a chemical reaction are 

commonly used. The first is the bipartite graph, in which a set of nodes represents educts and products and the 

other set represents the reaction itself. The other representation consists of the substrate graph, which considers 

educts and products as nodes  two nodes are connected if the corresponding chemical compounds take part in 

the same reaction. 

d) Protein Complex Networks 

The systematic characterization of multi-protein complexes in the whole proteome of an organism requires the 

data to be organized in the form of protein membership lists of the protein complexes. The most common forms 

of this organization are the protein-protein interaction graphs and the complex intersection graphs. In the first 

representation the nodes of the graph represent proteins and an edge links two proteins that interact with each 

other. This representation however, does not take into account the multi-protein complexes. In the complex 

intersection graph the nodes represent complexes, and a link exists between two complexes if they have one or 

more proteins in common. Clearly, this second representation does not provide information about proteins. A 

natural way of accounting for the information about both proteins and common protein membership in the 

complexes, such as common regulation, localization, turnover, or architecture, is to use a hypergraph 
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representation. In the protein hypergraphs each protein is represented by a node and each complex by a 

hyperedge. These kinds of hypergraphs can be visualized as bipartite graphs. 

d) Food webs 

Trophic relation in ecological systems are normally represented through the use of food webs, which are 

oriented graphs D (digraphs) whose nodes represent species and links represent trophic relations between 

species. Another way of representing food webs is by means of competition graphs C(D), which have the same 

set of nodes as the food web but in which two nodes are connected if and only if the corresponding species 

compete for the same prey in the food web. In the competition graph we can only know if two linked species 

have some common prey, but we cannot know the composition of the whole group of species that compete for 

common prey. In order to solve this problem a competition hypergraph 𝐶𝐻(𝐷) has been proposed in which 

nodes represent species in the food web and hyperedges represent groups of species that compete for common 

prey. It has been shown that in many cases competition hypergraphs yield a more detailed description of the 

predation relations among the species in the food web than competition graphs. A food web and its competition 

graph and hypergraph are illustrated in Fig.4. 

        

Fig.4 Food webs are commonly considered to be acyclic digraphs; however, in literature competition graphs of 

digraphs with cycles or loops also are investigated. Roberts [9] observed, that every graph G together with |E(G)| 

isolated vertices is the competition graph of an acyclic digraph. He introduced the competition number k(G) as 

the smallest k, such that G together with k isolated vertices is the competition graph of an acyclic digraph. 

Surveys of the large literature around competition graphs can be found in  [5,6]. Obviously, the edges of CH(D) 
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correspond to certain cliques in C(D), and this proves to be very useful in the following. If  M = (𝑚𝑖𝑗) is the 

adjacency matrix of digraph D, then the competition graph C(D) is the row graph RG(M) (see [6,8]). To find a 

similar characterization for competition hypergraphs, we define the row hypergraph RH(M). The vertices of this 

hypergraph correspond to the rows of  M, i.e. to the vertices  𝑣1, 𝑣2, … , 𝑣𝑛  of D, and the edges correspond to 

certain column s;  in detail 

𝐸(𝑅𝐻(𝑀))  = {{𝑣𝑖1, … , 𝑣𝑖𝑘}|𝑘 ≥ 2  ⋀ ∃𝑗 ∈ {1, … , 𝑛}: 𝑚𝑖𝑗 = 1 ⇔ 𝑖 = {𝑖1, … , 𝑖𝑘}.}  

This notion yields immediately the following result. 

Lemma 1. Let 𝐷 be a digraph with adjacency matrix M. Then the competition hypergraph 𝐶𝐻(𝐷) is the row 

hypergraph RH(M). 

Note that any permutation of rows or columns in 𝑀 does not change the row hypergraph 𝑅𝐻(𝑀). 

Conversely, for a competition hypergraph  𝐻 with 𝑛 vertices and 𝑡 edges we call each(𝑛 ×  𝑛) −matrix 𝑀 with 

entries 0 or 1 a competition matrix of 𝐻  if 𝐻 the same 𝑅𝐻(𝑀) . Such a competition matrix is said to be 

standardized if 𝑒𝑗  ∈  𝐸(𝐻) corresponds to column 𝑗 of  𝑀 for      𝑗 = 1, … , 𝑡  and all entries are 0 in columns 𝑡 +

 1, … , 𝑛. 

 For a graph 𝐺, let us call a collection  ℰ =  {𝐶1, … , 𝐶𝑡} an edge cover of 𝐺, if each 𝐶𝑖 ⊆  𝑉(𝐺) generates a clique 

in 𝐺 or 𝐶𝑖 =  ∅, and every edge of 𝐺 is contained in at least one of the cliques in 𝐶.  

Competition hypergraphs of acyclic digraphs. 

We start with a well-known property of acyclic digraphs (see for instance [6]). 

Lemma 2.  A digraph 𝐷 is acyclic iff its vertices can be labelled such that the adjacency matrix  𝑀 of 𝐷 is strictly 

lower triangular. 

Using Lemmas 1 and 2, it follows that the edges of a competition hypergraph of an acyclic digraph D correspond 

to the columns of a strictly lower triangular  adjacency matrix  𝑀 of 𝐷 . As a consequence we obtain for a 

competition hypergraph 𝐶𝐻(𝐷) of an acyclic digraph 𝐷 with 𝑛 vertices: 

|𝐸(𝐶𝐻(𝐷))| ≤ 𝑛 − 2, 

∑ |𝑒| ≤
𝑛(𝑛 − 1)

2
− 1

𝑒∈𝐸(𝐶𝐻(𝐷))

 

∀𝑘 ∈ {2, … , 𝑛}: |{𝑒 ∈ 𝐸(𝐶𝐻(𝐷))||𝑒| ≥ 𝑘}| ≤ 𝑛 − 𝑘 

Dutton and Brigham [7] as well as Lundgren and Maybee  [8] proved the following characterization for 

competition graphs. 

Theorem 3 (Dutton and Brigham [7], Lundgren and Maybee [8]). 

 A graph 𝐺  with 𝑛  vertices is a competition graph of an acyclic digraph iff there is an edge cover ℰ =

 {𝐶1, … , 𝐶𝑛}and a vertex labelling 𝑣1, 𝑣2, … , 𝑣𝑛 of 𝐺, such that 𝑣𝑖 ∈  𝐶𝑗 implies 𝑖 > 𝑗. 

In the next theorem we give the corresponding result for competition hypergraphs. 

Theorem 4. A hypergraph H with n vertices and 𝐸(𝐻) = {𝑒1, … , 𝑒𝑡}. is a competition hypergraph of an acyclic 

digraph iff its vertices can be labelled 𝑣1, 𝑣2, … , 𝑣𝑛 , such that 𝑣𝑖 ∈  𝑒𝑗 implies 𝑖 > 𝑗. 

Proof. Suppose  𝐻 =  𝐶𝐻(𝐷) for some acyclic digraph 𝐷. By Lemma 2 there is a vertex labelling 𝑣1, 𝑣2, … , 𝑣𝑛 of 

𝑉(𝐷), which generates a strictly lower triangular adjacency matrix 𝑀 of D. With Lemma 1 follows 𝐶𝐻(𝐷)  =

 𝑅𝐻(𝑀). Using 

the notation 𝑒𝑗  = {𝑣𝑖|𝑖 ∈ {1, … , 𝑛} ⋀ 𝑚𝑖𝑗 = 1} for 𝑡 = 1, … , 𝑡 , we obtain the required condition: 𝑣𝑖 ∈  𝑒𝑗  implies 

𝑖 > 𝑗. 
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   Conversely, if the condition of the theorem is true, there is a vertex labelling of 𝑉(𝐻), such that 𝐻 has a strictly 

lower triangular standardized competition matrix 𝑀. By Lemmas 1 and 2 this is the adjacency matrix of an acyclic 

digraph 𝐷 with 𝐻 =  𝐶𝐻(𝐷). 

7. Conclusion. 

We presented homogeneous and heterogeneous relations and their relationship to graphs. I took a special type 

of graphs which are the hypergraphs; I proved some of their properties and their applications. For future work, 

we would like to apply Review ( software for relations) to illustrate our results.  
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